
Salable Computing: Pratie and ExperieneVolume 6, Number 3, pp. 19�32. http://www.spe.org ISSN© 2005 SWPSSATIN: SIMPLE AND EFFICIENT JAVA-BASED GRID PROGRAMMINGROB V. VAN NIEUWPOORT, JASON MAASSEN, THILO KIELMANN, HENRI E. BAL∗Abstrat. Grid programming environments need to be both portable and e�ient to exploit the omputational power ofdynamially available resoures. In previous work, we have presented the divide-and-onquer based Satin model for parallelomputing on lustered wide-area systems. In this paper, we present the Satin implementation on top of our new Ibis platform whihombines Java's write one, run everywhere with e�ient ommuniation between JVMs. We evaluate Satin/Ibis on the testbedof the EU-funded GridLab projet, showing that Satin's load-balaning algorithm automatially adapts both to heterogeneousproessor speeds and varying network performane, resulting in e�ient utilization of the omputing resoures. Our results showthat when the wide-area links su�er from ongestion, Satin's load-balaning algorithm an still ahieve around 80% e�ieny, whilean algorithm that is not grid aware drops to 26% or less.Key words. Satin, Ibis, divide-and-onquer, load balaning, distributed superomputing.1. Introdution. In omputational grids, appliations need to simultaneously tap the omputationalpower of multiple, dynamially available sites. The rux of designing grid programming environments stems ex-atly from the dynami availability of ompute yles: grid programming environments need to be both portableto run on as many sites as possible, and they need to be �exible to ope with di�erent network protools anddynamially hanging groups of heterogeneous ompute nodes.Existing programming environments are either portable and �exible (Jini, Java RMI), or they are highlye�ient (MPI). The Global Grid Forum also has investigated possible grid programming models [19℄. Reently,GridRPC has been proposed as a grid programming model [30℄. GridRPC allows writing grid appliationsbased on the manager/worker paradigm.Unlike manager/worker programs, divide-and-onquer algorithms operate by reursively dividing a probleminto smaller subproblems. This reursive subdivision goes on until the remaining subproblem beomes trivial tosolve. After solving subproblems, their results are reursively reombined until the �nal solution is assembled.By allowing subproblems to be divided reursively, the lass of divide-and-onquer algorithms subsumes themanager/worker algorithms, thus enlarging the set of possible grid appliations.Of ourse, there are many kinds of appliations that do not lend themselves well to a divide-and-onqueralgorithm. However, we (and others) believe the lass of divide-and-onquer algorithms to be su�iently large tojustify its deployment for hierarhial wide-area systems. Computations that use the divide-and-onquer modelinlude geometry proedures, sorting methods, searh algorithms, data lassi�ation odes, n-body simulationsand data-parallel numerial programs [33℄.Divide-and-onquer appliations may be parallelized by letting di�erent proessors solve di�erent subprob-lems. These subproblems are often alled jobs in this ontext. Generated jobs are transferred between proessorsto balane the load in the omputation. The divide-and-onquer model lends itself well to hierarhially-strutured systems beause tasks are reated by reursive subdivision. This leads to a task graph that ishierarhially strutured, and whih an be exeuted with exellent ommuniation loality, espeially on hier-arhial platforms.In previous work [26℄, we presented our Satin system for divide-and-onquer programming on grid platforms.Satin implements a very e�ient load balaning algorithm for lustered, wide-area platforms. So far, we ouldonly evaluate Satin based on simulations in whih all jobs have been exeuted on one single, homogeneousluster. In this work, we evaluate Satin on a real grid testbed [2℄, onsisting of various heterogeneous systems,onneted by the Internet.In Setion 2, we brie�y present Satin's programming model and some simulator-based results that indiatethe suitability of Satin as a grid programming environment. In Setion 3, we present Ibis, our new Java-basedgrid programming platform that ombines Java's �run everywhere� paradigm with highly e�ient yet �exibleommuniation mehanisms. In Setion 4, we evaluate the performane of Satin on top of Ibis in the GridLabtestbed, spanning several sites in Europe. Setion 5 disusses related work, and in Setion 6 we draw onlusions.
