
A Tool for Bottleneck Analysis and Performance
Prediction for GPU-accelerated Applications

Souley Madougou,
Ana Lucia Varbanescu, Cees de Laat
University of Amsterdam, The Netherlands
{S.Madougou,A.L.Varbanescu,delaat}@uva.nl

Rob van Nieuwpoort
Netherlands eScience Center, The Netherlands

R.vanNieuwpoort@esciencecenter.nl

Abstract
High-level tools for analyzing and predicting the performance
GPU-accelerated applications are scarce, at best. Although per-
formance modeling approaches for GPUs exist, their complexity
makes them virtually impossible to use to quickly analyze the per-
formance of real life applications and obtain easy-to-use, readable
feedback. This is why, although GPUs are significant performance
boosters in many HPC domains, performance prediction is still
based on extensive benchmarking, and performance bottleneck
analysis remains a nonsystematic, experience-driven process. In
this context, we propose a tool for bottleneck analysis and per-
formance prediction for GPU-accelerated applications. Based on
random forest modeling, and using hardware performance counters
data, our method can be used to quickly and accurately evaluate ap-
plication performance on GPU-based systems for different problem
characteristics and different hardware generations. We illustrate the
benefits of our approach with three detailed use cases: a simple
step-by-step example on a parallel reduction kernel, and two clas-
sical benchmarks (matrix multiplication and sequence alignment).
Our results so far indicate that our statistical modeling is a quick,
easy-to-use method to grasp the performance characteristics of ap-
plications running on GPUs. Our current work focuses on tackling
some of its applicability limitations (more applications, more plat-
forms) and improving its usability (full automation from input to
user feedback).

1. Introduction
GPUs are popular platforms for many parallel applications in need
for performance, but we are far from using them efficiently and
analyzing their performance critically. For example, we lack easy-
to-use performance analysis and prediction tools, which should
help programmers identify critical performance bottlenecks and
assess the match between applications and architectures. Unfortu-
nately, existing attempts for performance modeling require detailed
knowledge of the hardware architecture, use complex methodolo-
gies, or are built to be architecture- or application-specific [11, 12].
Even architecture-specific tools cannot keep up with the newer

[Copyright notice will appear here once ’preprint’ option is removed.]

generations of the same architecture, or require cumbersome cal-
ibration and additional tuning. This level of complexity is ulti-
mately equivalent to lack of usability: most users will prefer perfor-
mance debugging by trial-and-error instead of performance model-
ing through a complex procedure.

To address the need for simplicity, we propose in this work a
performance analysis approach, called BlackForest (BF), that can
be used to analyze GPGPU application performance. BF is a sta-
tistical method, which relies on the ubiquity of hardware perfor-
mance counters and uses machine learning techniques to build per-
formance models. We define the performance model as a random
forest (RF) object, built from a collection of experimental data con-
sisting of the values of GPU performance counters (acquired by
profiling during the training phase), together with application and
machine characteristics set as independent variables (i.e., predic-
tors). Execution time is the response variable of interest. We have
specifically selected random forest, because it usually outperforms
the more traditional classification and regression algorithms, such
as support vector machine and neural networks [10], especially for
scarce training data.

The RF object learns from the training data how the various
predictors relate to the response value, and builds a collection of
regression trees which are used to predict responses for unseen in-
puts. To simplify the statistical model and its interpretation (i.e.,
reduce the number of variables), we use additional analyses, in-
cluding linear and nonlinear regressions, and principal component
analysis (PCA).

While building the regression forest, the most important predic-
tors in determining the response are identified. This feature, called
variable importance, combined with the partial dependence plot of
individual predictors vis-à-vis the response, shows how a predictor
affects the response, both qualitatively and quantitatively. Conse-
quently, variable importance can be correlated to performance pat-
terns [21], enabling us to provide systematic bottleneck detection
and analysis, as well as suggest potential elimination strategies.

While hardware counters have been successfully used in the past
to attempt performance prediction and energy consumption model-
ing, there is little work specifically targetting bottleneck analysis
of GPUs. To the best of our knowledge, ours is the first work that
uses this combination of statistical methods to build an accurate
performance model, which in turn can be implemented as a tool for
bottleneck analysis and performance prediction on both new data
points and new hardware. Thus, the contribution of this paper is
twofold. First, we introduce BlackForest, the first easy-to-use tool
based on a mix of random forest modeling, regressions, and PCA,
and able to predict performance of GPGPU applications for both
data and hardware scaling. Second, we demonstrate how BlackFor-
est is used to detect performance bottlenecks, resulting in useful
insight into kernel-platform performance behavior.

1 2016/3/2

The paper is structured as follows. We first discuss alternative
performance modeling and analysis approaches in Section 2. Sec-
tion 3 provides a brief introduction to GPU computing and GPU
hardware performance counters, both necessary to further under-
stand the details of the proposed method and its limitations. The
core of our method is presented in Section 4, which also includes
the architecture of the toolchain. Sections 5 and 6 showcase Black-
Forest at work. We conclude the paper by discussing the advantages
and limitations of our method in Section 7.

2. Related work
There is a large body of research on performance analysis of both
traditional parallel architectures [14, 16] and recent GPU-based
systems [11, 12]. We only discuss here those contributions that
either are similar to or had impact on ours, and we restrict ourselves
to statistical models.

Many approaches have combined GPU hardware performance
counters with machine learning for performance and/or power
modeling. For example, he closest related work is by Zhang et
al. [21], and describes a statistical approach aiming at capturing re-
lationships between execution characteristics of a kernel on a GPU
and the achieved performance (and its power consumption), based
on which the authors derive instructive guidance to software de-
signers and hardware architects for building more power-efficient
high performance systems. The authors use random forest to find
the most influential variables for the achieved throughput on the
target GPU. The method collects performance data (from the ATI
profiler), feeds them to the random forest modeling, and derives
insightful principles. Input variables consist of a set of 23 perfor-
mance counters. The approach is validated on 22 kernels from ATI
Stream SDK on a Radeon HD5870 with a coefficient of determina-
tion of 79.7% and a median absolute error of 13.1%. Besides minor
differences in the used hardware and performance counters, our
work also has a different goal: whereas the focus in [21] is put on
the platform, our work analyzes the performance behavior of the
application-platform combination. Furthermore, we are able to per-
form both bottleneck analysis and hardware scaling, which is not
the case for this previous work. Other works, like [13, 18, 20], use
less powerful statistical models in designing their approach, which
fundamentally lack the ability to determine performance bottleneck
analysis. Futhermore, none of them explores the idea of hardware
scaling.

On the tools side, Stargazer (STAtistical Regression-based GPU
Architecture analyZER) [7] is an automated GPU performance
exploration framework based on stepwise regression modeling.
Stargazer sparsely and randomly samples the parameter values of
the full GPU design space. Simulation or measurement is then
performed for each sample. Finally, stepwise linear regression is
performed on the simulations or measurements to find the most in-
fluential (architectural) parameters to the performance of the appli-
cation. Stargazer aims at GPU design space exploration by pruning,
and, as such, only considers hardware characteristics. Furthermore,
those characteristics do not cover the entire feature space of current
GPU architectures. In addition, as Stargazer relies on a simulator
for experimental data collection, this process can take days, making
it difficult to use as aid to application developers. Our approach, fo-
cusing also on application performance, is much quicker, although
limited to existing hardware (i.e., no simulator is being used).

