
Towards an Effective Unified Programming Model

for Many-Cores

Ana Lucia Varbanescu∗†, Pieter Hijma∗, Rob van Nieuwpoort∗‡ and Henri Bal∗

∗Computing Systems Group, Vrije Universiteit Amsterdam, The Netherlands
†Parallel and Distributed Systems Group, Delft University of Technology, The Netherlands

‡ASTRON, Dwingeloo, The Netherlands

e-mail: {analucia,rob,hphijma,bal}@cs.vu.nl

Abstract—Building an effective programming model for many-
core processors is challenging. On the one hand, the increasing
variety of platforms and their specific programming models
force users to take a hardware-centric approach not only for
implementing parallel applications, but also for designing them.
This approach diminishes portability and, eventually, limits
performance. On the other hand, to effectively cope with the
increased number of large-scale workloads that require paral-
lelization, a portable, application-centric programming model is
desirable. Such a model enables programmers to focus first on
extracting and exploiting parallelism from their applications, as
opposed to generating parallelism for specific hardware, and only
second on platform-specific implementation and optimizations.

In this paper, we first present a survey of programming models
designed for programming three families of many-cores: general
purpose many-cores (GPMCs), graphics processing units (GPUs),
and the Cell/B.E.. We analyze the usability of these models, their
ability to improve platform programmability, and the specific
features that contribute to this improvement.

Next, we also discuss two types of generic models: parallelism-
centric and application-centric. We also analyze their features
and impact on platform programmability. Based on this analysis,
we recommend two application-centric models (OmpSs and
OpenCL) as promising candidates for a unified programming
model for many-cores and we discuss potential enhancements
for them.

I. INTRODUCTION

Modern multi-core processors and many-core accelera-

tors (simply, many-cores), such as graphics processing units

(GPUs) and the Cell processor, offer unprecedented perfor-

mance levels by exploiting hardware parallelism on a large

scale. Inevitably, they are seen as a solution to the performance

problems that arise in many applications. This assumption only

holds if applications respond with comparable parallelism, a

non-trivial task for most types of workloads.

Programming many-cores is difficult, as it is a problem

with multiple constraints: we want applications to deliver

great performance, to be easy to program, and to be portable

between architectures. The perceived levels of these param-

eters - performance, productivity, and portability - combine

into a measure of platform programmability, which is a good

indicator for the success of an architecture.

As matters are only getting worse with the increased variety

of many-cores (see Section II for a comprehensive overview),

both vendors and academia provide platform-specific pro-

gramming models and tools, aiming to improve platform

programmability (i.e., to make these architectures easier to

program). This paper presents a survey of programming mod-

els used for general purpose and high-performance comput-

ing on many-core architectures. To evaluate these models,

we focus on the model features used to improve platform

programmability (Section III).

Our discussion has two parts. First, we present a set of repre-

sentative hardware-centric models (Section IV), which aim to

make many of the complicated low-level architectural features

of many-cores transparent to the users. These models tackle

mostly application development (aiming to improve usability

by offering an easy-to-use development environment), and do

not provide enough support for parallel application design.

Further, we also analyze several representative generic pro-

gramming models - i.e., models that can be successfully used

for more many-core families (Section V). We discuss both

parallelism-centric and application-centric models, and we

show that these models offer enough support for application

development, and provide additional support in expressing and

exploiting parallelism at design time.

Each one of the twenty models we survey, with its qualities

and drawbacks, has a positive impact on platform programma-

bility. Still, most of these models are scarcely ever used. We

believe this poor adoption of high-level programming models

is due, to a large extent, to the multitude of models available.

It is difficult for potential users to understand the limitations

of each model, the differences between models, or the impact

a model has on a specific workload. Therefore, programmers

use the native models which, although cumbersome and low-

level, guarantee full flexibility. To counter this approach, we

propose to choose the most promising models and identify

how can they be transformed into a generic application-centric

model for many-core applications. Based on features, users-

base, current and projected development status, we choose two

good candidates: OpenCL[1] and OmpSs[2], [3]. We compare

these models in more detail (Section VI), and we make a

couple of recommendations on what they can improve in

terms if programmability impact and generality. We conclude

(Section VII) that using these “candidate” models pays off in

(investments in) their faster paced improvement, and limits the

use of the lower-level native and/or hardware-centric models.



TABLE I
KEY COMPUTING AND MEMORY PROPERTIES OF MANY-CORE PROCESSORS.

Platform Cores / threads Vectors ALUs Scheduling Par levels Space(s) Access Cache

Intel Nehalem EX 8 / 16 4-wide 64 OS 2 shared R/W transparent L1-3
AMD Magny Cours 12 / 12 4-wide 48 OS 2 shared R/W transparent L1-3
IBM Power 7 8 / 64 4-wide 256 OS 2 shared R/W transparent L1-3
Sun Niagara II 8 / 64 no 64 OS 1 shared R/W transparent L1-2
GF1000 (16x32)xSIMT=10K-100K no 512 HW 3 shared;device;(host) R/W;(transparent L1-2) app-controlled shared store
HD5870 (20x16)xSIMT= 10K-100K 4-wide 1600 HW 4 shared;device;(host) R/W;(transparent L1-2) app-controlled shared store
Cell/B.E. 9 / 10 4-wide 36 App 5 SPE(local store);PPE DMA;R/W app-controlled local store

II. A COMPARATIVE ANALYSIS OF MANY-CORES

In this section we discuss three classes of many-core devices

used for high performance computing: multi-core processors1,

graphical processing units (GPUs), and the Cell Broadband

Engine (Cell/B.E.).

General purpose multi-cores (GPMCs) are replacing, since

2006, traditional single-core CPUs in both personal computers

and servers. GPMCs are homogeneous platforms with complex

cores, based on traditional processor architectures. They are

typically shared-memory architectures, with multiple levels of

caches. We emphasize the diversity of the spectrum of GPMCs

by discussing multi-cores from different vendors: The Intel

Nehalem EX (Xeon 7500 series), the AMD Magny Cours, the

IBM POWER7, and the Sun Niagara 2 (UltraSPARC T2+).

Many-core programming models should be retargetable to all

these architectures.

Since the first HPC applications ran on a GPU tens of times

faster than on the CPUs of the time (2007), GPUs are con-

stantly increasing their computation abilities. Nowadays, state-

of-the-art GPU architectures target HPC markets directly, by

adding computation-only features to their graphics pipelines.

GPUsare shared memory machines, with a complex memory

hierarchy, combining different types of caches and scratch-

pads at each level. GPUs are used as accelerators, which

requires very low flexibility in the hardware; in turn, this

allows for architectures that provide high memory throughput

and computation capabilities. The PCI express bus is used

to connect a GPU to a host system. We discuss GPUs from

NVIDIA (the GF100 or Fermi architecture), and AMD/ATI

(the Radeon HD 5870 or Cypress).

Finally, we discuss the Cell/B.E., a 9-core heterogeneous

processor (1 PPE and 8 SPEs) with a very basic programming

model, in which a lot of architecture-related optimizations

must be done by the programmer. The eight SPEs are ded-

icated to high-speed processing, have their own local scratch-

pad memories, and access the main memory by explicit

DMAs. The main system memory is directly accessible to the

PPE (which also has its private L1 and an L2 shared with the

SPEs). Cell can be used both as a stand-alond processor and

as an accelerator2.

1We generically call all these platforms ”many-cores” due to their relatively
large numbers of hardware threads. However, we preserve the name ”multi-
cores” as traditional for general-purpose many-cores.

