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1 Introduction

Handling the data flow from the future Square Kilometre Array (SKA) radio telescope is one of
the iconic IT challenges of the next decade. Phase one of this instrument will challenge the state of
the art in high-performance computing (HPC) even in 2020, while the far more ambitious second
phase is likely to be at the forefront of computing in the decades to come. The Science Data
Processor (SDP) for the SKA is generally described as a large HPC system, but the requirements
on the SDP are quite different than those on a general-purpose supercomputer. While some of these
requirements are more stringent and require careful attention, the very targeted nature of the SDP
system allows us to be much less generic in our design, potentially saving money and reducing
energy consumption.

This paper starts with an analysis of the requirements and contraints that bound the SDP design
space. Based on these constraints, we define four SDP-wide priorities that guide our design work,
and discuss some of the underlying principles for our detailed design. In this paper we introduce a
flexible but workload-driven system design philosophy that allows us to tune the SDP hardware to
its specific set of tasks. The concept of SDP Compute Islands, independent and self-sufficient units
that represent the basic building blocks of the Science Data Processor, is introduced next. Finally,
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we introduce a software-defined network to improve the flexibility and robustness of the data flow
system. To explain the workload-optimised system design strategy, we first introduce and analyse
the required workload.

1.1 The Square Kilometre Array

The SKA is a next-generation radio telescope, phase one of which is to be built in South Africa
and Western Australia starting in 2017. This global project is currently in its detailed design
phase. When completed, the instrument will consist of two distinct telescopes, optimised for low-
frequency and mid-frequency observations. For a detailed description of the SKA1 system, we
refer to the SKA1 baseline design [6] and the corrections thereof [8]. Here we suffice with a sum-
mary of the characteristics of the SKA phase one telescopes as shown in table 1. In March 2015, the
SKA underwent a major rebaselining [2], the consequences of which are still being evaluated. We
provide an initial estimate of the computational requirements for this redesigned SKA, but these
numbers are still being refined by the SDP consortium.

Table 1. SKA1 system characteristics. Input bandwidth includes protocol overhead and meta data. Re-
quired computational capacity is a work in progress estimate and does not take computational efficiency into
account.

SKA1 mid SKA1 low
Location South Africa Western Australia
Number of receivers 197 (133 SKA + 64 MeerKAT) 131,072 (512 stations x 256 elements)
Receiver diameter 15 m (13.5 m MeerKAT) 35 m (station)
Maximum baseline 150 km 80 km
Frequency channels 65,536 65,536
SDP input bandwidth 5.2 Tbps 4.7 Tbps
Req’d Compute capacity [7] 24 PFLOPS 5.7 PFLOPS

The SKA, in addition to being one of the premier science instruments of this century, is con-
sidered a major IT challenge. Table 1 shows the input bandwidth expected into the SDP facilities
and the compute capacity required as indicated by our initial parametric modelling efforts [7, 9].
The required compute capacity is a work in progress and does not take computational efficiency
into account, which means that in reality the installed system (peak) capacity needs to be several
times larger. We expand on this in section 2.1.

Figure 1 gives a high-level overview of the SKA1 system, showing the two (distributed) tele-
scope receivers, the Central Signal Processor (CSP, see section 1.2) systems and the Science Data
Processors. This paper will concentrate on the Science Data Processor.

1.2 The SKA Science Data Processor

The Square Kilometre Array is an astronomical radio interferometer. Data from the antennas are
transported to the Central Signal Processor, where the correlator produces cross-products for each
antenna or station pair. These so-called visibilities are transported to the Science Data Processor,
where they are calibrated and turned into sky images. In the SKA Science Data Processor, bulk data
is ingested from the Central Signal Processor, located at the telescope sites in the South African
and Western Australian deserts several hundred kilometres away. Meta data is provided by the
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Figure 1. The Square Kilometre Array top-level system overview for phase one of the project. This figure
is based on similar images by the SKA Office.

Telescope Manager, and merged into the bulk data stream at this stage, making the SDP internal
data products self-describing.

Each visibility represents a point in the Fourier plane of the observed sky. Making sky images,
and calibrating these, involves Fourier transforming these back into the image plane using a two-
dimensional FFT, making sure the visibilities line up on the FFT grid (gridding) and applying
corrections to these (convolution). A detailed discussion on the required processing is well outside
the scope of this paper. The interested reader is referred to the wealth of information available on
the subject, in particular [9, 11].