Finally, a more general tool example is Eiger [8], an automated
statistical methodology for modeling program behavior on differ-
ent architectures. To discover and synthesize performance models,
the methodology has 4 steps: 1) experimental data acquisition and
database construction, 2) a series of data analysis passes over the
database, 3) model selection and, finally, 4) model construction. An
analytical performance model is constructed using parametric re-

gression analysis over training data and a model pool consisting of
basis functions. Model evaluation produces execution time predic-
tion. The methodology is promising due to its high accuracy and
automation, but it is complex and requires C++ programming for
experimental data collection, in contrast to our work requiring only
profiler runs and simple problem and machine characteristics.

In summary, statistical models and performance counters are al-
ready known to be useful for performance analysis, and various
approaches have targeted different GPU architectures and perfor-
mance analysis scenarios, ranging from hardware design to power
modeling [7, 8, 13, 18, 20]. In this context, our work has its spe-
cific use of counters for performance bottleneck analysis, hardware
scaling, and performance prediction. By combining hardware per-
formance counters, random forest, and principal component analy-
sis, BlackForest is built with existing, accessible tools, and enables
automated performance prediction, complemented by performance
bottleneck analysis.

3. Background
The background information in this section covers the GPU archi-
tecture basics and performance factors, the basics of performance
counters, and elements of machine learning techniques used in this
paper. Without losing generality, we will use NVIDIA’s CUDA
(Compute Unified Device Architecture) terminology to describe
the GPU architecture and performance factors.

3.1 GPUs and Performance
GPUs are massively parallel, multi-threaded architectures with
hundreds to thousands of processing cores and very high band-
width between those cores and the off-chip device memory. From
a hardware perspective, a GPU consists of one or more streaming
multiprocessors (SM) and one or more L2 cache units. Each SM
consists of schedulers, dispatch units, streaming processors (SP),
register file and on-chip SRAM memory used as shared memory
and L1 cache (for the more recent cards). Each SP contains CUDA
cores for integer and floating-point operations, memory load and
store units, and special function units. From a software perspective,
a kernel running on the GPU corresponds to multiple threads exe-
cuting in warps (groups of 32 threads on current NVIDIA cards).
Warps are organized into thread blocks (TB), themselves structured
in a grid. During execution, TBs are distributed to the SMs. The
warp schedulers chose warps for execution from active TBs. The
instructions in a warp are dispatched to functional units over sev-
eral cycles. As TBs terminate, new blocks are launched on vacated
SMs.

To efficiently utilize the hardware, applications must expose
sufficient parallelism to fill the platform and optimize memory ac-
cesses and instruction execution for maximum throughput. To ex-
pose sufficient parallelism, there should be sufficient independent
work within a thread, either independent arithmetic instructions
or memory accesses, and sufficient concurrent threads (or warps).
This is captured by the well-known occupancy metric, which is
kernel-dependent. To maximize memory throughput, there should
be sufficient concurrent memory accesses in flight and their ad-
dress patterns must meet memory coalescing rules on the target
architecture. To maximize instruction throughput, one has to take
into account instruction mix as different instructions have different
throughput and also serialization due to shared memory bank con-
flicts, uncoalesced memory accesses, and control flow divergence
within warps.

3.2 Performance counters
Hardware performance counters (or, performance counters, PCs)
are special-purpose registers built into modern microprocessors to

2 2016/3/2

store the counts of hardware events, or occurrences of specific sig-
nals related to the processor’s function. Monitoring these events
allows the programmer to establish correlations between code and
its mapping to the underlying architecture. Initially proposed for
CPUs, PCs are nowadays found on most GPUs, too. Popular ven-
dors such as AMD and NVIDIA both provide PC interfaces for
their products. For the NVIDIA products used in this work, PCs are
accessible through APIs and tools such as profilers. In this study,
we use nvprof to collect metrics and events of CUDA kernels run-
ning on NVIDIA GPUs. Without loss of generality, this paper uses
the counters of NVIDIA Fermi GPUs (compute capability (CC)
2.0) and Kepler GPUs (CC 3.5).

Ideally, these metrics and events should be linked to the perfor-
mance factors laid out in the above section. When faced with ker-
nel optimization, it is important to first identify the performance-
limiting factor. Several PCs can be used for that purpose. For in-
stance, for architectures with different cache levels, the number of
instructions issued (inst issued) can be compared to the com-
bined number of store transactions and of last level cache misses,
global store transaction and l1 global load miss, re-
spectively. Based on this, the user can then deduce whether the ker-
nel is arithmetic-, memory- or latency-bound. To assess the attained
level of parallelism, the classical occupancy metric is available as
counter, achieved occupancy. Several metrics are also available
for throughput analysis. For memory, if the number of memory
requests made by the kernel (gld request+gst request) is sig-
nificantly lower than the number of actual memory transactions
(l1 global load miss+l1 global load hit
+global store transaction), this may indicate issues about
memory access patterns. The same goes for arithmetic through-
put, directly available as ipc, which one can compare to hard-
ware specifications provided that the instruction mix is known.
Furthermore, comparing the number of actual instructions issued
(which include replays) to the number of instructions executed
(inst executed, which does not include replays) tells some-
thing about potential serialization issues if the former is signifi-
cantly larger than the latter. The same conclusion can be drawn
from analysis of the counter inst replay overhead. Other met-
rics directly measure well-known performance issues such as
warp divergence through branch and divergent branch, shared
memory bank conflicts through l1 shared bank conflict and
shared replay overhead. Based on these considerations, we
have built a list of metrics and events, of which a sample is shown
in table 1(the tools’ guide1 contains the full list).

4. Random Forest Modeling
For the proposed modeling, we make use of several machine learn-
ing tools to get insight into the performance behavior of GPGPU
applications. The core of the approach is built around random for-
est modeling [2], a popular and very efficient algorithm for classi-
fication and regression problems [3, 21]. It belongs to the family of
ensemble learning methods, i.e., it generates and uses many clas-
sifier or regression trees and aggregates their results. Additionally,
we use multivariate adaptive regression splines - MARS [5], and
PCA. In this section, we give a brief overview of these methods,
and we discuss how we use them, step by step, to build our perfor-
mance model.

4.1 Statistical data analysis
This section provides the required background to understand the
virtues and limitations of random forests, MARS, and PCA in the
context of performance modeling.

1 http://docs.nvidia.com/cuda/profiler-users-guide/
#axzz3ZYPyss4Z

4.1.1 Regression trees and forest
Given a learning set (X,Y) consisting of p inputs and a numerical
response, for each of N observations, i.e., (X,Y) = {(xi, yi),i =
1, . . . , N}, with xi = (xi1, xi2, . . . , xip). A regression problem
consists in finding a so-called regression function r such that Y =
r(X) + ε, where ε is zero-mean noise.