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20 Rob V. van Nieuwpoort, Jason Maassen, Thilo Kielmann and Henri E. Bal2. Divide-and Conquer in Satin. Satin's programming model is an extension of the single-threadedJava model. To ahieve parallel exeution, Satin programs do not have to use Java's threads or RemoteMethod Invoations (RMI). Instead, they use muh simpler divide-and-onquer primitives. Satin does allowthe ombination of its divide-and-onquer primitives with Java threads and RMIs. Additionally, Satin providesshared objets via RepMI. In this paper, however, we fous on pure divide-and-onquer programs.interfae FibInte r extends s a t i n . Spawnable {publi long f i b ( long n ) ;}lass Fib extends s a t i n . Sat inObjetimplements FibInte r {publi long f i b ( long n) {i f (n < 2) return n ;long x = f i b (n−1); // spawnedlong y = f i b (n−2); // spawnedsyn ( ) ;return x + y ;}publi stat i void main ( St r ing [ ℄ a rg s ) {Fib f = new Fib ( ) ;long r e s = f . f i b ( 1 0 ) ;f . syn ( ) ;System . out . p r i n t l n ( "Fib 10 = " + re s ) ;}} Fig. 2.1. Fib: an example divide-and-onquer program in Satin.Satin expresses divide-and-onquer parallelism entirely in the Java language itself, without requiring anynew language onstruts. Satin uses so-alledmarker interfaes to indiate that ertain method invoations needto be onsidered for potentially parallel (so alled spawned) exeution, rather than being exeuted synhronouslylike normal methods. Furthermore, a mehanism is needed to synhronize with (wait for the results of) spawnedmethod invoations. With Satin, this an be expressed using a speial interfae, satin.Spawnable, and the lasssatin.SatinObjet. This is shown in Fig. 2.1, using the example of a lass Fib for omputing the Fibonainumbers. First, an interfae FibInter is implemented whih extends satin.Spawnable. All methods de�ned inthis interfae (here �b) are marked to be spawned rather than exeuted normally. Seond, the lass Fib extendssatin.SatinObjet and implements FibInter. From satin.SatinObjet it inherits the syn method, from FibInter thespawned �b method. Finally, the invoking method (in this ase main) simply alls Fib and uses syn to wait forthe result of the parallel omputation.Satin's byte ode rewriter generates the neessary ode. Coneptually, a new thread is started for runninga spawned method upon invoation. Satin's implementation, however, eliminates thread reation altogether. Aspawned method invoation is put into a loal work queue. From the queue, the method might be transferredto a di�erent CPU where it may run onurrently with the method that exeuted the spawned method. Thesyn method waits until all spawned alls in the urrent method invoation are �nished; the return values ofspawned method invoations are unde�ned until a syn is reahed.Spawned method invoations are distributed aross the proessors of a parallel Satin program by workstealing from the work queues mentioned above. In [26℄, we presented a new work stealing algorithm, Cluster-aware Random Stealing (CRS), spei�ally designed for luster-based, wide-area (grid omputing) systems. CRSis based on the traditional Random Stealing (RS) algorithm that has been proven to be optimal for homogeneous(single luster) systems [8℄. We brie�y desribe both algorithms in turn.2.1. Random Stealing (RS). RS attempts to steal a job from a randomly seleted peer when a proessor�nds its own work queue empty, repeating steal attempts until it sueeds [8, 33℄. This approah minimizesommuniation overhead at the expense of idle time. No ommuniation is performed until a node beomesidle, but then it has to wait for a new job to arrive. On a single-luster system, RS is the best performing



Satin: Simple and E�ient Java-based Grid Programming 21load-balaning algorithm. On wide-area systems, however, this is not the ase. With C lusters, on average (C−

