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Abstract. Ibis1 is a programming environment for the development of grid ap-
plications in Java. We aim to support a wide range of applications and parallel
platforms, so our example programs should also go beyond small benchmarks.
In this paper we describe a number of larger applications we have developed to
evaluate Ibis’ suitability for writing grid applications: a cellular automata simula-
tor, a solver for the Satisfiability problem, and grammar-based text analysis. We
give an overview of the applications, we describe their implementation, and we
show performance results on a number of parallel platforms, ranging from a large
supercomputer cluster to a real global grid testbed.
Since all of these applications require communication between the processors
during execution, it is not surprising that a supercomputer cluster proved to be
the most effective platform. However, all of our applications were also efficient
on a wide-area cluster system, and some of them even on a grid testbed. Since grid
systems are usually only used for trivially parallel systems, we consider these re-
sults an encouraging sign that Ibis is indeed an effective environment for grid
computing. In particular because for two of the three of the applications the par-
allelisation required very little additional program code.

1 Introduction

Traditional supercomputing offers large amounts of computational power, but requires
tightly controlled homogeneous systems at a single location. For grid computing these
restrictions are lifted, and it is assumed that effective computation is still possible on
heterogeneous, widely distributed, and independently managed computer systems. The
additional flexibility of such a configuration is attractive, but writing efficient software
for grid computing is challenging: Differences in processor architecture and power,
external loads on the processors, differences in network performance, geographical dis-
tance, security measures such as firewalls and proxies, and the possibility of faults in
processors and networks, all complicate software development.

For grid computing it is also desirable that processors can join a running compu-
tation. This is called open-world computation, in contrast to traditional closed-world
computation. However, the open-world requirement complicates the program, and re-
stricts the way a program can be parallelised.

The complications of grid computing require a solid programming environment to
hide these complexities. Ibis provides such an environment. It not only allows programs
to be written in Java, but is also itself written in Java. Choosing Java already solves many

1 Ibis is available under an open source licence, and can be downloaded from www.cs.vu.nl/ibis.
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software portability issues (very important in such a heterogeneous environment!), and
allows the programmer to use a modern high-level language.

Standard Java has some support for distributed computing through the Remote
Method Invocation (RMI) library. Ibis provides a very efficient [1] implementation,
but RMI only allows client-server style parallel programming, which is not suitable
for many parallel problems. Ibis therefore offers a wide range of communication mod-
els, including replicated objects, group/collective communication, and a divide-and-
conquer programming model. Also, the Ibis implementation layer, primarily designed
to support the higher-level models, has proved to be an effective programming model
for some problems.

To provide this functionality, other systems typically compromise portability, for
example by interfacing to a native MPI library. In Ibis, all parallel programming mod-
els are cleanly integrated into Java. However, behind this friendly facade a lot of work
is done for the sake of efficiency: native implementations are dynamically selected for
high-performance networks such as Myrinet [2], bytecode is rewritten to generate effi-
cient communication and parallel code [3], and when possible the improved functional-
ity of modern JVM implementations is exploited. However, portable implementations
are always available as fallback.

We aim to support a wide range of programs, so it is important to go beyond small
benchmarks, and try larger applications. In this paper we describe a number of larger
applications we have developed to evaluate Ibis’ suitability for writing grid applications:
a Cellular Automata simulator (§4), a solver for the Satisfiability problem (§5), and
grammar-based text analysis (§6). §2 describes our measurement setup and the way we
evaluate the measurements. §3 describes the Satin divide-and-conquer framework. In
§7 and §8 we show some results for wide-area systems.

2 Measurement Setup and Evaluation

As part of our application descriptions, we will show performance results on a single
site of the DAS2 supercomputer cluster system [4]. Each node of this cluster is a dual
1GHz Intel Pentium III system. Unless specified otherwise, we use the IBM 1.4.1 JVM.