A regression tree, as a tree-based method, partitions the feature
space into a set of regions, and then fits a simple model (such as
a constant) to each region [6]. Recursive binary trees are used to
represent the partitioning. The full dataset sits at the top of the tree.
Observations satisfying the condition at each junction are assigned
to the left branch, and the rest to the right branch. The terminal
nodes or leaves of the tree correspond to the regions.

A regression tree is grown by letting the algorithm automat-
ically decide on the variables and the points to split in order
to achieve best fit. Suppose we have a partition into M regions
R1, R2, . . . , RM , and we model the response as constant cm in
each region, the regression function would be:

r(x) =

M∑
m=1

cmI(x ∈ Rm) (1)

where I is the indicator or characteristic function over the regions.
Using minimization of sum of squares

∑
(yi−r(xi))2 as criterion,

it is easy to see that the best ĉm is just the average of yi in region
Rm.

Using a greedy approach, the algorithm proceeds in finding the
best binary partition in terms of minimum sum of squares. Starting
from all data, consider a splitting variable j and split point s, and
define the pair of half-planes

R1(j, s) = {x|xj ≤ s} and R2(j, s) = {x|xj > s} (2)

The algorithm seeks for j and s that solve

min
j,s

min
c1

∑
xi∈R1(j,s)

(yi − c1)2 +min
c2

∑
xi∈R2(j,s)

(yi − c2)2

(3)

For any choice of j and s, the inner minimization is solved by
taking the average of each region.

After the best split is found, the data is partitioned into two
regions and the splitting process is recursively repeated on each
of the two regions. The tree must be grown to the “right size” as a
very large tree might over-fit the data, while a small tree might not
capture all the important features. A possible, well-known strategy
is to grow a large tree, stopping the splitting process only when
some minimum node size (e.g., 5) is reached. Then this large tree is
pruned using a cost function to trade off between the tree size and
its goodness of fit to the data [6].

One major problem with trees is their high variance: a small
change in the data may result in a very different series of splits,
making interpretation difficult. A solution around this issue is bag-
ging, which averages trees grown from bootstrapped training sets,
to reduce this variance. The principle of random forest is to com-
bine many binary decision trees built from several bootstrap sam-
ples from the training set and choosing randomly at each node a
subset of predictors at that node. In fact, RF adds some random-
ness to bagging, leading to better predictions compared to other ap-
proaches including discriminant analysis, support vector machines,
and neural networks [10]. The forest is constructed using the fol-
lowing algorithm: 1) compose nt bootstrap samples from the origi-
nal data, 2) for each of those samples, grow an unpruned regression
tree, and 3) predict new data by averaging the predictions of the nt

trees.
RF provides two interpretation tools convenient for perfor-

mance analysis: variable importance and partial dependence plots.

3 2016/3/2

counter meaning

shared replay overhead
average number of replays due to shared memory conflicts
for each instruction executed

shared load|store
number of executed shared load (store)
instructions, increments per warp on a multiprocessor

inst replay overhead average number of replays for each instruction executed

l1 global load hit
number of cache lines that hit in L1
for global memory load accesses

l1 global load miss
number of cache lines that miss in L1
for global memory load accesses

gld request
number of executed global load instructions
increments per warp on a multiprocessor

gst request similar to gld request for store instructions

global store transaction
number of global store transactions
increments per transaction which ca be 32,64,96 or 128 bytes

gld requested throughput requested global memory load throughput

achieved occupancy
ratio of average active warps
per active cycle to the maximum number of warps per SM

l2 read throughput memory read throughput at L2 cache
l2 write transactions memory write transactions at L2 cache
ipc number of instructions executed per cycle

issue slot utilization
percentage of issue slots that issued at least
one instruction, averaged across all cycles

warp execution efficiency
ratio of the average active threads per warp to the maximum
number of threads per warp supported by the multiprocessor

Table 1: Performance counters used in this study

Variable importance is estimated by looking at how much the pre-
diction error increases when the values for that variable in the OOB
sample are permuted while all others are left unchanged; the nec-
essary calculations are carried out tree by tree as the forest is con-
structed. The second tool, the partial dependence plot, shows how
the response changes as a predictor or a set of predictors change(s),
which gives more interpretability to important variables.

4.1.2 Principal Component Analysis (PCA)
When possible, only the first few important variables (<10) are re-
tained in the final model. Indeed, keeping a statistical model small
is very important as it helps mitigate the risk of over-fitting and
reduce the required number of samples for training [9]. To avoid
any potential problems due to highly correlated variables ([19]),
we use PCA, a dimensionality reduction method in which variables
that are correlated (and thus measure the same property) are asso-
ciated within higher dimensional variables. Specifically, PCA pro-
duces new variables, called principal components, from linear com-
binations of the original (potentially correlated) variables such that
there is no correlation between these components. As a side effect,
PCA’s factor loadings analysis, i.e., the analysis of the coefficients
of the variables in the principal components, may complement the
insight given by the partial dependence plot from random forest
modeling. We use these factor loadings to interpret the correlations,
as seen in Section 5.

4.1.3 Multivariate adaptive regression splines
Finally, we also use several regression techniques to model the
counters behavior in terms of problem and/or platform character-
istics to make the use of the approach even easier. In simpler cases,
(generalized) linear models are sufficient. In other cases, more elab-
orate approaches such as MARS (multivariate adaptive regression
splines) [5] are used. MARS is a non-parametric method that auto-
matically models nonlinearities and interactions between variables.
MARS builds models of the form

f̂(x) =

k∑
i=1

ciBi(x) (4)

where ci are constants and Bi are basis functions over R. Each
Bi is either a constant (there is only one such term called the
intercept), a hinge function (of the form max(x−c) or max(c−x),

c ∈ R), or a product of hinge functions to model interactions
between variables.

4.2 Our modeling approach
The core of our modeling approach is random forest modeling,
which is a five-stage process: (1) data collection, (2) random forest
construction and validation, (3) variable importance analysis, (4)
refinement with PCA (optional, but recommended), and (5) results
interpretation. We describe these phases in detail.

Data collection
We perform data collection by running the application multiple
times (typically, tens to hundreds) on the architecture of interest,
with different problem characteristics. We collect the characteris-
tics, record the values of the performance counters of interest, as
described in section 3, and measure the response variable (i.e., ex-
ecution time, in this case). Performance counter data are collected
using nvprof2. Problem characteristics are application-dependent:
they typically include different input parameters, such as input size
of a matrix multiply problem, or image size and pixel color infor-
mation for a image processing kernel. The size of the data collec-
tion is important for the accuracy of the algorithm. So far, we have
found that 100 samples are more than sufficient for 1-D problems,
but finding a less empirical way to determine the ideal size is still
work in progress. All the results in this paper have been obtained
with collections of less than 100 data samples (training and test set,
combined).

Random forest construction and validation
After random sampling of the collected data into a training set
(80%) and a test set (20%), we construct a random forest using
the first set. In most cases, this will result in a handful of most
influential predictors (less than 10). We validate this set on the test
data by checking that it retains most of the predictive power of the
entire set using the OOB error rate and the variance explained.