1)/C ×100% of all steal requests will go to nodes in remote lusters, ausing signi�ant wide-area ommuniationoverheads.2.2. Cluster-aware Random Stealing (CRS). In CRS, eah node an diretly steal jobs from nodesin remote lusters, but at most one job at a time. Whenever a node beomes idle, it �rst attempts to stealfrom a node in a remote luster. This wide-area steal request is sent asynhronously: Instead of waiting forthe result, the thief simply sets a �ag and performs additional, synhronous steal requests to randomly seletednodes within its own luster, until it �nds a new job. As long as the �ag is set, only loal stealing will beperformed. The handler routine for the wide-area reply simply resets the �ag and, if the request was suessful,puts the new job into the work queue. CRS ombines the advantages of RS inside a luster with a very limitedamount of asynhronous wide-area ommuniation. Below, we will show that CRS performs almost as good aswith a single, large luster, even in extreme wide-area network settings.2.3. Simulator-based omparison of RS and CRS. A detailed desription of Satin's wide-area workstealing algorithm an be found in [26℄. We have extrated the omparison of RS and CRS from that workinto Table 2.1. The run times shown in this table are for parallel runs with 64 CPUs eah, either with a singleluster of 64 CPUS, or with 4 lusters of 16 CPUs eah.The wide-area network between the virtual lusters has been simulated with our Panda WAN simulator [17℄.We simulated all ombinations of 20ms and 200ms roundtrip lateny with bandwidth apaities of 100KByte/sand 1000KByte/s. The tests had been performed on the predeessor hardware to our urrent DAS-2 luster.DAS onsists of 200MHz Pentium Pro's with a Myrinet network, running the Manta parallel Java system [23℄.Table 2.1Performane of RS and CRS with di�erent simulated wide-area links (times in seonds).single 20 ms 20 ms 200 ms 200 msluster 1000 KByte/s 100 KByte/s 1000 KByte/s 100 KByte/sappliation time e�. time e�. time e�. time e�. time e�.adaptive integrationRS 71.8 99.6% 78.0 91.8% 79.5 90.1% 109.3 65.5% 112.3 63.7%CRS 71.8 99.7% 71.6 99.9% 71.7 99.8% 73.4 97.5% 73.2 97.7%N-queensRS 157.6 92.5% 160.9 90.6% 168.2 86.6% 184.3 79.1% 197.4 73.8%CRS 156.3 93.2% 158.1 92.2% 156.1 93.3% 158.4 92.0% 158.1 92.2%TSPRS 101.6 90.4% 105.3 87.2% 105.4 87.1% 130.6 70.3% 129.7 70.8%CRS 100.7 91.2% 103.6 88.7% 101.1 90.8% 105.0 87.5% 107.5 85.4%ray traerRS 147.8 94.2% 152.1 91.5% 171.6 81.1% 175.8 79.2% 182.6 76.2%CRS 147.2 94.5% 145.0 95.9% 152.6 91.2% 146.5 95.0% 149.3 93.2%In Table 2.1 we ompare RS and CRS using four parallel appliations, with network onditions degradingfrom the left (single luster) to the right (high lateny, low bandwidth). For eah ase, we present the parallelrun time and the orresponding e�ieny (labeled �e�.� in the table). With ts being the sequential run timefor the appliation, with the Satin operations exluded, (not shown) and tp the parallel run time as shown inthe table, and N = 64 being the number of CPUs, we ompute the e�ieny as follows:
efficiency =

ts
tp · N

∗ 100%Adaptive integration numerially integrates a funtion over a given interval. It sends very short messagesand has also very �ne grained jobs. This ombination makes RS sensitive to high lateny, in whih ase e�ienydrops to about 65 %. CRS, however, suessfully hides the high round trip times and ahieves e�ienies ofmore than 97 % in all ases.N Queens solves the problem of plaing n queens on a n × n hess board. It sends medium-size messagesand has a very irregular task tree. With e�ieny of only 74 %, RS again su�ers from high round trip times asit an not quikly ompensate load imbalane due to the irregular task tree. CRS, however, sustains e�ieniesof 92 %.