On homogeneous systems like the DAS2 cluster, the efficiency of a computation is
easily determined. Ideally, a cluster of N processors has a speedup of N : it is N times
faster than an individual processor. However, for computations with non-identical pro-
cessors the notion of speedup is meaningless. Instead, we express the efficiency as a
fraction of the ideal speed of the system. Given a system with N nodes, and execu-
tion times on individual nodes t1 . . . tN , each processor ideally contributes to a cluster
computation inversely proportional to its individual computation time. Thus, the ideal
execution time is tideal = 1/

∑N
i=1 1/ti. Given a real cluster computation time tp, the

efficiency of the cluster computation is η = tideal/tp. For a homogeneous system, the
execution time t on each processor is the same, so tideal = t/N .

3 Satin

Satin [5, 6] is a divide-and-conquer framework similar to Cilk [7], but built on top of
Ibis. In Satin, the user must annotate methods that can be executed in parallel, and
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provide an explicit demarcation point where the results of these methods should be
available. For example, the following method recursively creates tasks, waits for them
to complete (the sync() call), and uses the results to compute its own result:

// List all parallel methods in a subinterface of Spawnable
interface I extends ibis.satin.Spawnable {

int f(int n);
}

class F extends ibis.satin.SatinObject implements I {
int f(int n) {

if(n<2) return n;
int x = f(n-1); // these two methods
int y = f(n-2); // are executed in parallel
sync(); // Satin method: wait for the f() methods

// to finish before using their results.
return x+y;

}
}

This implicitly parallel code is rewritten by Ibis to explicitly parallel code, but that is
done on the bytecode, and is invisible to the programmer. This parallel code implements
a cluster-aware work-stealing algorithm that usually is very efficient, even on a grid
system.

4 A Cellular Automata Simulator

Many simulations can be described as interactions between cells, with each cell in one
of a finite number of states. Typically the cells are arranged in a 2- or 3-dimensional
rectangular matrix. The state of the system progresses in a sequence of discrete steps,
where the next state of each cell is determined by the state of the cell itself and that
of its immediate neighbours, according to a homogeneous, fixed set of rules. Such a
problem is called a cellular automata (CA) problem. Such problems occur for example
in biology [8] and urban planning [9].

In our example program we implement a simple ecological model where each cell
represents a patch of land that can be seeded from one of the eight neighbouring patches
with grass or trees, and where woodlands regularly suffer from forest fires. The structure
and behaviour of the program is largely independent of the exact update rules, so our
findings are applicable to a larger set of problems.

We parallelise the computation by distributing the matrix over multiple processors.
Since a cell update requires the state of the neighbours, cell states must be communi-
cated between processors. Since the computation of the new generation on a processor
can only be started when its neighbours have completed the previous generation, there
is a fairly close synchronisation between the processors.

In our implementation, we organise the processors in a one-dimensional array, and
distribute the cells column-wise over the processors. This is simple to implement, but
not optimal: a two-dimensional distribution of the cells may require less communica-
tion. However, since the gains are often small or non-existent, support is complex, and
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20002 50002 100002

50000 it. 10000 it. 2000 it.
1 7833.27 9766.39 7825.75
2 4061.70 5051.58 4040.28
4 2120.79 2560.48 2031.04
8 1148.90 1295.72 1023.70

16 607.50 665.54 522.02
32 374.37 360.61 268.04
48 273.67 251.73 188.58
64 247.25 211.94 154.74
72 238.60 198.80 142.71

Number of processors
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E
ffi

ci
en

cy

0

0.25

0.5

0.75

1

closed 2000x2000 50000 it.

closed 5000x5000 10000 it.

closed 10000x10000 2000 it.

Fig. 1. Parallel execution times in seconds and efficiency of our closed-world CA simulator.

since we want to allow open-world computation, we accept the potential inefficiencies
of column-wise distribution.

Our closed-world implementation requires a fixed number of processors that is
known at the start of the program. All processors have an equal share of the matrix,
and initialise their part of the matrix.

We also implemented an open-world version. Since the number of participating
processors is not known in advance, the first processor to join the computation must
initialise the entire grid; when other processors join the computation, they are sent a
fair share of the matrix. This requires a significant amount of communication.