Variable importance analysis
In this particular scenario, the response variable is execution time.
Thus, we have just identified the most important variables, which

2 NVIDIA’s profiler user guide: http://docs.nvidia.com/cuda/profiler-users-
guide

4 2016/3/2

are the most influential predictors that can uniquely determine the
execution time; the remaining, unimportant variables contribute
only marginally or act as noise. The variable importance does not
tell in which way a certain variable affects performance. For that,
we resort to the partial dependence plot of the variable vis-à-vis the
execution time, which shows the relative change of both variables
on the entire range of runs. Monotonic variation over the entire
range reveals strong correlation with the response, either positively
or negatively. Variables strongly and negatively correlated to the
execution time are identified as performance bottlenecks. In some
cases, variables are strongly correlated only for part of the range
and hence cannot explain the time variation elsewhere.

Refinement with PCA
There are pathological cases where the amount of variance ex-
plained by the forest is low, or the most influential variables do
not retain enough prediction power, or they only explain portions
of response variation over the entire range (see Section 6). In these
cases, we combine the random forest with PCA for the selection of
the most effective variables. For that, we use the factor loadings of
the variable with relation to the retained principal components.

Results interpretation
After the most influential variables are known, and because we are
aiming at ease of use, we model those parameters in terms of typi-
cal characteristics of either the problem in hand or both the problem
and hardware type, so that predictions can be made solely based on
the latter. For instance, we can use the models to generate values
for the most influential variables from an unseen problem size for
which the execution time will be predicted by the random forest.
To be able to predict kernel performance on different hardware is
slightly more complicated and requires modeling both the problem
and architectural typical features. Because the accuracy of the final
predictions depends on these models, the latter must be carefully
implemented. Hence, unless confronted with trivial cases (e.g., sin-
gle problem characteristics such as matrix size in matrix multiply)
for which (generalized) linear models are adequate, we use MARS
regressions to take into account nonlinearities and parameter inter-
actions.

4.3 Putting it all together: the toolchain
BlackForest is implemented as a toolchain that closely matches the
stages of the methodology, as illustrated in figure 1. For data col-
lection, we use specific architecture tools - i..e, nvprof for NVIDIA
GPUs. The output of this stage is a collection of values for hardware
performance counters (HWPC) and/or metrics derived from them.
The data are stored in either a database or a structured repository
(we used the latter), and further used for model building. We use
tools from the R statistical software environment3: randomForest
for RF and clustering, prcomp for PCA, varimax for varimax rota-
tion of principal components, glm and MARS for counter modeling
using regressions, along with various plotting packages. Once built,
the model can be used for performance bottleneck analysis and/or
performance prediction, enhanced with visualization and reporting
capabilities.

5. Performance bottlenecks analysis
In this section we present the usability of our method for perfor-
mance bottleneck analysis. Specifically, we show, through three
well-known kernels from the CUDA SDK, how the variable im-
portance feature of RF can be used to identify performance bottle-
necks.

3 www.r-project.org

5.1 Parallel reduction
Reduction consists in applying a binary associative operation to an
array of values to produce a single value. Common binary opera-
tions are addition, maximization, and averaging. Parallel reduction
is an important primitive commonly used by many parallel algo-
rithms. The implementation in CUDA SDK uses a tree-based ap-
proach within TBs. In order to reduce large arrays with optimal per-
formance, multiple TBs need to be launched. As each TB computes
only a portion of the array, there should be multiple kernel launches
to serve as synchronization points. CUDA parallel reduction is an
educational example to showcase various CUDA optimization tech-
niques. As reduction has low arithmetic intensity, the optimization
goal is to maximize the bandwidth utilization. The benchmark con-
sists of six kernels, each implementing a specific optimization tech-
nique addressing specific performance bottlenecks. In this section,
we apply two statistical analyzes to three of those kernels: kernel 1
(reduce1), kernel 2 (reduce2) and kernel 6 (reduce6). For each
kernel, we perform a fixed number of runs to collect data for the
analysis. That data is first used to train a random forest where the
execution time is the dependent variable and the other counters are
the independent variables. After validating the model by predict-
ing the execution time for unseen array lengths, we evaluate the
importance of the different independent variables in the prediction
along with their marginal effect using partial dependence graphs.
When none of the variables covers the full range of time, we apply
principal component analysis to correlate and associate appropri-
ate variables and gain insight into their specific contributions to the
performance.

5.2 Kernel 1 (reduce1)
reduce1 substitutes strided accesses to shared memory to expen-
sive modulo operations from original code. This introduces shared
memory bank conflicts leading to overhead due to replays (execu-
tion of warp instructions in sequence instead of being run in par-
allel). From figure 2(a), we see that the random forest approach
captures well this behavior. The x-axis in that figure represents the
increase in MSEOOB . Figure 2(b) shows the marginal effect of
the shared replay overhead counter, the most important vari-
able for the execution time prediction, as partial dependence plot.
Replay overhead due to shared memory conflicts strongly and neg-
atively affects the average predicted execution time, although this
influence fades for short runtimes. So, we turn to PCA to get more
insight. PCA produces four principal components (PC1, PC2, PC3
and PC4) accounting for more than 97% of the variance in the data.
PC1 is related to memory intensity of reduce1, PC2 to MIMD
and ILP parallelism, PC3 to SIMD efficiency, and PC4 to memory
subsystem throughput. We observe that the most relevant counters
(e.g., shared replay overhead and inst replay overhead)
are positively and strongly connected to PC2 and also negatively
connected to PC4. While replays contribute to improve hardware
utilization (through IPC for instance), they negatively impact the
memory subsystem performance in the form of wasted bandwidth,
especially replays due to bank conflicts.

5.3 Kernel 2 (reduce2)
reduce2 improves over reduce1 by replacing the strided memory
accesses with a reversed loop and thread index-based access lead-
ing to sequential addressing. From figure 3(a), we see that now the
most relevant counters all pertain to the memory subsystem per-
formance. Observe how the most important counter for reduce1 is
the least important for reduce2. The partial dependence graph 3(b)
of the most influential variable shows a strong positive relationship
with the average predicted execution time, although on a rather lim-
ited range, before becoming mild. Once again, PCA produces four
principal components, pictured in 3(c), and accounting for more

5 2016/3/2

performance
model

measurements

tools

CPU
accelerator

analyses

regressions

similarity

correlation

data

perf. metrics

hw. params

prg. params

compilation

instrumentor

compiler
pr

og
ra

m

scheduler autotuner

visualization

Figure 1: RFPM framework architecture.

than 96% variance. We observe that optimal GPU performance,
both in term of instructions and memory, is precluded by low re-
source utilization. Indeed, whereas variables in the first component
(e.g., gld request, shared load and l2 read transactions)
have positive loadings, most in the other components have negative
loadings (e.g., achieved occupancy, ipc
and ldst fu utilization) meaning they have negative effect on
optimal utilization. Furthermore, having gld requested throughput
and gst requested throughput strongly and negatively corre-
lated with PC3, again relative to memory subsystem throughput,
means that the memory throughput requested by the kernel is not
enough to fully utilize the hardware. This corresponds to the idling
progressively experienced by an important number of threads in
reduce2. It is worth noting how the metric measuring overhead
due to shared memory bank conflicts also vanishes from PCA out-
come.