The SKA SDP is responsible for receiving SKA data products from the CSP and for processing
these into science-ready data products. Furthermore, the SDP is responsible for the safekeeping of
these data products for the lifetime of the telescope and delivery of these to external entities. Finally
SDP needs to compute calibration parameters and feed these back into the system.

One SDP instance will be built for each SKA telescope system, one in Perth, Western Aus-
tralia, and one in Cape Town, South Africa. While the compute requirements and input bandwidths
are similar for both telescopes, as shown in table 1, compute charateristics such as required mem-
ory footprint and bandwidth may be different. However, to simplify design and operations, we aim
to provide a single unified SDP design, which is shared between the SKA telescopes.

2 Requirements and constraints

The design of the Science Data Processor is bound by three main constraints: science, power and
capital. First and foremost, the Science Data Processor is required to provide the systems and
tools needed to meet the science requirements. The high-priority SKA science cases have been
identified [14], but these are only described in limited detail [13]. Although much of the detailed
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information is missing, especially with respect to the implications of these science priorities, we
can begin to sketch a requirements outline. The primary requirement on the Science Data Processor
is that the system must be capable of efficiently running the processing pipelines required to reduce
astronomical data. Models of the processing required to produce science-ready data have been
developed, using current state-of-the-art algorithms, to estimate the required compute power [7, 9].

The locations of the SDPs are likely to impose a hard limit on the power that can be consumed
without incurring very significant additional cost. Although no exact numbers are available yet, the
SKA Office has indicated that these limits are not likely to exceed 5 MW per site. Furthermore,
the operational budget for the SKA is bound to impose a limit on the amount of money that can
be spent on electricity consumed by the SDP, which may translate into a lower soft limit on power
consumption, which may be averaged over time.

Finally, as with any major science instrument, capital constraints are a major issue. The SKA
board has approved a cost cap for the construction of the SKA1 of 650 million Euros. It is ex-
pected that the Science Data Processor will be allocated approximately 20% of this budget. This
includes both SDP facilities, one for each telescope, and all software procurement and development
needed, but excludes the building, cooling and power delivery. Software from existing precursor
and pathfinder telescopes is not expected to scale to SKA requirements, which means that the SKA
software will have to be rewritten almost entirely from scratch. This software development is likely
to dominate the SDP budget, which means that it is expected that less than half the SDP budget
will be available for hardware. To ensure optimal use of the hardware, and considering the software
will need to be developed in parallel with the evolving hardware design, we will spend significant
effort designing a system that provides maximum useful computational performance for minimal
cost. The Science Data processor design needs to fit within at least these three constraints.

2.1 Defining the required SDP capacity

The required aggregate compute capacity of the SDP (RSDP), assumed to be in double precision1

floating point operations per second (FLOPS), is defined by:

RSDP =
Ibw q

E
,

where Ibw is the input bandwidth which is given in the baseline design [6]. q is the computational
intensity2 of the processing required in FLOP/byte, an estimate of which for each pipeline com-
ponent is given in our parametric models [9]. Finally, E is the computational efficiency of those
same algorithms in fraction of available peak performance (Rpeak). Of these, computational effi-
ciency is arguably the most difficult to estimate since it depends on many factors, such as chosen
implementation, programmer talent, target platform and data access pattern. There is an element
of hardware dependency in computational efficiency. This makes it almost impossible to give an
accurate estimate for the SDP efficiency, the hardware of which will only be procured after 2020.
There are no roadmaps, public or under NDA, that look that far into the future. Consequently we
cannot say with any degree of certainty what hardware will be used for the SDP. We can investigate

1This assumption, and the possibility of using mixed precision during some of the processing steps, is subject to
further investigation.

2Computational intensity is defined as the number of floating point operations per byte of data moved.
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computational efficiency of the most costly algorithmic components, an estimate based on our cur-
rent undestanding of the required processing, on current day best-of-breed hardware. This shows
very poor efficiency of at most 20% of Rpeak [1, 10].