2Cell/B.E. is the main processor in PlayStation 3; RoadRunner (http://www.
lanl.gov/roadrunner/) uses Cell as accelerators next to AMD Opteron’s as main
processors

Table I presents some key computing and memory proper-

ties of many-core platforms. Note the increase in the number

of parallelism levels: programming models can handle these

explicitly or implicitly, trading performance for programma-

bility (see Section IV). Further, note that many-cores have

increasingly complex memory and caching hierarchies. This

happens because they have to compensate for the inherent

decrease in memory bandwidth per core with the increase in

the number of cores and ALUs. One of the key differences

between multi-core CPUs on the one hand, and the GPUs and

the Cell/B.E. on the other, is that the memory hierarchy is

more exposed, and often explicitly handled in the latter. This

has a clear impact on the programming effort that is needed

to achieve good performance.

III. EVALUATING PROGRAMMING MODELS

We start from the assumption that programming models

are built to improve platform programmability. Therefore, this

section defines platform programmability and its components,

and presents a list of features used to evaluate many-core pro-

gramming models in terms of usability and programmability

impact.

A. Programmability

Due to the multiple levels of parallelism many-core platform

offer, their peak performance is only achievable if applications

are able to extract and express enough layers of parallelism,

at par with those offered by the hardware platform.

Platform programmability is a measure of how easy it is for

(generic) applications to express enough parallelism to match

the hardware offer.

Typically, the native programming model of a platform ex-

poses its “bare” programmability, as it provides users with the

means to express parallelism in a platform-specific form, and it

has minor limitations on achievable performance. Higher level

programming models aim to improve programmability, by (1)

offering users easier abstractions for designing and building

parallelism, and (2) building better back-end components (i.e.,

compilers and runtime systems) to minimize the impact on

performance.

We judge the impact a programming model can have on

platform programmability as a combination of its productivity,

portability, and performance. Productivity is a measure of

the development effort (typically, the time spent by the user

when designing and developing the application). A model’s

portability indicates the potential re-usability of the solutions

built using it. A model’s performance indicates the achievable



performance of a solution; from the model’s perspective, the

performance potential is usually measured as efficiency (i.e.,

how much of the platform’s peak performance is achievable

when using the chosen model).

Note that productivity, portability and performance are

strongly interconnected. For example, obtaining maximum

performance might increase development time, thus decreasing

productivity; similarly, a highly portable solution can use

no hardware specific optimizations, thus limiting achievable

performance. Therefore, a programming model has a posi-

tive impact on platform programmability if it can increase

productivity and portability without (negatively) affecting the

achievable performance.

B. Features

The features of a programming model are essential for its

adoption: while the availability of features is not sufficient

to guarantee success, the lack thereof is definitely a show

stopper. There are three categories of features we use to

evaluate the programming models: usability, design support,

and implementation support. We further explain the features

we consider representative for each category, and show how

do they influence platform programmability.

Usability: We include here a set of practical features that

programming models offer; these features are linked to the

ease of use of a programming model, ultimately aiming to

increase programmers’ productivity.

Class: We separate models in three classes: parallelism-

centric, hardware-centric, or application-centric. Parallelism-

centric usually provide model-specific constructs to parallelize

an application. To parallelize applications, they have to be

altered in such a way that they use the parallel constructs.

Hardware-centric models focus on providing a simplified

interface for exploiting platform-specific parallelism. Finally,

application-centric models help programmers to design an

inherently parallel program. These models typically provide

abstractions for parallelism.

Initial problem specification: Programming models re-

quire different ways of exposing the problem to be solved.

We distinguish here models that start from the sequential

code (typically enhanced with parallelism by the programmer),

models that start from an algorithm and apply model-specific

parallelization (this usually requires finding a new, parallel

algorithm), and models that start from application specifica-

tion. Note that for hierarchical models (e.g., models that use

a host-accelerator(s) structure), it is typical that the problem

specification differs between layers.

Actions: The actions to be performed to transform the

problem specification into a parallel solution, as well as the

way they are done (by the user or (semi-)automated) are

essential in increasing productivity. Typical actions are specific

parallelization, where the user parallelizes the given algorithm

to fit the target model, loop-level parallelization, usually done

by the compiler, kernel isolation and fine-grain parallelization,

where the users need to isolate the highly parallel regions in

the code and exploit loop-like parallelism within the model

space, and data clustering, where users specify collections of

data to be processed in parallel, and a compiler or runtime

system uses these elements as concurrency units.

Impact: Problem specification is important for productiv-

ity because using the right initial description helps with correct

solution design and minimizes the time spent in design, thus

making the process more efficient. For example, if sequential

code is not available for a given application, choosing a

model that requires the sequential code algorithm to design

the parallel version is counter-productive. Furthermore, models

that require a detailed application specification and complex

actions to be performed by the user have good performance

potential, but their impact on productivity is negative; by

contrast, models that rely on automated transformations of

applications specification typically show both improved pro-

ductivity and performance limitations. The class of a model

are only indirectly linked to usability: users are responsible for

choosing a model that suites their knowledge level (models

based on known programming languages, or use familiar

programming constructs, as well as models that use libraries of

pre-optimized components are proven to be more productive

than models that use new abstractions and languages).

Design support: There are four features we evaluate to

determine if programming models offer support for parallel

application design:

Algorithm view: The algorithm view [4] of a program-

ming model can be fragmented or global. The parallelism

constructs of a fragmented-view model are usually explicit,

and interleaved with the processing constructs. In this case,

the processing appears as fragmented, like in the classical

example of MPI [5]. In contrast, a global-view model typically

uses implicit communication and synchronization constructs,

resulting in little interference with the processing, thus pre-

serving the global view of the algorithm. A typical example

is High Performance Fortran [6].

Parallelism: A model can support multiple types of

parallelism. At a lower level, models can offer support for

SIMD (single instruction, multiple data - typically known as

vectorization) or SIMT (single instruction, multiple thread

- also known as lock-step execution), targeting fine-grain

parallelism. At a higher level, models can offer SPMD or

MPMD [7] (single process/multiple process, multiple data) -

targeting coarse-grain parallelism. Finally, at the highest level,

models can offer one or several patterns for both SPMD and

MPMD, such as divide-and-conquer, map-reduce, pipelining,

or streaming.

Concurrency units and granularity: A programming

model can define its own concurrency units and to provide

mechanisms to control their granularity. Concurrency units

can range from data items (in flat, data-parallelism oriented

models) to functions and/or processes; models can also have

hierarchies of different concurrency units. Furthermore, mod-

els that may alter the granularity of their concurrency units

(more or less dynamic) are told to have “granularity control”.

Available models range from those which do not have abstrac-

tions for granularity control, other than changing the program



(the majority), to programming models that offer automatic

and/or dynamic granularity control.

Data layout: A model can provide ways to explicitly

specify a data layout and/or a data distribution among the

concurrency units. This improves the control users have to

limit unneeded communication and influence future mapping

and scheduling decisions.

Impact: The overall design support of a model has an

important impact on productivity, portability, and performance.

The algorithm view influences portability and productivity:

global-view algorithms are easier to reason about and simpler

to port on different platforms than fragmented-view models;

in turn, fragmented models might simplify debugging and

implementation. The supported types of parallelism is directly

linked to productivity: a good match of the application par-

allelism with the programming model parallelism leads to a

programmability boost, while a mismatch typically requires

a lot of empirical changes on the algorithm, decreasing pro-

ductivity. The control over the granularity of the concurrency

units can contribute to performance, but also to portability.

A model that allows explicit granularity definition without

changing the program, may contribute to performance. In

addition, applications can be ported to an architecture which

needs more fine-grained or coarse-grained parallelism. Finally,

data distribution contributes to productivity and portability, as

a model with explicit data distribution is easier to reason about,

debug, and tune for different platforms.

Implementation support: We discuss here four features that

offer implementation-level support and impact overall platform

programmability.

Mapping and Scheduling: By mapping and scheduling,

we refer to the way the concurrency units are “placed” on

the platform resources and executed to improve concurrency.