5.4 Kernel 6 (reduce6)
Kernel 6 implements all applicable optimizations to maximize
throughput, including complete loop unrolling, and processing
multiple elements by each thread, which leads to better latency hid-
ing and less overhead in kernel invocations. In figure 4(a), we ob-
serve that memory performance counters are still the most influen-
tial in predicting the execution time and that they have a strong cor-
relation with it, as witnessed by figure 4(b) for gst request. Prin-
cipal components generated by PCA are as described in reduce1,
with slightly different variables, memory throughput and occu-
pancy counters strongly contributing to the memory throughput
component. We observe that there is only a few variables such as
gld requested throughput and inst replay overhead, se-
riously precluding optimal utilization, confirming the bandwidth
bounded character of the reduction primitive.

6. Performance prediction
In this section, we present empirical evidence on the usability of
BF for performance prediction. Specifically, we focus on two other
case studies: matrix multiplication and the Needleman-Wunsch al-
gorithm for sequence alignment, and demonstrate the applicabil-
ity of our method for both problem scaling (i.e., predicting perfor-
mance on unseen problem sizes) and machine scaling (i.e., predict-
ing performance on unseen, yet similar hardware).

6.1 Problem scaling
This section puts the predictive power of random forest to work by
applying it to two different kernels for predicting execution time
for unseen problem characteristics.

6.1.1 Matrix Multiply
Matrix Multiply (MM) is a well-known kernel used in many ap-
plications. In this study, we use the tiled version as implemented

in CUDA SDK4. This version of MM is compute intensive and
bandwidth-limited for large matrix sizes. To compute the product
C of two n× n matrices A and B, the kernel uses b× b tiles, with
b a divisor of n. A grid of n

b
× n

b
TBs is launched, and each TB

computes the elements of a different tile of C from tiles of A and
of B, respectively. MM, which is characterized by regular access
patterns, performs O(n3) computations and O(n2) data accesses.
The kernel is optimized by loading both tiles of A and B into shared
memory to avoid redundant transfers from and to global memory.

We vary the matrix size from 25 to 211 (i.e., 24 runs) to build
an experimental dataset that we analyze using random forest. We
randomly split the data into training and test sets (with a 80:20
ratio). Predictions are done on the test set. The bandwidth limitation
is captured by the variable importance feature shown in figure 5(a).
Indeed, the most important variables for the prediction are counters
relative to global memory performance and occupancy, especially
counters pertaining to global store throughput. This is expected as
load and store operations are highly unbalanced. Indeed, for each
result sub-matrix element, all elements of the operand sub-matrices
have to be loaded in shared memory for computations, resulting in
a ratio of block size loads per store. For larger matrix sizes, this
means higher memory parallelism for load operations in contrary
to stores which then become the bottleneck.

After the most influential variables have been identified, we re-
tain the first few of them (usually, between 6 and 8) for further
analysis. We first validate that those variables keep similar pre-
dictive power as the initial set. Next, we model the retained vari-
ables in terms of the matrix size; the models for MM are shown
in figure 5(c) where solid lines represent predicted values and dot-
ted lines measured values. These models, combined with the ran-
dom forest, allow us to predict the execution times for unseen ma-
trix sizes on the same hardware. This is illustrated in figure 5(b)
where we observe that the predicted times mostly match the mea-
sured ones, with average MSE of 3.2 and 98% of explained vari-
ance. The models of important variables, built as generalized linear
models because of their simplicity, have all low residual deviance,
between 0 and 2.7, except for inst replay overhead whose av-
erage residual deviance is as large as 203, which is visible in fig-
ure 5(c) and affects the predictions.

6.1.2 Needleman-Wunsch
Needleman-Wunsch (NW) is a nonlinear global optimization
method for DNA sequence alignment. The potential pairs of se-
quences are organized in a 2D matrix filled from top left to bottom
right with scores representing the value of the maximum weighted
path ending at each cell. The maximum path is traced back to
deduce the optimal alignment. NW is memory intensive and ul-
timately bandwidth-limited. The Rodinia GPU implementation
processes the score matrix in parallel along diagonal strips us-

4 https://developer.nvidia.com/cuda-toolkit

6 2016/3/2

l1_global_load_hit
alu_fu_utilization
achieved_occupancy
l1_shared_bank_conflict
ldst_fu_utilization
issue_slot_utilization
warp_execution_efficiency
ipc
l1_global_load_miss
shared_store
shared_load
gst_throughput
l2_write_transactions
l2_read_transactions
global_store_transaction
gst_request
gld_request
l2_write_throughput
gld_throughput
gld_requested_throughput
gst_requested_throughput
l2_read_throughput
inst_replay_overhead
shared_replay_overhead

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 5 10 15 20

%IncMSE

(a) variable importance

0.10 0.15 0.20 0.25
0.

03
8

0.
04

0
0.

04
2

0.
04

4
0.

04
6

0.
04

8
0.

05
0

shared_replay_overhead

pa
rt

ia
l d

ep
en

de
nc

e

(b) Partial dependence

Fa
ct

or
 lo

ad
in

g
va

lu
e

−0.6

−0.4

−0.2

0.0

0.2

0.4

gld
_r

eq
ue

st

gs
t_

re
qu

es
t

sh
ar

ed
_lo

ad

sh
ar

ed
_s

to
re

l1_
glo

ba
l_l

oa
d_

m
iss

glo
ba

l_s
to

re
_t

ra
ns

ac
tio

n

l1_
sh

ar
ed

_b
an

k_
co

nf
lic

t

ac
hie

ve
d_

oc
cu

pa
nc

y

gld
_r

eq
ue

ste
d_

th
ro

ug
hp

ut

gs
t_

re
qu

es
te

d_
th

ro
ug

hp
ut ipc

ins
t_

re
pla

y_
ov

er
he

ad

sh
ar

ed
_r

ep
lay

_o
ve

rh
ea

d

gs
t_

th
ro

ug
hp

ut

gld
_t

hr
ou

gh
pu

t

war
p_

ex
ec

ut
ion

_e
ffic

ien
cy

iss
ue

_s
lot

_u
tili

za
tio

n

l2_
re

ad
_t

ra
ns

ac
tio

ns

l2_
writ

e_
tra

ns
ac

tio
ns

l2_
re

ad
_t

hr
ou

gh
pu

t

l2_
writ

e_
th

ro
ug

hp
ut

lds
t_

fu
_u

tili
za

tio
n

alu
_f

u_
ut

iliz
at

ion

PC1
PC2
PC3
PC4

(c) Factor loadings

Figure 2: Counters affecting the performance of reduce1. Top three features, in order :shared reply overhead, inst reply overhead, and
l2 read throughput.

warp_execution_efficiency
shared_replay_overhead
l1_shared_bank_conflict
l1_global_load_hit
alu_fu_utilization
ldst_fu_utilization
issue_slot_utilization
achieved_occupancy
ipc
l2_read_throughput
gld_requested_throughput
gst_requested_throughput
gld_throughput
gst_throughput
l2_write_throughput
inst_replay_overhead
shared_store
gst_request
shared_load
gld_request
global_store_transaction
l2_read_transactions
l2_write_transactions
l1_global_load_miss

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 5 10 15

%IncMSE

(a) variable importance

0.0 0.5 1.0 1.5 2.0 2.5

0.
03

4
0.