22 Rob V. van Nieuwpoort, Jason Maassen, Thilo Kielmann and Henri E. BalTSP solves the problem of �nding the shortest path between n ities. By passing the distane table asparameter, is has a somewhat higher parallelization overhead, resulting in slightly lower e�ienies, even witha single luster. In the wide-area ases, these longer parameter messages ontribute to higher round trip timeswhen stealing jobs from remote lusters. Consequently, RS su�ers more from slower networks (e�ieny > 70 %)than CRS whih sustains e�ienies of 85 %.Ray Traer renders a modeled sene to a raster image. It divides a sreen down to jobs of single pixels. Dueto the nature of ray traing, individual pixels have very irregular rendering times. The appliation sends longresult messages ontaining image frations, making it sensitive to the available bandwidth. This sensitivity isre�eted in the e�ieny of RS, going down to 76 %, whereas CRS hides most WAN ommuniation overheadand sustains e�ienies of 91 %.To summarize, our simulator-based experiments show the superiority of CRS to RS in ase of multiplelusters, onneted by wide-area networks. This superiority is independent of the properties of the appliations,as we have shown with both regular and irregular task graphs as well as short and long parameter and resultmessage sizes. In all investigated ases, the e�ieny of CRS never dropped below 85 %.Although we were able to identify the individual e�ets of wide-area lateny and bandwidth, these resultsare limited to homogeneous Intel/Linux lusters (due to the Manta ompiler). Furthermore, we only testedlusters of idential size. Finally, the wide area network has been simulated and thus been without possiblydisturbing third-party tra�.An evaluation on a real grid testbed, with heterogeneous CPUs, JVMs, and networks, beomes neessaryto prove the suitability of Satin as a grid programming platform. In the following, we �rst present Ibis, our newrun everywhere Java environment for grid omputing. Then we evaluate Satin on top of Ibis on the testbed ofthe EU GridLab projet.
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Fig. 3.1. Design of Ibis. The various modules an be loaded dynamially, using run time lass loading.3. Ibis, �exible and e�ient Java-based Grid programming. The Satin runtime system used forthis paper is implemented on top of Ibis [31℄. In this setion we will brie�y explain the Ibis philosophy anddesign. The global struture of the Ibis system is shown in Figure 3.1. A entral part of the system is theIbis Portability Layer (IPL) whih onsists of a number of well-de�ned interfaes. The IPL an have di�erentimplementations, that an be seleted and loaded into the appliation at run time. The IPL de�nes serializationand ommuniation, but also typial grid servies suh as topology disovery and monitoring. Although it ispossible to use the IPL diretly from an appliation, Ibis also provides more high-level programming models.Currently, we have implemented four. Ibis RMI [31℄ provides Remote Method Invoation, using the sameinterfae as Sun RMI, but with a more e�ient wire protool. GMI [21℄ provides MPI-like olletive operations,leanly integrated into Java's objet model. RepMI [22℄ extends Java with repliated objets. In this paper, wefous on the fourth programming model that Ibis implements, Satin.3.1. Ibis Goals. A key problem in making Java suitable for grid programming is how to design a systemthat obtains high ommuniation performane while still adhering to Java's �write one, run everywhere� model.Current Java implementations are heavily biased to either portability or performane, and fail in the other



Satin: Simple and E�ient Java-based Grid Programming 23aspet. (The reently added java.nio pakage will hopefully at leas partially address this problem). TheIbis strategy to ahieve both goals simultaneously is to develop reasonably e�ient solutions using standardtehniques that work �everywhere�, supplemented with highly optimized but non-standard solutions for inreasedperformane in speial ases. We apply this strategy to both omputation and ommuniation. Ibis is designed touse any standard JVM, but if a native, optimizing ompiler (e.g., Manta [23℄) is available for a target mahine,Ibis an use it instead. Likewise, Ibis an use standard ommuniation protools, e.g., TCP/IP or