2.2 Preliminary timeline

While the SKA phase one project starts its construction phase immediately after finalising the
detailed design, an analysis of the required compute capacity over time shows that building the
SDPs for both telescopes can be postponed. Considering the blistering pace of developments in
computing hardware, buying as late as possible has obvious advantages. In addition, this avoids
having massive amounts of expensive operational hardware being idle. To support commissioning
of the receivers and early science, we introduce the concepts of milli- and centi-SDPs. These are
quite literally 1

1000 and 1
100 the size of a full SDP and will be designed and built not for efficiency

but for convenience. It is important to note that the size of these initial SDP installations does not
allow testing of our software at scale. Figure 2 shows the preliminary timeline for the SDP roll-out
for the three systems.

2017 2022
2018 2019 2020 2021

2017

Start of construction phase May 2020

SKA1 mid
centi-SDP

November 2021

SKA1 mid
Full-SDP

December 2019

SKA1 low 
centi-SDP

February 2019

SKA1 low 
milli-SDP

June 2021

SKA1 low full-SDP

2019

SKA1 mid 
milli-SDP

Figure 2. Preliminary roll-out schedule for both SDP systems, based on the preliminary roll-out schedule of
the antennas.

3 SDP design priorities and principles

The scale of the SDP surpasses that of all existing major science instruments. We take a pragmatic
approach to ensure the feasibility of the SDP. In order, the Science Data Processor as a whole
prioritises the following characteristics:

1. Scalability

2. Affordability

3. Maintainability

4. Support current state-of-the art algorithms

To ensure the feasibility of the SDP, we will first and foremost focus on designing a scalable system.
We will prioritise this even over an affordable system, since there is no use in having an affordable
system if it cannot scale to the required size. Maintainability is a key challenge in this system,
since it will be orders of magnitude larger than anything done before in radio astronomy. There are
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examples of similar sized systems, in terms of numbers of nodes, in HPC and cloud environments,
but these have radically different requirements to SDP, which we will explore in more detail in the
next section. Finally, we need to support, and more importantly size our system based on, current
state-of-the-art algorithms. In other words, we cannot count on future developments in algorithm
design to solve our problems. Note that these priorities are not limited to the hardware design, but
span the entirety of the SDP design.

3.1 SDP top-level design considerations

Taking into account the design principles introduced above, we make some key observations. The
SKA SDP will be an integral part of an operational instrument, not a general-purpose HPC system,
handling massive amounts of signal processing tasks. Some of these tasks will work on stream-
ing high bandwidth data, some on buffered data. There is a near real-time component, handling
the streaming data, and in general the instrumental nature of the system brings with it different
reliability requirements compared to either HPC or cloud environments.

This fact can also be leveraged. Since we don’t need to support all workloads, the SDP can be
designed to exactly match the limited set of applications that it is required to run most effectively.
Furthermore, experience with pathfinder and precursor instruments, LOFAR in particular [12], has
taught us that the vast bulk of SDP-like processing is embarrassingly parallel in frequency and
communication between tasks can be limited by parallelising in that dimension. In our system
design we exploit this characteristic by designing a workload-optimised system.

We also observe that the scale of the SDP will greatly exceed that of existing large science
instruments, such as the Large Hadron Collider. Since the SDP is an integral part of an operational
system, hardware failures, and the associated loss of scientific data, may have an impact on sci-
ence quality. A flexible data flow system that allows data to be easily redirected from failed SDP
components is therefore essential to avoid having these disrupt operations.

4 Data flow model

The defining characteristic of the SKA Science Data Processor is the data flowing through the
system. The streaming nature of data into the system from the CSP correlator, and indeed the
bandwidth involved, is unprecedented. While the computational challenges faced by the Science
Data Processor are significant, the data flow and relatively low computational intensity of the pro-
cessing involved, make the problem particularly hard to solve. Since the data flow defines the SDP,
it is logical to use the data flow, and in particular minimising this, as a key design priority. Data
transport systems, in contrast to compute capacity, have the tendency to scale super-linearly in cost
and energy consumption, which supports this decision.

Moving large volumes of data is expensive, in time, energy and required hardware. We there-
fore make use of the embarrassingly parallel nature of the SDP data flow and design the SDP
system to minimise the (inherently large) flow of data. Data flow is directed such that all subse-
quent processing requires little or no additional (long-range) communication. The SDP is divided
into numerous independent components, the Compute Islands described in section 6, that are sized
to support end-to-end processing of the data directed to them. Figure 3 shows a high-level overview
of the SKA SDP data flow.
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Figure 3. The SDP top-level data flow. Data flows into the SDP switches from CSP, where it is directed to
the subscribed SDP component(s). After ingest and optional reordering of data through the Compute Island
switch, identified by a X, data are buffered for iterative batch processing. Science ready outputs are stored
in the science archive and exported to the world outside of SKA SDP.