Models typically choose one of the following solutions: (1)

require users to make an explicit mapping, (2) determine the

mappings automatically or even dynamically (using their own

runtime system), or (3) rely on either the Operating System

(OS) or the hardware schedulers for a “default” mapping.

Data transfers: Due to their complex memory hierar-

chies, many-cores need data transfers between memory levels.

Therefore, applications need to program transfers between

concurrency units (and, eventually, concurrency layers). Pro-

gramming models can choose to require transfers to be made

explicitly or deal with them implicitly (i.e., transparent). As

memory hierarchies vary a lot between platforms, it is likely

that a hybrid approach - where some transfers are explicit,

while the rest are taken care of by either the hardware (shared

memories) or a runtime system - will prevail.

Communication and synchronization: An important part

of application development deals with the communication and

synchronization between concurrency units. The traditional

alternatives are implicit (i.e., transparent to the user) and

explicit. Implicit communication and synchronization is essen-

tially solved by the model, thus avoiding typical parallelism

problems (like deadlocks or race conditions). Models that

choose for an explicit approach require users to program

the communication and/or synchronization explicitly. Hybrid

approaches are possible, and fairly quite common.

Optimizations: Programming models can simplify certain

types of optimizations. If such optimizations can be performed

automatically (without users tweaking the code), their positive

influence on performance translates into a positive impact on

programmability. However, optimizations are typically low-

level and platform-specific (see memory coalescing for GPUs

and SIMD extensions for the Cell/BE or the GPMCs), requir-

ing user’s intervention and diminishing solution portability and

productivity. Among the models that require users’ interven-

tion for optimization, we those models that encourage the users

to freely apply low-level optimizations (by simply altering the

code) and those which limit or even obstruct this action -

mainly because such interventions on code lower the ability

of the model’s analyzers to parse and extract other parameters

and/or parallelization opportunities.

Impact: Programming models that offer enhanced imple-

mentation support for parallel applications on many-cores have

to cover these features. Furthermore, the way these features

are reflected by models impacts programmability. For exam-

ple, using explicit mapping and scheduling increases solution

complexity, lowering productivity; the implicit alternative typ-

ically affects performance. The way data transfers between

concurrency units (and, eventually, concurrency layers) are

done impacts both performance and productivity. Requiring

data transfers to be made explicitly affects portability and

increases the complexity of the solution, while making them

implicit without performance penalties requires the program-

ming model to know the concurrency units mapping.

IV. HARDWARE-CENTRIC PROGRAMMING MODELS FOR

MANY-CORES

Hardware-centric programming models aim to replace the

native platform programming (typically supported by a low-

level model) with higher-level, user-friendly solutions. In this

section, we present a set of selected models designed to

address the challenges posed by the three families of many-

cores we target.

A. GPMC Programming Models

The native parallelism model of GPMCs is symmetrical

multithreading, as we deal with homogeneous architectures.

GPMCs target coarse grain MPMD or SPMD workloads. Pro-

grammers cannot control scheduling and mapping through the

programming model - these are typically done by the operating

system. Memory consistency and contention are additional

problems: consistency may impact solution correctness, while

memory contention often limits performance.

The hardware features with the most influence on platform

performance are the multiple hardware threads, the caches, the

memory hierarchy, as well as OS-based scheduler.

GPMCs are best suitable for coarse-grain parallel work-

loads, i.e., applications consisting on multiple complex, yet

independent tasks, or massive data-parallel processing.



Intel Threading Building Blocks: Intel Threading Build-

ing Blocks (TBB [8]) is a C++ library with a strong focus on

data parallelism. It centers around the concept of tasks instead

of threads where tasks are performed on data in parallel. The

library provides scalability by means of recursive subdivision

of data and tasks that perform work-stealing. The library has

three types of building blocks. It contains built-in constructs

like parallel_reduce that can be composed recursively,

container classes that are thread-safe, and locking classes

(although the usage of these is discouraged).

TBB can be used to parallelize parts of an existing C++

program. It provides parallelism at a level of abstraction that

is above threads, with support for concurrent container classes

and reduction constructs. However, it is still a flexible frame-

work where programmers can also use lower level constructs.

With the predefined constructs, TBB offers a global view,

and ensures that algorithms remain general. TBB is rather

flexible and offers both task and data parallelism, and good

control over task creation, and granularity. TBB does not

offer mechanisms to specify data layout, task mapping or data

transfers, but it is possible to control task scheduling. It is

also possible to perform communication and synchronization

by hand but it is not recommended. The model allows other

optimizations at a later stage.

Ct: C for throughput (Ct [9]) extents C++ with support

for nested data parallelism. The programming model centers

around a special throughput vector (TVEC) which allows more

irregular data parallelism than flat data parallel models. The

model targets GPMCs, and aims to be scalable when the

number of cores on a chip increases. A TVEC represents a

single assignment vector that can be constructed to hold values

of various scalar types and perhaps in the future also structures.

A TVEC can also contain nested TVECs, achieving nested

data parallelism. TVECs are constructed in a separate memory

space and garbage collected by the Ct Memory Manager.

The model is limited to nested data parallelism, but it offers

a global-view of computation. Therefore, the algorithms that

conform to this model are general enough to be portable to

other families of architectures. The model does not have the

concept of tasks, but it does allow to specify the data layout

with help of the TVEC construct. Ct is high-level which means

that it does not offer control over mapping scheduling, data

transfer, communication and synchronization. It also obstructs

other optimizations.

Ct has been discontinued as it has been re-used and re-

branded in the ArBB model.

Intel Array Building Blocks: Array Building Blocks

(ArBB) is a continuation of C for throughput (Ct [9]) with

some features from RapidMind[10]. It extends C++ with a

library, JIT compiler, and ArBB specific constructs such as

special for and while statements. The programming model

centers around special data containers with support for regular

data (dense or sparse) and irregular data. Through the use

of these data types, ArBB supports data and nested data

parallelism. Operations, such as reductions on these data

types are logically performed in a separate memory space

and garbage collected to obtain a deterministic programming

model.

ArBB targets GPMCs using vector instructions, and aims to

be scalable when the number of cores on a chip increases or

vector instructions become wider. The model is well suited to

parallelize data intensive parts with numerical computations in

an existing C++ program.

There are special copy in and copy out instructions to

logically define the data in the ArBB memory space. This

does not mean that the data is actually copied, but from the

programming model point of view this results in a fragmented

view of algorithms. The users have no control of task granular-

ity as the dynamic compilation phase of ArBB operations takes

care of this. Users have control over data layout by specifying

their data structures in a different way.

Summary: All three models preserve the native parallelism

models of GPMCs - ArBB and Ct focus on SPMD, as

they focus on data-parallel workloads, while TBB allows for

more generality by supporting both SPMD and MPMD, and

focusing on task-parallel workloads. All models simplify both

the data distribution and the communication/synchronization

between threads (in the limits of the types of workloads

they consider). None of the model has a clear definition of

a concurrency unit and granularity - arbitrarily sizes data

elements (ArBB) or functions (TBB) are used instead. None

of the models deals with the memory hierarchy or cache

optimizations - these are left to the user and/or the compiler.

Mapping is offloaded to a run-time system (which maps the

model’s concurrency units on threads), while scheduling is

offloaded to the OS (which maps virtual threads on hard-

ware cores/threads). Overall, TBB offers more flexibility in

expressing a parallel solution, but it has no support for parallel

solution design.

B. GPGPU Programming Models

Programming GPUs combines coarse-level parallelism

(offloading) and fine-grained parallelism (massive multi-

threading): the host CPU offloads the data-parallel kernels as

large collections of threads on the GPU. The native parallelism

models for the GPUs self are SIMD/SIMT3, with medium

and low granularity. Note that due to the time-consuming

offloading of the kernels from the host (CPU) to the GPU, too

low-granularity kernels are only suitable for these architectures

in large numbers.