The open-world version also dynamically redistributes the computational load.
When a processor has completed a generation, it sends work requests to its neighbours.
A neighbour that has not completed its own computation sends some columns of the
matrix to its faster neighbour. To dampen temporary disturbances, sporadic requests are
only honoured by small redistributions, and repeated requests by larger redistributions.

The program was implemented using the Ibis communication layer. This layer was
mainly designed to support the higher levels of Ibis, but it was also a good choice for
the CA simulator. We estimate that a sequential simulator would require 200 lines of
code. The closed-world version is about 400 lines of code, and the open-world version
is about 1200 lines of code, mainly because of the load-balancing mechanism.

We do our simulations on a square matrix, denoted as a squaring expression, e.g.
202. In Fig. 1 we show execution times of the closed-world simulator for various prob-
lem sizes. As the results indicate, the program can achieve good speedups, especially
for large grid sizes.

In Fig. 2 we show the results of open-world simulation on a 50002 matrix. For com-
parison we repeat the results of the closed-world simulation. As expected, the fact that
one processor starts with the entire matrix, and then sends most of it to other processors,
has a significant impact, particularly for larger numbers of processors. To evaluate this
effect we also show the results for the last 75% of the iterations. The results indicate
that after the initial redistribution, open-world simulation is as efficient as closed-world
simulation.

Our measurements indicate that the dynamic redistribution system is very effective
in systems with moderate imbalances. However, in extreme cases a slow processor or
a high-latency communication link can determine the pace of the computation or can
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closed open started
1 9766.39 10628.54 7969.99
2 5051.58 5326.20 3988.71
4 2560.48 2785.53 2085.54
8 1295.72 1386.68 1028.97

16 665.54 774.53 560.16
32 360.61 460.86 313.36
48 251.73 376.60 222.29
64 211.94 344.05 178.47
72 198.80 324.44 136.17
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Fig. 2. Parallel execution times in seconds and efficiency for 10000 iterations of our open- and
closed-world CA simulators on a 50002 matrix. Also, the parallel execution times and efficiency
for the last 7500 iterations of our open world simulator.

render the balancing mechanism ineffective. In such cases it would be more effective to
withdraw a processor from the computation, but this is currently not supported.

5 Solving the Satisfiability Problem

Given a symbolic Boolean expression, the Satisfiability (SAT) problem requires that a
set of assignments to the variables of the expression is found for which the expression
evaluates to true, or that it is established that no such set of assignments exists2.

The SAT problem plays a pivotal role in theoretical computer science as a repre-
sentative example of an NP-complete problem. It also occurs in a number of practical
applications. Since the problem is NP-complete, no algorithm is known that is guar-
anteed to solve this problem in polynomial time. Nevertheless, a number of heuristics
allow the development of practical SAT solvers.

A brute-force SAT solver could try all possible combinations of assignments, and
see if one of them yields true. However, since an expression with n variables has 2n

combinations, this is rarely practical. A better strategy is to try to eliminate large parts
of the solution space at once by evaluating partial assignments. For example, the expres-
sion (a∨¬b)∧(b∨c∨¬d) can never be satisfied with the assignments a = false, b =
true, since the first clause cannot be satisfied for any assignment to c and d. Yet the
assignments a = true, c = true satisfy the entire Boolean expression for all assign-
ments to b and d. Modern SAT solvers use a backtracking search that speculatively
assigns values to variables until the problem is either satisfied, or until there is a con-
flict. Upon a conflict, the solver backtracks. The efficiency of the search process is
strongly influenced by the order in which the variables are assigned [10]. A common
and effective heuristic is to select variables that satisfy as many unsatisfied clauses as
possible. More refined variable selection heuristics tend to require more sophisticated
bookkeeping, and are often not deemed to be worth the extra trouble.

The backtracking search maps naturally to a divide-and-conquer implementation:
our SAT solver, using a recursive backtracking search as described above, is imple-
mented in 2500 lines of code. Only 25 of these are required by the Satin framework.