The scale of the SDP means hardware failures will be a regular occurence. A flexible data flow
system is essential to redistribute and redirect data flows around failed components in the Science
Data Processor. On a high level, SDP components can be seen as subscribing to data flows from
CSP correlator entities. Every CSP entity produces a number of data streams, each representing a
fixed chunk of visibility space. Each SDP component is responsible for a subset of visibility space
by subscribing to these CSP streams, directed by the SDP local monitoring and control system.

5 Top-level network design

The top-level SDP network architecture is shown in figure 4. Three distinct networks are shown:

• the bulk data network, handling data ingress from CSP

• low-latency network, handling potential data reordering and intra-island communication

• science archive network, handling data egress to the world outside of SKA SDP

While these are shown as distinct entities, they may share hardware resources. However, this must
not impact performance of in particular the bulk data network, since the data stream from CSP is
an unreliable UDP/IP based stream that does not support retransmission of lost packets. On the
other hand, the ingress and egress networks are both used almost exclusively in one direction each,
making sharing of hardware resources an obvious and attractive cost-saving option. A small-scale
prototype will determine if this is indeed a feasible design option.

5.1 Software-defined networking in the SKA SDP

Experience with Ethernet-based precursor instruments, such as LOFAR, has shown that such in-
frastructures are static and fairly difficult to maintain [4]. The classic split between network and
compute systems, in design, procurement, and maintenance, does not fit well in our data flow driven
design philosophy. Since the data flow is the defining characteristic of the SKA Science Data Pro-
cessor, network and compute systems must both be considered integral parts of one and the same
system.
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Figure 4. The SDP top-level network design

In addition to this, a classic Ethernet-based network imposes a very strong coupling between
sending and receiving peers, in this case the CSP-based correlator, and SDP ingest. Any change in
the data flow needs to be carefully negotiated between sender and receiver, which may be hundreds
of kilometres apart. This contrasts with our desire for a flexible data flow environment to effectively
handle failures in the SDP.

We therefore propose to build a software-defined network (SDN) infrastructure, which will
become an integral part of the SDP dataflow, and will fall under the direct control of the SDP mon-
itoring and control system. This means that the network is no longer a static piece of infrastructure,
but may dynamically change configurations to suit the work flow requirements. Such a software-
defined network also allows an effective decoupling of sending and receiving nodes. In this model,
the sending peers, the CSP correlator nodes, effectively send to a virtual receiving node, which
may or may not physically exist. Receiving nodes subscribe to data flows from the CSP, as directed
by the data flow manager. A software network controller directs physical data flows by having
switches modify Ethernet headers in transit to match receiving peers: a classic publish-subscribe
model, implemented in a network. Support for these technologies is currently available in many
newer Ethernet switches from a variety of vendors. However, this is a novel approach to building a
sensor network, that needs to be prototyped. A more in-depth discussion on the relative merits of
this approach is given in a recent SDP memo [4].
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6 Compute Islands

In this paper we introduce the concept of a Compute Island, a self-contained, independent collection
of compute nodes, as the basic replicable unit in the SKA SDP. Compute Islands are sized such
that they need only to processes data that is contained in the island itself and intercommunication
between islands is limited. Some applications, such as multi-frequency synthesis, require a number
of gathers to be performed before end-products can be combined. However, at this stage data
volumes are greatly reduced and a limited intra-island interconnect is sufficient to support this.

Figure 5 shows an overview of the Compute Island concept. Note that although a Compute
Island is represented by a single rack of hardware in this figure, this is only illustrative. The actual
size of the Compute Island may span multiple racks, or be limited to a fraction of a rack, depending
on various parameters discussed in more detail in section 7.

A Compute Island consists of a number of interconnected Compute Nodes and associated in-
frastructure and facilities, such as master and management nodes, networks and filesystems. This
makes each Compute Island self-sufficient and largely independent of the rest of the system. The
characteristics of the Compute Nodes, in terms of compute resources, memory and storage re-
sources, are defined by the application pipelines expected to run on them. In figure 5 we show a
current state-of-the-art host and accelerator system as a candidate Compute Node design, in which
the CPUs handle the near real-time ingest processing and the accelerators the non real-time batch
processing. Note that all components in the Compute Island are currently expected to be commer-
cial of-the-shelf (COTS), both to reduce cost and to avoid lock-in. Most of the infrastructure will
be similar between the two SDPs, but it is conceivable that the size of an island (e.g. the number of
compute nodes within an island) or the compute node design itself differs between SDPs.