For GPUs, the architectural features with the highest impact

on programmability are: the very large number of threads

and the dynamically partitioned register counts (i.e., registers

are dynamically partitioned between running threads, resulting

is a trade-off between using more registers per thread, or

more threads with less registers per thread), the hardware-

based mapping and scheduling, the complex memory hierarchy

and its parameters (sizes, latencies, and bandwidths), and the

different memory spaces (host and device).

3SIMT stands for “Single Instruction Multiple Threads”; it can be seen as
a finer-grained version of SIMD.



GPUs are typically used for highly data-parallel workloads,

where hundreds to thousands of threads can compute concur-

rently.

NVIDIA CUDA: NVIDIA’s native programming model

is called CUDA [11]. Based on C, CUDA uses language ex-

tensions for separating device (i.e., GPU) from host code and

data, as well as for launching CUDA kernels. An advantage of

NVIDIA hardware and CUDA is that the application does not

have to do vectorization, since all cores have their own address

generation units. All data parallelism is expressed by using

threads. The programmer has to explicitly group threads in

thread blocks. All threads in a block run on the same streaming

multiprocessor. Thread blocks are in turn grouped in a grid.

While considered a fairly simple programming model,

CUDA is still a low-level tool, and requires a lot of program-

mer’s insight and experience to claim impressive performance

results. With CUDA, one essentially explicitly subdivides

the work over the streaming multiprocessors, and has to

define correct and suitable grid configurations. In addition,

the programmer has to consider many details such as memory

coalescing, the texture cache, etc.

CUDA is global algorithm view model, where kernels need

to be separated (using special constructs) from the host code

and explicitly launched. The model uses kernels as the main

concurrency unit for the overall application, and data elements

for the SIMT/SIMD parallelization of the kernels themselves

(finer granularity). The application data layout is also specified

in two layers: the data structures used by the kernels are

simply moved when and where they are needed; for the kernels

themselves, the data layout results from the access patterns

of the threads. Mapping and scheduling are performed by

the hardware, and the data transfers from host to device are

explicit. Low-level optimizations are left to the user.

Stanford Brook / AMD Brook+: In terms of workloads,

ATI GPUs are targeting similar applications as NVIDIA’s

processors: highly data-parallel applications, with medium

and low granularity. Therefore, choosing between the two

becomes a matter of performance and ease of programming.

For high-level programming, ATI adopted Brook, which was

originally developed at Stanford [12]. ATI’s extended version

is called Brook+ [13]. In contrast to CUDA, Brook+ offers a

programming model that is based on streaming. Therefore, a

paradigm shift is needed to port CPU applications to Brook+,

making this a more difficult task than porting applications to

CUDA.

With Brook+, the programmer has to do the vectorization,

unlike with NVIDIA GPUs. Brook+ provides a feature called

swizzling, which is used to select parts of vector registers in

arithmetic operations, improving readability. In our experience,

the high-level Brook+ model does not achieve acceptable per-

formance. The low-level CAL model that AMD also provides

does, but it is difficult to use. Recently, AMD adopted OpenCL

as a high-level programming model for their GPUs, but also

for the CPUs, and therefore Brook is most likely discontinued.

Brook is a fragmented view model, which uses explicit data

transfers between host and device and implicit data layouts and

transfers on the device itself. The concurrency units are kernels

(coarse granularity) and stream elements (fine granularity).

These are both controllable through the code, using language

constructs. Mapping and scheduling are implicit. The model

allows low-level optimizations.

PGI Fortran & C Accelerator Programming Model: Us-

ing PGI’s Accelerator compilers[14], programmers can accel-

erate applications by adding OpenMP-like compiler directives

to existing high-level Fortran and C programs. In this respect,

PGI’s programming model is similar to PathScale’s. Compute

intensive kernels are offloaded to the GPU, using two levels

of explicit parallelism. There is an outer forall loop, and an

inner synchronous SIMD loop level.

Based on sequential code reuse, PGI Accelerator is a global

view model which uses pragmas to separate the potential

kernels (its main concurrency units). Data layouts and transfers

are both implicit, as kernels are automatically offloaded and

parallelized. As the model uses CUDA as back-end, most of

the implementation features - hardware-based mapping and

synchronization, SIMT-based granularity, etc. - are inherited

from CUDA. Still, the model does not allow for hand-tuning or

architecture-specific optimizations on potential kernel code, as

these interfere with the ability of the compiler to automatically

parallelize the kernel loops.

Pathscale ENZO: The PathScale compiler company4

has recently released a GPU software suite called ENZO.

Although the programming model is device-independent, it

initially targets NVIDIA GPUs and GPMCs, as well as hybrid

combinations between these two. ENZO comes with it’s own

hardware device drivers, which focus on computing and do

not support graphics. This way, PathScale expects to achieve

better performance than CUDA.

With ENZO, programmers annotate their code with direc-

tives to indicate which code regions should be parallelized

on the GPU. The C with annotations approach is similar

to the OpenMP’s and PGI’s Accelerator model, preserving

their advantages (e.g., portability, relatively high-level, and

starting from sequential code), as well as their drawbacks

(e.g., important architecture-specific optimizations cannot be

expressed).

ENZO is a global view model, using pragmas for ker-

nels’ granularity control and mapping/scheduling. It relies on

hardware-based mapping and scheduling at kernel level. Data

transfers are automatically generated and performed, and there

are no special constructs for data layouts. To compensate

for the lack of low-level optimizations, the model uses pre-

optimized libraries, code generators and auto-tuning to im-

prove kernel performance.

Summary: All four GPU programming models are very

close to the architecture; they all approach application par-

allelization by identifying and offloading the potential kernels

to be accelerated. The way the offload is performed differs:

CUDA and Brook require users to code this offload explicitly,

while PGI and ENZO work by isolating kernels (with user-

4See http://www.pathscale.com.



inserted pragmas) from available sequential code. Further,

the models tackle the massive parallelism in the kernels

differently. PGI and ENZO use a compiler to extract and

exploit the fine-grain concurrency units; CUDA requires the

programmers to do so manually, while Brook uses streams

to help the user identify the fine-grain concurrency. None of

the models allows for specifying granularity requirements -

these are guessed and tuned by the user. Data distribution is

simplified, but not optimized - i.e., the models do not tune the

virtual organization of threads (blocks and grids) to match

the application requirements). Mapping and scheduling are

left to the hardware (impossible otherwise). All models but

CUDA (the native model) simplify the offloading procedures,

minimizing the problem of different memory spaces. The

effective use of the accelerator memory hierarchy remains the

duty of the programmer.

C. Cell/B.E. Programming Models

Cell/B.E. programming is based on a simple multi-threading

model: the PPE spawns threads that execute asynchronously on

SPEs, until interaction and/or synchronization is required. The

communication between the SPEs and the PPE is bidirectional

and on-demand. All data distribution, task scheduling, com-

munication, and processing optimizations are to be performed

“manually” by the user/application. As a result, programming

the Cell/B.E., and especially optimizing the code for Cell/B.E.,

are notoriously difficult.

The hardware features with the highest impact on pro-

grammability are: the heterogeneous cores, the inter-core

communication and synchronization, the manual work- and

data-distribution, the task scheduling (including thread man-

agement), the SIMD intrinsics, and the DMA operations.

Given that the architecture supports MPMD, SPMD, and

SIMD parallelism, it is suitable for both coarse- and fine-grain

parallel applications, and especially for workloads that exhibit

nested parallelism (i.e., combinations of MPMD/SPMD and

SIMD).