UDP, asprovided by the JVM, but it an also plug in an optimized low-level protool for a high-speed interonnet, likeGM or MPI, if available. The hallenges for Ibis are:1. how to make the system �exible enough to run seamlessly on a variety of di�erent ommuniationhardware and protools;2. how to make the standard, 100% pure Java ase e�ient enough to be useful for grid omputing;3. study whih additional optimizations an be done to improve performane further in speial (high-performane) ases.With Ibis, grid appliations an run simultaneously on a variety of di�erent mahines, using optimizedsoftware where possible (e.g., a native ompiler, the GM Myrinet protool, or MPI), and using standard software(e.g., TCP) when neessary. Interoperability is ahieved by using the TCP protool between multiple Ibisimplementations that use di�erent protools (like GM or MPI) loally. This way, all mahines an be used inone single omputation. Below, we disuss the three aforementioned issues in more detail.3.2. Flexibility. The key harateristi of Ibis is its extreme �exibility, whih is required to support gridappliations. A major design goal is the ability to seamlessly plug in di�erent ommuniation substrates withouthanging the user ode. For this purpose, the Ibis design uses the IPL. A software layer on top of the IPL annegotiate with Ibis instantiations through the well-de�ned IPL interfae, to selet and load the modules it needs.This �exibility is implemented using Java's dynami lass-loading mehanism.Many message passing libraries suh as MPI and GM guarantee reliable message delivery and FIFO messageordering. When appliations do not require these properties, a di�erent message passing library might be usedto avoid the overhead that omes with reliability and message ordering. The IPL supports both reliable andunreliable ommuniation, ordered and unordered messages, impliit and expliit reeipt, using a single, simpleinterfae. Using user-de�nable properties (key-value pairs), appliations an reate exatly the ommuniationhannels they need, without unneessary overhead.3.3. Optimizing the Common Case. To obtain aeptable ommuniation performane, Ibis imple-ments several optimizations. Most importantly, the overhead of serialization and re�etion is avoided byompile-time generation of speial methods (in byte ode) for eah objet type. These methods an be usedto onvert objets to bytes (and vie versa), and to reate new objets on the reeiving side, without usingexpensive re�etion mehanisms. This way, the overhead of serialization is redued dramatially.Furthermore, our ommuniation implementations use an optimized wire protool. The Sun RMI protool,for example, resends type information for eah RMI. Our implementation ahes this type information peronnetion. Using this optimization, our protool sends less data over the wire, but more importantly, savesproessing time for enoding and deoding the type information.3.4. Optimizing Speial Cases. In many ases, the target mahine may have additional failities thatallow faster omputation or ommuniation, whih are di�ult to ahieve with standard Java tehniques. Oneexample we investigated in previous work [23℄ is using a native, optimizing ompiler instead of a JVM. Thisompiler (Manta), or any other high performane Java implementation, an simply be used by Ibis. The mostimportant speial ase for ommuniation is the presene of a high-speed loal interonnet. Usually, speializeduser-level network software is required for suh interonnets, instead of standard protools (TCP, UDP) thatuse the OS kernel. Ibis therefore was designed to allow other protools to be plugged in. So, lower-levelommuniation may be based, for example, on a loally-optimized MPI library. The IPL is designed in suh away that it is possible to exploit e�ient hardware multiast, when available.Another important feature of the IPL is that it allows a zero-opy implementation. Implementing zero-opy(or single-opy) ommuniation in Java is a non-trivial task, but it is essential to make Java ompetitive withsystems like MPI for whih zero-opy implementations already exist. The zero-opy Ibis implementation isdesribed in more detail in [31℄. On fast networks like Myrinet, the throughput of Ibis RMI an be as muh as9 times higher than previous, already optimized RMI implementations suh as KaRMI [28℄.