03
5

0.
03

6
0.

03
7

0.
03

8

l1_global_load_miss

pa
rt

ia
l d

ep
en

de
nc

e

(b) Partial dependence

Fa
ct

or
 lo

ad
in

g
va

lu
e

−0.8

−0.6

−0.4

−0.2

0.0

0.2

gld
_r

eq
ue

st

gs
t_

re
qu

es
t

sh
ar

ed
_lo

ad

sh
ar

ed
_s

to
re

l1_
glo

ba
l_l

oa
d_

m
iss

glo
ba

l_s
to

re
_t

ra
ns

ac
tio

n

ac
hie

ve
d_

oc
cu

pa
nc

y

gld
_r

eq
ue

ste
d_

th
ro

ug
hp

ut

gs
t_

re
qu

es
te

d_
th

ro
ug

hp
ut ipc

ins
t_

re
pla

y_
ov

er
he

ad

gs
t_

th
ro

ug
hp

ut

gld
_t

hr
ou

gh
pu

t

war
p_

ex
ec

ut
ion

_e
ffic

ien
cy

iss
ue

_s
lot

_u
tili

za
tio

n

l2_
re

ad
_t

ra
ns

ac
tio

ns

l2_
writ

e_
tra

ns
ac

tio
ns

l2_
re

ad
_t

hr
ou

gh
pu

t

l2_
writ

e_
th

ro
ug

hp
ut

lds
t_

fu
_u

tili
za

tio
n

alu
_f

u_
ut

iliz
at

ion

PC1
PC2
PC3
PC4

(c) Factor loadings

Figure 3: Counters affecting the performance of reduce2. Top three has changed due to optimizations, and features, in order :l1 global load miss,
l2 write transactions, and l2 read transactions.

warp_execution_efficiency
alu_fu_utilization
ldst_fu_utilization
l1_shared_bank_conflict
l1_global_load_hit
l2_read_throughput
issue_slot_utilization
inst_replay_overhead
gld_requested_throughput
achieved_occupancy
l2_write_throughput
gld_throughput
gst_requested_throughput
gst_throughput
gld_request
l2_write_transactions
l1_global_load_miss
l2_read_transactions
global_store_transaction
shared_load
shared_store
gst_request

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 5 10 15

%IncMSE

(a) variable importance

0.00005 0.00010 0.00015 0.00020 0.00025

0.
01

45
0.

01
50

0.
01

55
0.

01
60

0.
01

65

gst_request

pa
rt

ia
l d

ep
en

de
nc

e

(b) Partial dependence

Fa
ct

or
 lo

ad
in

g
va

lu
e

−0.4

−0.2

0.0

0.2

0.4

0.6

gld
_r

eq
ue

st

gs
t_

re
qu

es
t

sh
ar

ed
_lo

ad

sh
ar

ed
_s

to
re

l1_
glo

ba
l_l

oa
d_

hit

l1_
glo

ba
l_l

oa
d_

m
iss

glo
ba

l_s
to

re
_t

ra
ns

ac
tio

n

ac
hie

ve
d_

oc
cu

pa
nc

y

gld
_r

eq
ue

ste
d_

th
ro

ug
hp

ut

gs
t_

re
qu

es
te

d_
th

ro
ug

hp
ut

ins
t_

re
pla

y_
ov

er
he

ad

gs
t_

th
ro

ug
hp

ut

gld
_t

hr
ou

gh
pu

t

war
p_

ex
ec

ut
ion

_e
ffic

ien
cy

iss
ue

_s
lot

_u
tili

za
tio

n

l2_
re

ad
_t

ra
ns

ac
tio

ns

l2_
writ

e_
tra

ns
ac

tio
ns

l2_
re

ad
_t

hr
ou

gh
pu

t

l2_
writ

e_
th

ro
ug

hp
ut

PC1
PC2
PC3
PC4

(c) Factor loadings

Figure 4: Counters affecting the performance of reduce6. Top three has changed due to optimizations, and features, in order :gst request, shared store,
and shared load.

7 2016/3/2

alu_fu_utilization
ldst_fu_utilization
l1_shared_bank_conflict
uncached_global_load_transacti
l1_global_load_hit
l1_local_load_miss
l1_local_load_hit
divergent_branch
local_store
l1_global_load_miss
inst_executed
gld_requested_throughput
gld_request
gld_throughput
shared_load
shared_store
inst_issued
flops_sp
branch
inst_replay_overhead
achieved_occupancy
gst_throughput
global_store_transaction
gst_request
gst_requested_throughput

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 5 10 15 20

%IncMSE

(a) variable importance

500 1000 1500

0
10

20
30

40
size

tim
e

(m
s)

predicted
measured

(b) predicting unseen matrix sizes

1e−04

1e−01

1e+02

500 1000 1500
size

va
lu

e

global_store_transaction

gst_request

gst_requested_throughput

gst_throughput

inst_replay_overhead

achieved_occupancy

(c) variable modeling

Figure 5: Characterization and prediction of MM.

ing hierarchical parallelism (at grid-level and TB-level) and shared
memory to reduce global memory accesses and kernel launch over-
head. For maximum occupancy, each TB only has 16 threads. This
leads to idling of some threads in the warps. Also, as each thread
must access values of its north-, northwest- and west-neighbors,
this pattern may result in shared memory bank conflicts.

NW consists of 2 kernels used for the top left and bottom right
traversals of the score matrix. We measure the contribution of each
kernel in the overall execution time and use that to compute an
average behavior for both kernels which we use for the analysis.
We vary the sequence length from 64 to 8192 with a pitch of 64,
generating 129 trials. We randomly split the data in a training set
and a test set, with a 80:20 ratio.

As illustrated in figure 6(a), achieved occupancy and size
are the most influential variables for the time prediction, followed
by a bunch of predictors of similar importance among which var-
ious memory throughput metrics. The lack of locality from the
diagonal strip memory accesses leads to the presence of both
l1 global load miss and l1 shared bank conflict. First,
we show that a random forest built from the first 6 important vari-
ables has the same predictive power as one built with all variables,
both having good accuracy. Models of those variables, shown in
figure 6(c), are used to predict the execution times of unseen se-
quence lengths in figure 6(b). This time, the models are built using
earth, an R [15] MARS implementation, with average R-squared
of 0.99. The average MSE and explained variance of the random
forest are around 0 and 99%, respectively. Which explains why the
predictions are so accurate in figure 6(b).