IBM Cell SDK: The SDK is the native Cell/B.E. pro-

gramming model, developed to allow full flexibility for any

workload. The model offers all the needed constructs to define

the PPE and the SPE codes, and their interaction. With the

SDK, programmers design and develop the main control flow

on the PPE (using simple C or C++ code), and the computation

kernels for the SPEs (using C and special intrinsics for

optimized processing). Both SPMD and MPMD execution is

supported for the SPE kernels. The SPE kernels are managed

and coordinated by the PPE. Data layout is implicit - the SPEs

and the PPE collaborate in data transfers. There are no special

constructs for data layouts, as most of these are settled through

programmed DMA accesses to the main memory.

To summarize, the SDK is a fragmented view model, with

kernels as main concurrency units. Granularity is derived from

code (no special constructs are provided), and concurrency

is achieved by running different threads on the SPEs. Data

transfers are all explicit, and programmed by the user using

DMAs; so are synchronization and communication, which use

special channels, but still require code to manage the protocol.

Mapping and scheduling are performed by the user via the

PPE code. Low-level optimizations (mostly vectorization and

SIMD operations) are also explicitly performed by the user.

ALF: ALF (Accelerated Library Framework [15], [16])

provides a set of functions/APIs for the development of data

parallel applications following an SPMD model on a (multi-

level) hierarchical host-accelerators system (PPE-SPEs and/or

host-Cell’s). In ALF, the host runs the control task and the

accelerators run the compute tasks. The same program runs

on all accelerators at one level. ALF provides data transfer

management, task management, double buffering support, and

data partitioning. Further, the model uses three types of code:

(1) accelerator optimized code (compute tasks optimized for a

specific accelerator), (2) accelerated libraries (kernels and their

interfaces, including the data management and buffering), and

(3) applications (user-defined aggregation of compute tasks).

Overall, ALF is an elegant high-level model which offers high

productivity and, provided with the right libraries, also very

good performance.

Feature-wise, ALF is also a fragmented view model, with

coarse, task-level granularity. The model is hierarchical, but

focuses on SPMD parallelism. Kernels are defined by the pro-

grammer as concurrency units. Kernel mapping and scheduling

are solved transparently by the runtime system; the same holds

for communication and synchronizations. Data layout can be

pre-set for the SPMD tasks, and data-transfers, communication

and synchronization are implicit. Mapping and scheduling are

performed by the runtime system. Optimizations are typically

performed by the user in the kernel code, but the model can

use imported kernel from pre-optimized libraries.

Cell SuperScalar: Cell SuperScalar 5 (CellSS) is a prag-

matic model, suitable for quick porting of existing sequential

applications to the Cell/B.E. [17]. CellSS uses a compiler

and a runtime system. The compiler separates an annotated

sequential application in two: a PPE part (the main application

thread), and the SPEs part (a collection of functions to be

offloaded as SPE tasks). The runtime system maintains a

dynamic data dependency graph with all active tasks. When

the PPE reaches a task invocation, it requests the CellSS

runtime to add a new task to the execution list. When a

task is ready for execution (i.e., all its data dependencies are

satisfied and there is an SPE available), the DMA transfers

are transparently started (and optimized), and the task itself is

started on the available SPE. Various scheduling optimizations

are performed to limit communication overhead. Additionally,

CellSS provides execution tracing, a mechanism included

in the runtime system to allow performance debugging by

inspecting the collected traces.

When starting from suitable sequential code, CellSS is

a very productive global-view model for first-order imple-

mentations of Cell applications. As mapping and scheduling

are dynamically optimized, the performance depends on the

5The model is based on the principles of Grid SuperScalar, a successful
grid programming model.



kernels’ performance. As kernels are generated from sequen-

tial user-written functions, low-level optimizations need to be

performed by hand, and some manual (re)sizing might be

needed to avoid task imbalance.

Summary: The three models presented here are quite

different: the SDK is the native model, which provides the

means to program the platform, but offloads all tasks to the

user; ALF includes some rudimentary design elements (builds

a hierarchy of tasks), and from there it derives additional op-

timization for mapping and scheduling; CellSS enables quick

parallelization for the Cell, guided entire by the user. Except

for the SDK, the presented models simplify (1) mapping and

scheduling at the MPMD/SPMD level on the SPEs (based on a

run-time system), (2) data distribution, including the complete

DMA transfers, with reasonable optimizations (prefetching,

double buffering), and (3) inter-core communication. Low-

level optimizations are left to the user (with potential help from

the compiler). The concurrency units and their granularity are

arbitrarily chosen by the user, but none of these three models

helps in properly estimating them.

V. GENERIC PROGRAMMING MODELS

Our analysis on hardware-centric models shows that their

design support is rather rudimentary. Rather, these models

focus almost entirely on simplifying the user experience by

tuning application parallelization to match a chosen platform.

Given the size of the parallelization problem the software com-

munity is facing - i.e., all applications have to be parallelized,

sooner or later, to make effective use of many-cores - using

hardware-centric models becomes a non-scalable solution:

Alternatively, one can use generic programming models

(i.e., models which run on more than one family of many-core

processors), focusing first on the application parallelism, and

only second on mapping the parallel solution on one platform

or another. We split this “generic” models in two categories:

parallelism-centric models and application-centric models. We

briefly discuss each category.

A. Parallelism-centric models

Parallelism-centric models are built to allow users to express

typical parallelism constructs in a simple and effective way,

and at various levels of abstraction. The higher the level of

abstraction is, the less (explicit) parallelism constructs are

available, but also the less the flexibility and expressibility

of the model are. Parallel-centric models are typically used

to express complex parallel algorithms (i.e., the design of the

parallel solution for the application and its implementation are

decoupled).

Threads with shared memory: Threading libraries such as

POSIX threads or the Java Thread class extend the sequential

imperative programming model in a natural way to obtain par-

allelism. Functions are spawned as new threads that globally

share data.

Threads provide mechanisms on the lowest level of ab-

straction of parallel programming and are very flexible. It is

natural to spawn threads with different functions to obtain task

parallelism, but threads can also be spawned in a loop, with

the same function operating on different data, which results in

data parallelism. There is extensive synchronization support,

such as joins, barriers and condition variables. Threads offer a

fragmented-view as programmers need to divide data among

threads and join for the results. Algorithms expressed in this

model are not portable to other architectures and there is

no concept of tasks that can be sized or resized other than

functions. Users have no control over mapping and scheduling

and the model has no specific means to change the data layout.

Threads do allow other low-level optimizations.

The flexibility of threads provides programmers lots of

control over task creation and synchronization. Threads are

well suited for coarse-grained tasks that need much synchro-

nization. Because threads are so low-level, programmers have

many opportunities to optimize on for example synchroniza-

tion.

MPI: The Message Passing Interface (MPI)[5] targets

both distributed memory systems and shared memory ma-

chines, but is normally used for distributed memory. An

application consists of multiple processes that communicate

with messages. MPI gives much control due to the strong

separation of communication and computation and is not

suitable for fine-grained parallelism.

MPI is the typical example of a fragmented-view program-

ming model. The user is responsible for all communication

and synchronization. Explicitly parallel algorithms are needed,

which results in algorithms being not easily portable to another

family of platforms, or even other platforms of the same

family. There is no way to size MPI tasks other than changing

the program. Data transfer and layout is explicit but only

on a high granularity. Communication and synchronization is

explicit by means of messages and the user has no control

over how processes are scheduled. However, it allows other

optimizations at a later stage. For example MPI can be mixed

with OpenMP [18].

MPI is well suited for applications where the input and

communication is static, for example a regular data structure

that can be divided in regular coarse-grained blocks that each

are computed on different processors.

Cilk: The language Cilk allows programmers to write

parallel divide-and-conquer programs. It extends C and C++

with keywords such as spawn and sync. A spawn in front

of a function call creates a non-blocking function call that

is executed in its own thread and may spawn other (possibly

recursive) functions. Multiple consecutive spawn function calls

create parallelism in the program. The keyword sync blocks

the calling thread until the results of the spawned function

calls are available.