24 Rob V. van Nieuwpoort, Jason Maassen, Thilo Kielmann and Henri E. Bal4. Satin on the GridLab testbed. In this setion, we will present a ase study to analyze the per-formane that Satin/Ibis ahieves in a real grid environment. We ran the ray traer appliation introduedin Setion 2.3 on the European GridLab [2℄ testbed. More preisely, we were using a harateristi subset ofthe mahines on this testbed that was available for our measurements at the time the study was performed.Beause simultaneously starting and running a parallel appliation on multiple lusters still is a tedious andtime-onsuming task, we had to restrit ourselves to a single test appliation. We have hosen the ray traerfor our tests as it is sending the most data of all our appliations, making it very sensitive to network issues.The ray traer is written in pure Java and generates a high resolution image (4096 × 4096, with 24-bit olor).It takes approximately 10 minutes to solve this problem on our testbed.This is an interesting experiment for several reasons. Firstly, we use the Ibis implementation on top of TCPfor the measurements in this setion. This means that the numbers shown below were measured using a 100%Java implementation. Therefore, they are interesting, giving a lear indiation of the performane level thatan be ahieved in Java with a �run everywhere� implementation, without using any native ode.Seondly, the testbed ontains mahines with several di�erent arhitetures; Intel, SPARC, MIPS, andAlpha proessors are used. Some mahines are 32 bit, while others are 64 bit. Also, di�erent operating systemsand JVMs are in use. Therefore, this experiment is a good method to investigate whether Java's �write one, runeverywhere� feature really works in pratie. The assumption that this feature suessfully hides the omplexityof the di�erent underlying arhitetures and operating systems, was the most important reason for investigatingthe Java-entri solutions presented in this paper. It is thus important to verify the validity of this laim.
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Satin: Simple and E�ient Java-based Grid Programming 25Thirdly, the mahines are onneted by the Internet. The links show typial wide-area behavior, as thephysial distane between the sites is large. For instane, the distane from Amsterdam to Lee is roughly2000 kilometers (about 1250 miles). Figure 4.1 shows a map of Europe, annotated with the mahine loations.This gives an idea of the distanes between the sites. We use this experiment to verify Satin's load-balaningalgorithms in pratie, with real non-dediated wide-area links. We have run the ray traer both with thestandard random stealing algorithm (RS) and with the new luster-aware algorithm (CRS) as introdued above.For pratial reasons, we had to use relatively small lusters for the measurements in this setion. The simulationresults in Setion 2.3 show that the performane of CRS inreases when larger lusters are used, beause thereis more opportunity to balane the load inside a luster during wide-area ommuniation.Table 4.1Mahines on the GridLab testbed.Operating CPUs / totalloation arhiteture System JIT nodes node CPUsVrije Universiteit Intel Red HatAmsterdam Pentium-III Linux IBMThe Netherlands 1 GHz kernel 2.4.18 1.4.0 8 1 8Vrije Universiteit Sun Fire 280R SUNAmsterdam UltraSPARC-III Sun HotSpotThe Netherlands 750 MHz 64 bit Solaris 8 1.4.2 1 2 2ISUFI/High Perf. Compaq Compaq HP 1.4.0Computing Center Alpha Tru64 UNIX based onLee, Italy 667 MHz 64 bit V5.1A HotSpot 1 4 4Cardi� Intel Red Hat SUNUniversity Pentium-III Linux 7.1 HotSpotCardi�, Wales, UK 1 GHz kernel 2.4.2 1.4.1 1 2 2Masaryk University, Intel Xeon Debian Linux IBMBrno, Czeh Republi 2.4 GHz kernel 2.4.20 1.4.0 4 2 8Konrad-Zuse-Zentrum SGI SGIfür Origin 3000 1.4.1-EAInformationstehnik MIPS R14000 based onBerlin, Germany 500 MHz