6.2 Hardware scaling
In this section, we characterize both the application and the train-
ing hardware, and we further use both to predict execution time on
a different platform (of similar nature). We define ”sufficiently sim-
ilar hardware” as hardware where the variable importance would be
similar (e.g., same ranking). In this case, only a little calibration is
necessary for the target GPU, and our method leads to correct pre-
dictions - i.e., a correct estimate of the performance behavior, and
reasonable time predictions (due to the calibration). For example,
when using two different cards with the same architecture (Fermi
or Kepler), but different numbers of SMs, the prediction will be
correct. However, for hardware that is not similar enough - e.g., a
Kepler GPU and a Fermi GPU, the prediction may become less ac-
curate, as the variable importance features of the same kernel on
these GPUs may be very different.

To demonstrate this issue, we use MM and NW as use cases,
and the same GTX580 as training GPU. For prediction on different
architecture, we use the NVIDIA Tesla K20m, which is based on
the Kepler architecture. We use the same experimental data scheme
as above, that is, by uniform random sampling of the runs into
training and test sets accounting for 80% and 20%, respectively.
We inject into this data values of machine characteristics, listed in
Table 2, for different GPU architectures. The training set is used
to train the random forest. We also run the benchmarks on the
test GPU with the same set of application parameters, which are
matrix size and sequence length, respectively. The resulting dataset
to which we add values of machine parameters specific to the K20m
is similarly cut into training and test sets and the test set is used to
assess the random forest trained on the GTX580. So, our goal is to
predict unknown problem sizes on partially known architecture.

Table 2: GPU hardware metrics

metric meaning GTX480 K20m
wsched number of warp schedulers 2 4
freq clock rate (GHz) 1.4 0.71
smp number of MPs 15 13
rco cores per MP 32 192
mbw memory bandwidth (BG/s) 177.4 208
l1c registers 63 255
l2c L2 size (KB) 768 1280

The approach works straightforwardly on MM as shown in Fig-
ure 7 where we observe that the predictions mostly match the
measured execution times, the inaccuracies at the edges com-
ing from interpolation. From the calibration on the K20m, we
notice that the most important variables are almost the same on
both architectures, which guarantees the good accuracy of the pre-
dictions. Things are different for NW where the most important
predictors are very different for the GTX580 and the K20m. In-
deed, caching related variables such as l2 read transactions
and l1 global load miss are among the most influential pre-
dictors for the GTX580 as pictured in figure 8(a) whereas these
same variables are less important (l2 read transactions), or
even totally unimportant (l1 global load miss) for K20m as visu-
alized in Figure 8(b). The consequences of this issue is that we
couldn’t get decent predictions using the straightforward man-
ner. The workaround is to use a mixture of important variables
from both architectures to train the random forest. The pre-
dictions shown in Figure 8(c) are obtained with the following
variables: inst issued, global store transaction, size,
achieved occupancy, issue slot utilization, and

8 2016/3/2

branch_efficiency
l1_local_load_miss
l1_local_load_hit
divergent_branch
local_store
warp_execution_efficiency
ldst_fu_utilization
l1_global_load_hit
inst_replay_overhead
issue_slot_utilization
gst_request
global_store_transaction
l2_read_transactions
shared_load
gld_request
shared_store
l1_global_load_miss
l1_shared_bank_conflict
gld_requested_throughput
inst_executed
l2_write_throughput
inst_issued
l2_write_transactions
gld_throughput
branch
gst_requested_throughput
l2_read_throughput
gst_throughput
size
achieved_occupancy

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 5 10 15

%IncMSE

(a) variable importance

0 2000 4000 6000 8000

0.
01

5
0.

02
0

0.
02

5
0.

03
0

0.
03

5
0.

04
0

0.
04

5
0.

05
0

size

tim
e

predicted
measured

(b) predicting unseen sequence lengths

1e−01

1e+01

1e+03

0 2000 4000 6000 8000
size

va
lu

e

l2_read_throughput

gst_requested_throughput

gst_throughput

branch

gld_throughput

achieved_occupancy

(c) model validation

Figure 6: Characterization and prediction of NW.

500 1000 1500 2000

0
10

20
30

40
50

size

tim
e

(m
s)

predicted on GTX480
measured
predicted on K20m

Figure 7: K20m predictions for MM from GTX580.

gld throughput. Yet, predictions are less accurate, especially for
small sequence lengths. Different memory throughput counters be-
come dominant on the Kepler in comparison to the Fermi where
caching performance metrics were important. Indeed, the bigger
caches of the Kepler in both L1 and L2 make caching performance
less pertinent to the kernel execution, at least for shorter sequences.
Figure 8(c) shows that while the prediction accuracy is bad for se-
quence sizes up until around 3700, it slightly improves as the size
increases.

7. Discussion and conclusion
GPU performance analysis remains a challenging task, and tool
support is mandatory for the large adoption of systematic perfor-
mance engineering. This work provides empirical evidence that an
easy-to-use tool can be developed, based on statistical modeling
and hardware performance counters. Specifically, we demonstrate
the successful use of random forest for performance analysis and
prediction. Our experimental results illustrate both the performance
bottleneck analysis and prediction potential of BF. Being a statisti-
cal approach, its major limitations are the applicability restricted to
applications where enough training data is/can be available, and the
black-box modeling (as no knowledge can be directly inferred from
the model itself). Its overhead is as large as the size of the training

set. Additional studies need to be made to determine the minimal
training set, thus limiting the overhead to a minimum. We note,
however, that, when compared with analytical modeling, where the
burden of modeling and calibration are on the modeler’s creativity,
the training overhead of BlackForest is simply computational time
- i.e., automated collection of data over multiple runs.

Result interpretation and user feedback remain important as-
pects to be improved. For example, the additional interpretation
tools provided, i.e., variable importance and partial dependence
plots, are still perceived as “difficult” to understand for a perfor-
mance engineer, and therefore we must continue working to im-
prove user-feedback based on these data. Integrating confidence
intervals into the partial dependence plots would help interpreta-
tion and confidence in the outcome, but their usage paradoxically
requires statistical knowledge. We plan to experiment with first
applying PCA onto the data to both remove correlated variables
and reduce dimensionality, potentially uncovering hidden struc-
ture, thus leading to easy interpretation of random forest outcome.
This would also help dealing with pathological cases, such as in
Figure 6(a) where a large number of variables have similar im-
portance making them equally eligible for inclusion into the sub-
set used for further analysis. The modeling of that subset used by
the approach may not meet quality requirement as observed with
inst replay overhead in Figure 5(c). For automation purpose,
these cases have to be dealt with appropriately.

Another challenge for our approach is that performance coun-
ters evolve, i.e., they may differ from one architecture to an-
other. The consequences are relevant for hardware scalability,
where important variables on one architecture may have differ-
ent names or not exist at all on the architecture we want to pre-
dict for. An example of this issue is the absence of the Fermi
metric l1 shared bank conflict on Kepler, which in turn, has
shared load replay and shared store replay unknown to
Fermi. We plan to tackle this problem by designing a ”similarity”
test to determine platforms that can be used for hardware scalabil-
ity. When hardware scalability is not feasible, the only downside is
that training must be repeated on the new target platform.