2 For a more detailed overview of the Satisfiability problem and its solvers see for example [10].
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uuf200 FPGA12 FPGA13
1 205.01 4322.26 12635.36
2 108.18 2767.59 8349.74
4 47.42 1335.31 3903.39
8 25.00 631.83 1902.20

16 14.58 313.91 901.26
32 10.45 147.15 437.58
48 9.05 99.00 282.81
64 8.68 76.55 210.07
72 8.07 70.54 186.48
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Fig. 3. Parallel execution times in seconds and efficiency for the SAT solver.

Figure 3 shows results for our solver for a number of SAT problems. The uuf200
problem is from the SATLIB collection [11]. It is a set of 860 random clauses with 3
variables each, and 200 variables in total. Random problems are known to be difficult
for many SAT solvers, since there is no structure to guide them, and problems with the
chosen proportion of clauses and variables are known to be the most difficult [12]. The
FPGA12 and FPGA13 problems are described in [13]. They represent routing problems
through FPGA switchboxes. FPGA12 has 240 variables and 1344 clauses; FPGA13 has
260 and 1586. All problems are known to be unsatisfiable.

As results of Fig. 3 indicates, for the large problems parallel efficiency is very good,
even for large numbers of processors. The uuf200 problem is too small to scale well.

6 Grammar-Based Text Analysis

As a final application we show Grammy, a program that analyses text by constructing
a grammar that produces the original sentence. For example, for the sentence ‘a long
long time ago’ we could construct the grammar

start → ‘a�� time ago’
� → ‘ long’

Constructing a compact grammar is useful for text analysis, since it infers hierarchical
structure [14]. The analysis is also useful for compression. In fact, the classical com-
pression algorithm LZ78 [15], can be viewed as constructing a grammar.

Choosing the most effective grammar rules is often difficult, since a text usually has
many repeated sequences to choose from. The most obvious strategy is to repeatedly
select the longest repeat, or the repeat resulting in the largest gain. However, that is
not optimal, since each choice may preclude subsequent choices. We approximate opti-
mal compression by considering a number of efficient choices at each step and looking
ahead a number of steps. Since each of the possibilities can be evaluated independently,
this can be implemented as a recursive parallel process. Our implementation was par-
allelised very effectively by using Satin: only about 20 of the 1850 lines of code of the
program are required by the Satin framework.

To evaluate our program, we use the following texts: William Shakespeare, A Mid-
summer Night’s Dream (96508 Bytes, text 1), Sir Arthur Conan Doyle, The Adventure
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text 1 text 2 text 3 text 4
1 173737.98 61247.16 6812.21 6111.66
2 32684.88 3704.80 3334.36
4 46890.91 16287.13 1894.03 1672.51
8 23538.16 8290.08 1004.83 905.42

16 12023.00 4398.25 593.16 537.00
32 6647.05 2539.03 394.94 360.50
48 4862.56 1954.54 335.84 306.44
64 3992.91 1647.83 308.76 282.70
72 3694.21 1547.16 296.34 275.70
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Fig. 4. Parallel execution times in seconds and efficiency for grammar construction.

of the Red Circle (53394 Bytes, text 2), the grep man page of a recent Debian system
(20047 Bytes, text 3), and the file SuffixArray.java from the Grammy source
code (28572 Bytes, text 4).

Figure 4 shows the execution times and efficiency for these texts. All runs were
done with a lookahead of 5 steps and with at most 7 candidates at each step. These
results show that for large texts the computation scales quite well to larger numbers of
processors. This is because large texts tend to have many repeats, resulting in sufficient
parallelism to keep all processors busy.

7 Results on Wide-Area Clusters

In §4, §5, and §6 we showed results for clusters of processors on a single DAS2 site.
Figure 5 shows results for the same programs on clusters of processors on two and four
DAS sites in the Netherlands. In all cases we use an equal number of processors on the
participating sites, so if we run a program on 64 processors on four sites, each site has
16 processors. As for computation on a single site, we compute the efficiency of the
parallel computation relative to computation on a single node.