IRIX 6.5 HotSpot 1 16 16Some information about the mahines we used is shown in Table 4.1. To run the appliation, we usedwhihever Java JIT (Just-In-Time ompiler) that was pre-installed on eah partiular system whenever possible,beause this is what most users would probably do in pratie.Table 4.2Round-trip wide-area lateny (in milliseonds) and ahievable bandwidth (in KByte/s) between the GridLab sites.daytime nighttimeto to to toA'dam A'dam to to to to A'dam A'dam to to to tosoure DAS-2 Sun Lee Cardi� Brno Berlin DAS-2 Sun Lee Cardi� Brno Berlinlateny fromA'dam DAS-2 � 1 204 16 20 42 � 1 65 15 20 18A'dam Sun 1 � 204 15 19 43 1 � 62 14 19 17Lee 198 195 � 210 204 178 63 66 � 60 66 64Cardi� 9 9 198 � 28 26 9 9 51 � 27 21Brno 20 20 188 33 � 22 20 19 64 33 � 22Berlin 18 17 185 31 22 � 18 17 59 30 22 �bandwidth fromA'dam DAS-2 � 11338 42 750 3923 2578 � 11442 40 747 4115 2578A'dam Sun 11511 � 22 696 2745 2611 11548 � 46 701 3040 2626Lee 73 425 � 44 43 75 77 803 � 94 110 82Cardi� 842 791 29 � 767 825 861 818 37 � 817 851Brno 3186 2709 26 588 � 2023 3167 2705 37 612 � 2025Berlin 2555 2633 9 533 2097 � 2611 2659 9 562 2111 �Beause the sites are onneted via the Internet, we have no in�uene on the amount of tra� that �owsover the links. To redue the in�uene of Internet tra� on the measurements, we also performed measurementsafter midnight (CET). However, in pratie there still is some variability in the link speeds. We measured thelateny of the wide-area links by running ping 50 times, while the ahievable bandwidth is measured withnetperf [25℄, using 32 KByte pakets. The measured latenies and bandwidths are shown in Table 4.2. All siteshad di�ulties from time to time while sending tra� to Lee, Italy. For instane, from Amsterdam to Lee,we measured latenies from 44 milliseonds up to 3.5 seonds. Also, we experiened paket loss with this link: upto 23% of the pakets were dropped along the way. We also performed the same measurement during daytime,to investigate how regular Internet tra� in�uenes the appliation performane. The measurements show that



26 Rob V. van Nieuwpoort, Jason Maassen, Thilo Kielmann and Henri E. Balthere an be more than a fator of two di�erene in link speeds during daytime and nighttime, espeially thelinks from and to Lee show a large variability. It is also interesting to see that the link performane fromLee to the two sites in Amsterdam is di�erent. We veri�ed this with traeroute, and found that the tra� isindeed routed di�erently as the two mahines use di�erent network numbers despite being loated within thesame building. Table 4.3Problems enountered in a real grid environment, and their solutions.problem solution�rewalls bind all sokets to ports in the open rangebuggy JITs upgrade to Java 1.4 JITsmulti-homes mahines use a single, externally valid IP addressIbis, Satin and the ray traer appliation were all ompiled with the standard Java ompiler java onthe DAS-2 mahine in Amsterdam, and then just opied to the other GridLab sites, without reompiling orreon�guring anything. On most sites, this works �awlessly. However, we did run into several pratial problems.A summary is given in Table 4.3. Some of the GridLab sites have �rewalls installed, whih blok Satin's tra�when no speial measures are taken. Most sites in our testbed have some open port range, whih means thattra� to ports within this range an pass through. The solution we use to avoid being bloked by �rewalls isstraightforward: all sokets used for ommuniation in Ibis are bound to a port within the (site-spei�) openport range. We are working on a more general solution that multiplexes all tra� over a single port. Anothersolution is to multiplex all tra� over a (Globus) ssh onnetion, as is done by Kaneda et al. [16℄, or using amehanism like SOCKS [20℄.Another problem we enountered was that the JITs installed on some