We also note that our method is not limited to predicting execu-
tion time - one could use other metrics of interest, such as power, as
response variable. For instance, on the Kepler architecture, power
draw can be directly read using the system management interface.
Using BF, one can then both assess the power consumption behav-
ior of the different functional units and of the application, and pre-
dict that for unseen problem sizes, or simply evaluate computing

9 2016/3/2

branch_efficiency
l1_local_load_miss
l1_local_load_hit
divergent_branch
local_store
warp_execution_efficiency
inst_replay_overhead
ldst_fu_utilization
l1_global_load_hit
gld_throughput
l2_read_throughput
gst_throughput
gld_requested_throughput
gst_requested_throughput
issue_slot_utilization
l2_write_throughput
size
achieved_occupancy
branch
inst_executed
gst_request
shared_load
gld_request
l1_shared_bank_conflict
shared_store
l2_write_transactions
global_store_transaction
inst_issued
l1_global_load_miss
l2_read_transactions

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 2 4 6 8 10 12

%IncMSE

(a) variable importance on GTX580

flops_dp
flops_sp
l1_global_load_miss
l1_global_load_hit
l1_local_load_miss
l1_local_load_hit
local_store
warp_execution_efficiency
inst_replay_overhead
ldst_fu_utilization
inst_executed
global_store_transaction
l2_read_transactions
shared_load
l2_write_transactions
gst_request
shared_store
gld_request
l2_read_throughput
l2_write_throughput
inst_issued
shared_store_replay
shared_load_replay
gld_requested_throughput
gst_requested_throughput
gst_throughput
gld_throughput
issue_slot_utilization
size
achieved_occupancy

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 2 4 6 8 10

%IncMSE

(b) variable importance on K20m

0 2000 4000 6000

0.
02

5
0.

03
0

0.
03

5
0.

04
0

0.
04

5

size

tim
e

(m
s)

predicted on GTX580
measured
predicted on K20m

(c) K20m predictions for NW

Figure 8: K20m predictions for NW from GTX580.

efficiency in terms of performance per watt. Finally, we believe our
approach is very useful in the context of emerging CPU+GPUs het-
erogeneous systems, where performance modeling is key to deter-
mine workload partitioning [1, 4, 17]. As BF is equally applicable
for all processing units in the platform, we can provide a unified
modeling approach for heterogeneous platforms. We plan to em-
pirically validate this assumption, by first proving BF’s usability
on CPUs, and further by automating the analysis.

8. Acknowledgments
This work is in part funded by the research programme of the
Netherlands eScience Center (www.nlesc.nl).

References
[1] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier. StarPU:

A unified platform for task scheduling on heterogeneous multicore
architectures. CCPE, 23(2), Feb. 2011.

[2] L. Breiman. Random forests. Machine Learning, 45(1), 2001.

[3] R. Dı̀az-Uriarte and S. A. de Andrès. Gene selection and classification
of microarray data using random forest. BMC Bioinformatics, 7:3,
2006.

[4] A. Duran, E. Ayguade, R. M. Badia, J. Labarta, L. Martinell, X. Mar-
torell, and J. Planas. OmpSs: A proposal for programming heteroge-
neous multi-core architectures. 21(2):173193, 2011.

[5] J. H. Friedman. Multivariate adaptive regression splines. The Annals
of Statistics, 19(1), March 1991.

[6] T. J. Hastie, R. J. Tibshirani, and J. H. Friedman. The elements of
statistical learning : data mining, inference, and prediction. Springer
series in statistics. Springer, New York, 2009.

[7] W. Jia, K. Shaw, and M. Martonosi. Stargazer: Automated regression-
based GPU design space exploration. In ISPASS 2012, pages 2–13,
April 2012.

[8] A. Kerr, E. Anger, G. Hendry, and S. Yalamanchili. Eiger: A frame-
work for the automated synthesis of statistical performance models. In
Proceedings of WPEA 2012, 2012.

[9] B. C. Lee, D. M. Brooks, B. R. de Supinski, M. Schulz, K. Singh,
and S. A. McKee. Methods of inference and learning for performance
modeling of parallel applications. In Proceedings of the 12th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming, PPoPP ’07, pages 249–258, New York, NY, USA, 2007. ACM.

[10] A. Liaw and M. Wiener. Classification and Regression by randomFor-
est. R News, 2(3):18–22, 2002.

[11] U. Lopez-Novoa, A. Mendiburu, and J. Miguel-Alonso. A Survey of
Performance Modeling and Simulation Techniques for Accelerator-
based Computing. IEEE TPDS, 2014.

[12] S. Madougou, A. Varbanescu, C. de Laat, and R. van Nieuwpoort. An
empirical evaluation of GPGPU performance models. In Euro-Par
2014: Parallel Processing Workshops, volume 8805 of Lecture Notes
in Computer Science. Springer International Publishing, 2014.

[13] H. Nagasaka, N. Maruyama, A. Nukada, T. Endo, and S. Matsuoka.
Statistical power modeling of gpu kernels using performance counters.
In Green Computing Conference, 2010 International, pages 115–122,
Aug 2010.

[14] S. Pllana, I. Brandic, and S. Benkner. Performance modeling and
prediction of parallel and distributed computing systems: A survey of
the state of the art. In CISIS’07. IEEE Computer Society, 2007.

[15] R Core Team. R: A Language and Environment for Statistical Comput-
ing. R Foundation for Statistical Computing, Vienna, Austria, 2013.

[16] R. H. Saavedra and A. J. Smith. Analysis of benchmark characteristics
and benchmark performance prediction. ACM TOCS, 14(4), Nov.
1996.

[17] J. Shen, A. L. Varbanescu, H. Sips, M. Arntzen, and D. G. Simons.
Glinda: A framework for accelerating imbalanced applications on
heterogeneous platforms. In Proceedings of the ACM International
Conference on Computing Frontiers, CF ’13. ACM, 2013.

[18] S. Song, C. Su, B. Rountree, and K. Cameron. A simplified and
accurate model of power-performance efficiency on emergent gpu
architectures. In Parallel Distributed Processing (IPDPS), 2013 IEEE
27th International Symposium on, pages 673–686, May 2013.

[19] C. Strobl, A. laure Boulesteix, A. Zeileis, and T. Hothorn. Bias in
random forest variable importance measures: illustrations, sources and
a solution. bmc bioinformatics, accepted for publication, 2006.

[20] G. Wu, J. Greathouse, A. Lyashevsky, N. Jayasena, and D. Chiou.
Gpgpu performance and power estimation using machine learning. In
High Performance Computer Architecture (HPCA), 2015 IEEE 21st
International Symposium on, pages 564–576, Feb 2015.

[21] Y. Zhang, Y. Hu, B. Li, and L. Peng. Performance and power analysis
of ATI GPU: A statistical approach. In NAS’11. IEEE Computer
Society, 2011.

10 2016/3/2