Since the CA computation requires information exchange after each iteration, the
processors run in tight lockstep. The larger latency of the wide-area links therefore has a
noticeable influence on the efficiency of the computation. Nevertheless, the computation
is efficient enough to be useful.

The SAT solver and the text analysis also require communication for work stealing,
but the Satin framework was able to hide the higher latencies of the wide-area links. In
fact, in a few cases wide-area execution was more efficient than execution on a single
site, presumably due to reduced contention on shared resources such as local commu-
nication channels.

8 Results on a Global Grid

Finally, we have executed a number of runs on a grid testbed. Efficient computation on
such a system requires a careful choice of communication structure. Often communica-
tion between grid nodes is avoided entirely, but this obviously restricts the use of grid
systems to trivially parallel systems, and all of our example programs require more.
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Fig. 5. Efficiency of computations on two and four DAS sites, compared to a single site.

Our closed-world CA simulator is clearly unsuitable, since it divides the computa-
tion equally over the processors. The other programs were run using the following set
of systems and JVM implementations (site 1 is a DAS2 site):

site CPUs Architecture JVM Location
1 16 Intel Pentium III 1GHz IBM 1.4.1 32 bit the Netherlands
2 4 Intel Xeon 3GHz SUN 1.4.2 32 bit server VM Czech Republic
3 2 Intel IA64 (Itanium) 1.4 GHz SUN 1.4.2 64 bit server VM Poland
4 4 Intel Xeon 2GHz SUN 1.4.2 32 bit server VM Louisiana, USA
5 2 Intel Xeon CPU 2.4 GHz SUN 1.4.2 32 bit server VM Germany

28 total

Table 1 shows the results for these runs. The SAT solver performs very well on a world-
wide grid. The other two applications performed almost as well as on the wide-area
DAS-2 system after we removed two sites. We removed site 3 because the (64 bit) JVM
on that site performs very poorly on the CA and text analysis applications, and did not
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Table 1. Execution times in seconds on individual grid sites, on the combined set of processors
(tp), and efficiency of the various programs on a global grid.

Benchmark system 1 2 3 4 5 tideal tp η
SAT solver, FPGA12 318.88 615.41 1263.70 727.50 1294.16 129.88 146.85 0.88
SAT solver, FPGA12 318.88 615.41 - - 1294.16 180.71 217.99 0.83
Text analysis, text 4 532.68 1052.97 - - 2350.49 307.46 459.82 0.67
CA open 5000x5000, 2500 it 284.40 652.44 - - 1652.83 176.87 266.39 0.66

contribute anything. Site 4 is located in the USA and has a high latency link to Europe.
This interferes with the load balancing algorithm of the CA application: due to the high
latency, steal requests arrive after the victim has finished the iteration. The text analysis
application does not perform well if site 4 is used due to the limited amount of paral-
lelism that is generated. Jobs are relatively small, and the transfer of jobs over the slow
WAN link does not outweigh the cost. For comparison we also show the results for the
SAT solver without these sites.

9 Conclusions and Future Work

In this paper we have shown the use of Ibis for a number of larger applications. Ibis
proved to be very effective. Both the SAT solver and the text analyser could be devel-
oped as mainly sequential programs, with only a few additional lines of code to interface
to the Satin framework. Parallelisation doesn’t get much simpler than this. Although the
Cellular automata simulator required more explicitly parallel code, the amount of par-
allel code was still limited, even for the load-balancing mechanism in the open-world
version.

All programs performed well on a traditional supercomputer cluster, and a wide-
area cluster system. Since all of the programs require communication between the pro-
cessors, execution on a grid system was not always efficient, but even there very cred-
itable results could be achieved, in particular for the SAT solver.

We are currently extending Ibis with support for fault tolerance, more elaborate
automatic configuration, and peer-to-peer computing. Other areas of study are perfor-
mance debugging and additional high-level parallel programming models.
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