Within a Compute Island, a fully non-blocking interconnect, with a per node bandwidth far in
excess of the per node ingest rate, is provided. This is primarily used for reordering data between
processing steps, ideally within a single island. The same interconnect facilitates communication
between islands for inter-island reordering or global processing, but in this case bandwidth will be
much more limited and end-to-end transfers may require several hops.

7 SDP scaling

While the total useful capacity of the Science Data Processor depends on many components, we
identify three defining characteristics that we will use to scale the system:

• Total computational capacity

• Computational capacity per Compute Island

• Characteristics per compute node.

The total computational capacity of a SDP, the aggregate peak performance (Rpeak) expressed
in PFLOPS, is defined by the number of Compute Islands that make up the Science Data Processor,
a parameter that is freely scalable due to the Compute Islands’ independent nature, and the capacity
per Compute Island. While this number is a useful way to express the size of the system, its
usefulness is limited since it does not take computational efficiency into account. Ideally, the total
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capacity of the system would be defined by the science or system requirements, but considering
the constraints discussed above, it is more likely that total capacity will be defined by the available
budgets (energy, capital or operational).

Figure 5. SDP scaling using compute Islands. Each SDP instance contains many self-contained Compute
Islands, each containing multiple compute nodes.

Capacity per Compute Island is defined by the number of compute nodes per Island, and the
performance characteristics of these nodes. This capacity is expressed in terms of peak computa-
tional capacity, i.e. TFLOPS, but it is likely that computational capacity will not drive the sizing
of the Compute Islands. Island capacity is defined by the most demanding application, in terms of
required memory (capacity or bandwidth), network bandwidth, or compute capacity that requires a
high-capacity interconnect.

The basic building block of a Compute Island is the Compute Node. The characteristics of
these nodes are defined by the design equations in [9] but within these bounds a vast number
of valid node designs can be identified. Considering the timeframe of the SDP roll-out, which
extends well beyond the available industry roadmaps, the node definition is perhaps the least well-
understood component of the SDP design. The SDP parametric model defines a number of ratio
rules that describe suitable node designs. Within the bounds of these rules, cost, energy efficiency
and maintainability are considerations that may be used to select optimal node implementations.

There is one key requirement that a compute node needs to satisfy: if used to ingest data, only
a very small percentage of that data may be lost. In other words, these nodes need to be scaled such
that they comfortably satisfy the ingest real-time requirements and a sufficient number of these
nodes need to be available to receive all data from the CSP.

One interesting consideration is whether or not both SDPs will be standardised on a single node
design. Answering this question requires a trade-off between the standardisation of components on
the one hand, and workload optimisation of those same components on the other hand. Operational
costs, in particular energy versus deployment and maintenance cost, will also play a key role in this
decision. It is clear that this decision cannot be made until more information is available on the
likely technology options available for nodes.
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8 Conclusion and discussion

In this paper we present an overview of the design considerations and constraints for the SKA
Science Data Processor. This paper analyses the design constraints put on the SDP hardware and
identifies a number of key design priorities that guide the design process. We present an initial,
highly scalable, preliminary design for the SDP which should both be suitable and scalable while
minimising procurement and operational costs.

The preliminary design, presented in this paper, satisfies all of these constraints. The indepen-
dent and self-sufficient nature of the Compute Islands make the design extremely scalable. This
modular approach also aids maintainability, since it allows for easy replacement of failed com-
ponents. Our flexible data flow model, thanks to the software-defined network, is also tailored
specifically to account for failures. The focus on hardware/software co-design and COTS compo-
nents make for a system that is as affordable as possible.

Although we are confident in the suitability of our design, the detailed design is still in flux.
Our timeline for construction of the full systems in 2021 is well beyond any industry roadmap,
which makes technology selection difficult. This also makes the scale of the SDP very difficult
to estimate, since computational efficiency is very hardware dependent. However, the preliminary
design presented in this paper is scalable to such a degree that we feel confident that it can act as a
good basis for the detailed design during the next couple of years.
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