Cilk offers a global view of the algorithm. Syntactically, a

sequential divide and conquer algorithm is very similar to a

parallel divide and conquer algorithm. The language is limited

to divide-and-conquer parallelism. The model gives no control

over tasks. Programmers often control the granularity of the

recursive task by manually choosing between a sequential

version or parallel version based on the size of the data that



needs to be processed.

Data is communicated to threads by using parameters of

spawn function calls. The model offers several ways to obtain

more control over synchronization. For example, the abort

keyword aborts other spawned threads. A typical use-case is a

parallel search where one thread finds an item and aborts the

others. Another example is the use of inlets that guarantee that

results of spawned threads are treated atomically with respect

to the other spawned threads.

The Cilk system dynamically schedules threads and dynam-

ically maps them to hardware.

B. Application-centric models

Application-centric models tackle application parallelization

from design to implementation. Some of them also include

several generic optimizations. These models have less explicit

parallelism constructs. Their goal is to help users to find an

effective, (partially) platform-agnostic parallel solutions for

their applications, and implement them using a limited set of

concurrency, granularity, and parallelism constructs.

CHARM++ and the Offload API: CHARM++ is an exist-

ing parallel programming model adapted to run on accelerator-

based systems[19], [20]. A CHARM++ program consists of a

number of chares (i.e., the equivalents of tasks) distributed

across the processors in the parallel machine. These chares

can be dynamically created and destroyed at run-time, and

can communicate with each other using messages.

For accelerators, Charm++ uses an Offload API: a chare can

offload work requests, which are computation-intensive kernels

to be accelerated by the accelerators (e.g., the SPEs on the

Cell/B.E.); on the host side (e.g., the PPE on the Cell/B.E.),

the Offload API manages each work request, coordinating data

movement, execution, and completion notifications.

Charm++ is a fragmented view model, with coarse paral-

lelism expressed by chares. The model supports both SPMD

and MPMD. The granularity is controlled at design time, by

defining the chares; data distribution is implicitly defined by

the data usage of these chares and data transfers are automated.

The dynamic mapping and scheduling, together with the highly

optimized data transfers contribute to a high performance

potential.

Sequoia: Sequoia requires the programmer to reason

about a parallel application focusing on memory locality [21].

A Sequoia application is a tree-like hierarchy of parametrized

tasks; running tasks concurrently leads to parallelism. A tree

has two different types of tasks: inner-nodes, which spawn

children threads, and leaf-nodes, which run the computation

itself. The task hierarchy has to be mapped on the memory

hierarchy of the target machine (not only Cell/B.E.) by the

programmer. Tasks run in isolation, using only their local

memory, while data movement is exclusively done by passing

arguments (no shared variables). One task can have multiple

implementation versions, which can be used interchangeably;

each implementation uses both application and platform pa-

rameters, whose values shall be fixed during the mapping

phase. For the Cell/B.E., all inner nodes run on the PPE,

while the leaf nodes are executed by the SPEs. The PPE

runs the main application thread and handles the SPE thread

scheduling. Each SPE uses a single thread for the entire

lifespan of the application, and it continuously waits, idle,

for the PPE to asynchronously request the execution of a

computation task.

As a generic model, Sequoia uses a fragmented algorithm

view. Based on coarse-level granularity SPMD parallelism, the

model requires applications to be designed using a divide-and-

conquer approach. The granularity can be controlled at both

compile time and runtime. Data transfers are implicit. The

special feature of the model is its user-defined mapping and

scheduling (by user-file), which also results in implicit, yet

automated data layouts. Optimizations are allowed as different

versions of the same kernel can be user interchangeably during

the lifespan of the application.

Still, Sequoia has limited productivity, as the model is

difficult to use for non divide-and-conquer applications. The

application and machine decompositions are independently re-

usable. The manual application-to-machine mapping offers a

flexible environment for tuning and testing application perfor-

mance.

Pattern-based models: OPL: Pattern-based models allow

users to focus entirely on application analysis. An application

is built as a composition of nested patterns. Once all these

patterns are implemented for a platform, their composition,

also a pattern, leads to a complete application on that platform.

Pattern languages use different classes of patterns, applied at

different stages of application design.

First, the high-level application structure is described in

terms of structural patterns (a graph of tasks) and compu-

tational patterns (the computation of each task). Next, the

algorithm strategies patterns are employed: they identify and

exploit application concurrency as exposed by the structural

patterns. The way the program and data are organized is

specified by implementation strategies patterns, which are

ways of implementing each algorithmic pattern. Finally, the

low-level parallelism support, matching both the application

and the target architecture, is included in the so-called parallel

execution patterns.

A pattern-based language is a promising abstract concept,

being elegant, generic, systematic, and allow for feedback

loops and incremental re-design. Implementing such a lan-

guage, however, requires platform-specific pattern implemen-

tations, an effort that depends on the number of commonly-

used patterns. Furthermore, the first and last categories of

patterns - the structural and the parallel execution, are not

trivial to apply to a new application. Structural mistakes

can significantly affect performance, but the simplicity of

the model and, eventually, the limited number of structural

patterns should allow for extensive auto-tuning.

One example of a pattern-based language is OPL (Our

Pattern Language), developed at Berkeley6). Details on the

five categories of patterns the language offer can be found

6http://parlab.eecs.berkeley.edu/wiki/patterns/patterns



in [22]; however, there is no implementation of OPL so far,

so any technical details are missing. Therefore, we consider

that the the practical side of this solution is yet to be proven.

OmpSs: OmpSs[2], [3] addresses the programmability of

heterogeneous architectures by allowing the user to exploit

task-level parallelism 7 using a similar approach to that of

OpenMP. Based on pragmas, the model uses a source-to-

source translator to separate the code in dedicated programs

for the different components of the heterogeneous system;

furthermore, a the runtime system schedules tasks to execution,

preserving and optimizing the dependencies among tasks.

The system is based on incremental parallelization of a

single-source code, allowing step-by-step restructuring and

optimization, and a separation of the implementation from the

platform specific details (which are, of course, encapsulated

in the runtime system). OmpSs is also portable, as the same

code (typically, a sequential C or FORTRAN application

with pragmas) runs on any machine where the backend is

ported. Programmers may choose to apply platform specific

optimizations (i.e., design and implement platform specific

versions of the tasks), but they may also choose to ignore

them, preserving portability at the expense of performance.

OmpSs is a global view model with coarse granularity,

MPMD (and SPMD) parallelism, implicit data transfers, prag-

mas for data distribution, and runtime-based dynamic mapping

and scheduling. Platform-specific can be applied “outside the

model” - i.e., the model allows multiple kernel implementa-

tions to be plugged in.

OpenCL: OpenCL was proposed as a in 2008 (by the

KHRONOS group) as a solution to the platform diversity

problem. OpenCL proposes a common hardware model for

all multi-core platforms. The user programs this “virtual”

platform, and the resulting source code is portable on any

OpenCL compliant platform8.

The OpenCL platform model consists of a host connected

to one or more OpenCL compute devices. A compute device

is divided into multiple compute units (CUs); CUs are divided

into multiple processing elements (PEs); PEs perform the

computations. Each PE can either behave as a SIMD or as

a SPMD unit: a kernel is executed concurrently on multiple

processing elements, each with its own data and a shared

program counter or each with its own data but its own program

counter. SIMD execution implies that all PEs execute a strictly

identical set of instructions, which cannot be always true for

SPMD due to possible branching in a kernel. Further, the

OpenCL platform has a multi-level shared memory model,

featuring four distinct memory spaces: private, local, constant

and global. Private memory can only be used by a single

compute unit (like registers in a single compute unit). Local

memory can be used by the work-items in a work-group

7Instances of the generic StarSs programming model include GRIDSs (for
the Grid), CellSs (for the Cell B.E.), and SMPSs (for multi-core processors),
GPUSs (for GPUs); Ss stands for Superscalar.

8Currently, ATI’s and NVIDIA’s GPUs, AMD’s and Intel’s multi-cores,
ARM’s embedded processors, and the Cell/B.E have hardware drivers and
compiler back-ends for OpenCL.

(similar to on-chip shared memory). Constant memory can be

used to store constant data for read-only access by all of the

compute units in the device during the execution of a kernel.

The host allocates and initialize the memory objects from

constant memory. This is similar to the constant caches that are

available on AMD GPUs. Finally, global memory is memory

that can be used by all the compute units on the device. This is

similar to the off-chip GPU memory that is available on AMD

GPUs. Note that the mapping on real hardware depends on

real memory subsystem, and it might require different memory

spaces are to be collapsed together.

An OpenCL program has two parts: the compute kernels

that will be executed on one or more OpenCL devices, and a

host program that defines the context for the kernels, initiates

and manages their execution. The “main” OpenCL application

runs on the host, and submits commands from the host to be

executed on the processing elements within a device. Kernels

can run either in-order or out-of-order. Events allow checking

the status of outstanding kernel execution requests and other

runtime requests. The execution domain of a kernel is defined

by an N-dimensional computation domain, which signals how

large of a problem the user needs to solve. Each element in

the execution domain is a work-item and OpenCL provides

the ability to group together work-items into work-groups for

synchronization and communication purposes.

VI. THE UNIFIED MODEL: OPENCL OR OMPSS?

So far, we have discussed twenty programming models for

many-core processors - and these are only the representative

ones. Each one of these models has its qualities and draw-

backs, and has a positive impact on platform programmability.

Still, many of them are used only sporadically. We believe this

poor adoption of high-level programming models is due to a

large extent to the multitude of models available. It is difficult

for potential users to understand limitations of each model, the

differences between models, or the impact a model has on a

specific workload. Therefore, programmers choose the native

models which, although cumbersome and low-level, offer full

flexibility.

We believe that the space of programming models needs to

be pruned to only a few items: generic models and application-

specific models. In this context, we extract two candidates

for a unified many-core programming model - OpenCL and

OmpSs - and compare them from this perspective. While

we are not able to extract a clear winner, we can make

several recommendations for each of the models to improve

the potential impact on platform programmability.

A. Programmability Impact

We briefly analyze the impact of both OpenCL and OmpSs

on platform programmability by looking at all its three com-

ponents, as described in Section III-A.

1) Productivity: OpenCL supports application-centric pro-

gramming, covering a good mix of both design and imple-

mentation features. Application parallelization starts from a

specification and/or an algorithm. It is a kernel-based global



view model: it preserves the algorithm design and offloads

designated kernels to be accelerated. Kernel mapping and

scheduling are not controllable, but they can be influenced

by using asynchronous queues. Fine-grain data parallelism is

well supported. The model has no definition of a task (and,

implicitly, no control over sizing and composition), but kernels

can be used to implement some degree of task parallelism,

provided that the hardware platform supports it. There are

virtually no limitations in expressing parallelism in OpenCL.

However, the way this parallelism is translated from the virtual

OpenCL platform to the real hardware platform is hidden

behind vendor-specific drivers, and can be counterintuitive.

In contrast, OmpSs requires sequential code to produce a

parallel application by offloading the kernels (specified by the

user) and parallelizing them accordingly. OmpSs is also a

global-view model. Despite its less developed parallel design,

OmpSs allows for quick parallelization of available applica-

tions by user-placed pragmas. This approach leads to excellent

productivity. Kernel-level optimizations are very similar to the

ones in OpenCL (in fact, one of the back-ends of OmpSs is

OpenCL). There can be limitations induced at design-level by

a poorly written sequential application. In this case, a fall-back

to a parallel solution designed from scratch is recommended

(for which an implementation in OpenCL is an alternative).

Finally, OmpSs is slightly friendlier for coding: the application

is single-source (separated by the compiler in device code and

kernels), and it is less verbose than the original OpenCL (the

context setting code is generated).

The most difficult problem remains the parallelization from

scratch. For OpenCL, applications need to fit the architectural

model of the common middleware. These are workloads

with large collections of fine-grain work items, very limited

synchronization, and no need for user-controlled mapping and

scheduling; the applications can only be driven/managed from

the host, with no device-initiated communication. Essentially,

applications with coarse tasks and a lot of interdependencies

are unsuitable for OpenCL. OmpSs requires a good sequential

implementation (or at least its control-flow skeleton together

with hardware-specific kernels) to generate a good paralleliza-

tion. This is a much quicker design, but the performance

behavior will vary a lot on real hardware platforms.

Overall, OmpSs is more productive than OpenCL when

sequential code is available. On the other hand, already paral-

lelized codes (such as, for example, CUDA applications) are

typically much easier to translate to OpenCL than (directly)

to OmpSs.

2) Portability: The strongest point of OpenCL is its porta-

bility by construction. This is a result of using the common

platform model as a virtual middleware. Further, this separates

the design and implementation concerns: OpenCL’s back-end

targets one machine type only, and it is the responsibility

of the hardware vendors to provide the OpenCL drivers;

programmers are only concerned with designing a parallel ap-

plication for a given platform model. Note that the portability

of OpenCL (and its relative success in both the academia and

the industry) is a good incentive for all processor vendors to

produce high-performing OpenCL drivers for their platforms.

OmpSs is portable at source-level: each platform for which

OmpSs is available has its own compiler and run-time system,

fully optimized for the specific platform. While this is, in a

sense, similar to OpenCL’s portability provided by the drivers,

the incentive and the driving force behind the model are

significantly lower. Thus, we expect the number of devices

supported by OpenCL and not by OmpSs to increase rapidly.

Overall, the two models are equally portable. However,

the performance penalties that are inferred by this portability

might differ significantly.

3) Performance: Finally, when it comes to the performance

impact, OpenCL is expected to enable GPUs to achieve

comparable results to their “native” models - there are no

fundamental reasons for OpenCL to behave worse: parallel

design is similar, low-level optimizations can be enabled,

and CUDA-like execution can be emulated perfectly. There-

fore, bad-performing drivers and/or compilers, as well as bad

programming, could be the only causes for lower OpenCL

performance. For the GPMCs and the Cell, the performance

depends on (1) how well the application maps to the OpenCL

platform, and (2) how well the hardware maps to the OpenCL

platform. Overall, the few performance case-studies available

so far real applications, are inconclusive [23], [24], [25], [26]:

performance variations range between 10% and 90%. Our own

preliminary evaluations show that, for fair comparisons, the

gap is not larger than 10%.

For OmpSs, performance penalties come from two sources:

the poor parallelization of the application (due to bad use

of pragmas or unsuitable sequential code) and non-optimized

kernels. The first one can be attributed to programmers, and

it is impossible to eradicate. The second one is addressed

by the model itself, which allows multiple implementations

of the same kernel to be included in the program, and the

system can choose, at run-time, which implementation is the

most suitable one for the platform in use. However, there are

also performance improvements that are specific to OmpSs:

its run-time system provides dynamic mapping and scheduling,

taking into account data locality and minimizing data transfers.

Therefore, it is most likely that GPU-like applications will

perform about the same in both models, while for the GPMCs

and the Cell, the OmpSs will perform better.

Performance-wise, the systems are comparable; a more

precise ranking can only be made on an application basis.

B. Recommendations

Based on the detailed analysis provided above, we conclude

that both models have provide a mix of features and good

impact on platform programmability to become generic mod-

els for many-core processors. Before that, more case-studies

have to be developed, to assess if some of the theoretical

assumptions we have made here hold in practice for real

workloads.

Still, we recommend two improvements for each model. For

OpenCL: (1) provide basic communication options to allow the

computing elements to communicate (at least to the host) and



(2) allow some degree of control for mapping work items on

the platform, enhancing support for the task parallelism. And

for OmpSs: (1) find a higher level application specification to

be used for cases when sequential code fails, and (2) enable

an auto-tuning like technique to allow the automated selection

(or even the tuning/generation) of the best available kernel

implementation for a given platform.

VII. CONCLUSIONS AND RECOMMENDATIONS

Multi-core processors are here to stay. With that, application

parallelism has become mandatory. The software community

is (suddenly) faced with a large problem: virtually every

application will have to run on a parallel machine, rather

sooner than later. And with multi-core complexity steadily

increasing, addressing applications and machines as one pair

at a time will be counterproductive.

Using hardware-centric programming models can speed-

up the implementation process per platform, but the lack of

portability will eventually lead to lower performance and/or

lower productivity. Therefore, a more effective way to address

the mass-parallelization problem is to focus on application-

centric programming: first design a parallel solution for the

problem, and then implement it on one/multiple platform(s).

However, this is easier said than done: we analyzed twenty

many-core programming models, and showed that most of

them lack either the design or the implementation component.

Our analysis leads to three important conclusions. First,

the perceived difficulty of many-core programming generates

a lot of hardware-centric models, platform-specific and non-

portable. Second, application-centric models can be used to

improve platform programmability, as they offer increased

productivity and portability with minor performance penalties.

Third, although there is no unified model for efficient pro-

gramming of many-cores, OpenCL and OmpSs are promising

candidates for achieving such a consensus.

For the near-future, we have three suggestions. For hard-

ware vendors: support OpenCL by developing drivers for

your platforms, rather than building yet another hardware-

centric programming model. For (third-party) programming

model designers: support application-centric models by using

OmpSs or OpenCL as a compilation target for your higher-

level models. For programmers: use OpenCL and OmpSs for

prototyping and development - a quicker adoption will speed-

up their development, increasing the chances for a unified

model for programming many-cores to emerge.

REFERENCES

[1] OpenCL committee, “OpenCL 1.1 standard,” http://www.khronos.org/
opencl/, October 2010.

[2] R. Ferrer, J. Planas, P. Bellens, A. Duran, M. Gonzalez, X. Martorell,
R. M. Badia, E. Ayguade, and J. Labarta, “Optimizing the exploitation
of multicore processors and gpus with OpenMP and OpenCL,” in
LCPC2010, October 2010.

[3] E. Ayguade, R. M. Badia, P. Bellens, D. Cabrera, A. Duran, M. Gonza-
lez, F. Igual, D. Jimenez-Gonzalez, J. Labarta, L. Martinell, X. Martorell,
R. Mayo, J. M. Perez, J. Planas, and E. S. Quintana-Orti, “Extending
OpenMP to survive the heterogeneous multi-core era,” International

Journal of Parallel Programming, vol. 38, no. 5–6, pp. 440–459, june
2010.

[4] B. Chamberlain, D. Callahan, and H. Zima, “Parallel programmability
and the chapel language,” Int. J. High Perform. Comput. Appl., vol. 21,
no. 3, pp. 291–312, 2007.

[5] M. P. I. Forum, “MPI: A Message-Passing Interface standard,” 1994.
[6] K. Kennedy, C. Koelbel, and H. Zima, “The rise and fall of high perfor-

mance fortran: an historical object lesson,” in HOPL III: Proceedings

of the third ACM SIGPLAN conference on History of programming

languages. New York, NY, USA: ACM, 2007, pp. 7–1–7–22.
[7] M. J. Flynn, “Some computer organizations and their effectiveness,”

Computers, IEEE Transactions on, vol. C-21, no. 9, pp. 948 –960, 1972.
[8] J. Reinders, Intel Threading building blocks. O’Reilly & Associates,

Inc. Sebastopol, CA, USA, 2007.
[9] A. Ghuloum, T. Smith, G. Wu, X. Zhou, J. Fang, P. Guo, B. So, M. Ra-

jagopalan, Y. Chen, and B. Chen, “Future-proof data parallel algorithms
and software on intel multi-core architecture,” Intel Technology Journal,
vol. 11, no. 4, pp. 333–348, 2007.

[10] M. McCool, “Developing for GPUs, Cell, and multi-core CPUs using a
unified programming model,” http://www.linux-mag.com/id/6374, July
2008.

[11] CUDA Programming Guide, nVidia, 2007.
[12] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and

P. Hanrahan, “Brook for GPUs: Stream Computing on Graphics Hard-
ware,” in ACM Transactions on Graphics, Proceedings of SIGGRAPH

2004, Los Angeles, California, August 2004, pp. 777–786.
[13] Advanced Micro Devices Corporation (AMD), AMD Stream Computing

User Guide, august 2008, revision 1.1.
[14] PGI Fortran & C Accelerator Programming Model white paper, version

1.2 ed., The Portland Group, March 2010, http://www.pgroup.com/lit/
whitepapers/pgi accel prog model 1.2.pdf.

[15] Cell/B.E. Programming Tutorial, 2nd ed., IBM, December 2006.
[16] A. Buttari, P. Luszczek, J. Kurzak, J. Dongarra, and G. Bosilca, “A rough

guide to scientific computing on the playstation 3,” ICL, University of
Tennessee Knoxville, Tech. Rep. UT-CS-07-595, May 2007.

[17] P. Bellens, J. M. Perez, R. M. Badia, and J. Labarta, “CellSS: A
programming model for the Cell BE architecture,” in SC’06. IEEE
Computer Society Press, November 2006.

[18] E. Ayguade, N. Copty, A. Duran, J. Hoeflinger, Y. Lin, F. Massaioli,
X. Teruel, P. Unnikrishnan, and G. Zhang, “The design of openmp tasks,”
IEEE Transactions on Parallel and Distributed Systems, vol. 20, pp.
404–418, 2009.

[19] D. Kunzman, “CHARM++ on the Cell Processor,” Master’s thesis, Dept.
of Computer Science, University of Illinois, 2006.

[20] D. Kunzman and L. Kalé, “Towards a framework for abstracting
accelerators in parallel applications: experience with cell,” in SC ’09:

Proceedings of the Conference on High Performance Computing Net-

working, Storage and Analysis. New York, NY, USA: ACM, 2009, pp.
1–12.

[21] K. Fatahalian, T. J. Knight, M. Houston, M. Erez, D. R. Horn, L. Leem,
J. Y. Park, M. Ren, A. Aiken, W. J. Dally, and P. Hanrahan, “Sequoia:
Programming the memory hierarchy,” in SC’06. ACM Press, November
2006.

[22] K. Keutzer and T. Mattson, “Opl: Our pat-
tern language,” http://parlab.eecs.berkeley.edu/wiki/ media/patterns/
opl-new with appendix-20091014.pdf, October 2009. [On-
line]. Available: http://parlab.eecs.berkeley.edu/wiki/ media/patterns/
opl-new with appendix-20091014.pdf

[23] S. M. Cho, D. W. Im, O. Y. Jang, H. J. Song, B. D. Paulovicks,
V. Sheinin, and H. Yeo, “OpenCL and parallel primitives for digital
TV applications,” IBM Journal of Research and Development, vol. 54,
no. 5, pp. 1–14, September 2010.

[24] P. Du, P. Luszczek, and J. Dongarra, “Opencl evaluation for numerical
linear algebra library development,” in SAAHPC ’10, June 2010.

[25] J. D. Sean Rul, Hans Vandierendonck and K. D. Bosschere, “An
experimental study on performance portability of OpenCL kernels,” in
SAAHPC ’10, June 2010.

[26] K. Komatsu, K. Sato, Y. Arai, K. Koyama, H. Takizawa, and
H. Kobayashi, “Evaluating performance and portability of OpenCL
programs,” in VecPar’10, 2010.