sites ontained bugs. Espeiallythe ombination of threads and sokets presented some di�ulties. There seems to be a bug in Sun's 1.3 JIT(HotSpot) related to threads and soket ommuniation. In some irumstanes, a bloking operation on asoket would blok the whole appliation instead of just the thread that does the operation. The solution forthis problem was to upgrade to a Java 1.4 JIT, where the problem is solved.Finally, some mahines in the testbed are multi-homed: they have multiple IP addresses. The originalIbis implementation on TCP got onfused by this, beause the InetAddress.getLoalHost method an returnan IP address in a private range, or an address for an interfae that is not aessible from the outside. Oururrent solution is to manually speify whih IP address has to be used when multiple hoies are available. Allmahines in the testbed have a Globus [10℄ installation, so we used GSI-SSH (Globus Seurity InfrastrutureSeure Shell) [11℄ to login to the GridLab sites. We had to start the appliation by hand, as not all siteshave a job manager installed. When a job manager is present, Globus an be used to start the appliationautomatially.As shown in Table 4.1, we used 40 proessors in total, using 6 mahines loated at 5 sites all over Europe,with 4 di�erent proessor arhitetures. After solving the aforementioned pratial problems, Satin on the TCPIbis implementation ran on all sites, in pure Java, without having to reompile anything.Table 4.4Relative speeds of the mahine and JVM ombinations in the testbed.run relative relative total % of totalsite arhiteture time (s) node speed speed of luster systemA'dam DAS-2 1 GHz Intel Pentium-III 233.1 1.000 8.000 32.4A'dam Sun 750 MHz UltraSPARC-III 445.2 0.523 1.046 4.2Lee 667 MHZ Compaq Alpha 512.7 0.454 1.816 7.4Cardi� 1 GHz Intel Pentium-III 758.9 0.307 0.614 2.5Brno 2.4 GHz Intel Xeon 152.8 1.525 12.200 49.5Berlin 500 MHz MIPS R14000 3701.4 0.062 0.992 4.0total 24.668 100.0As a benhmark, we �rst ran the parallel version of the ray traer with a smaller problem size (512 × 512,with 24 bit olor) on a single mahine on all lusters. This way, we an ompute the relative speeds of thedi�erent mahines and JVMs. The results are presented in Table 4.4. To alulate the relative speed of eahmahine/JVM ombination, we normalized the run times relative to the run time of the ray traer on a node of



Satin: Simple and E�ient Java-based Grid Programming 27the DAS-2 luster in Amsterdam. It is interesting to note that the quality of the JIT ompiler an have a largeimpat on the performane at the appliation level. A node in the DAS-2 luster and the mahine in Cardi� areboth 1 GHz Intel Pentium-IIIs, but there is more than a fator of three di�erene in appliation performane.This is aused by the di�erent JIT ompilers that were used. On the DAS-2, we used the more e�ient IBM1.4 JIT, while the SUN 1.4 JIT (HotSpot) was installed on the mahine in Cardi�.Furthermore, the results show that, although the lok frequeny of the mahine at Brno is 2.4 times as highas the frequeny of a DAS-2 node, the speed improvement is only 53%. Both mahines use Intel proessors, butthe Xeon mahine in Brno is based on Pentium-4 proessors, whih do less work per yle than the Pentium-IIICPUs that are used by the DAS-2. We have to onlude that it is in general not possible to simply use thelok frequenies to ompare proessor speeds.Finally, it is obvious that the Origin mahine in Berlin is slow ompared to the other mahines. This ispartly aused by the ine�ient JIT, whih is based on the SUN HotSpot JVM. Beause of the ombination ofslow proessors and the ine�ient JIT, the 16 nodes of the Origin we used are about as fast as a single 1 GHzPentium-III with the IBM JIT. The Origin thus hardly ontributes anything to the omputation. The tableshows that, although we used 40 CPUs in total for the grid run, the relative speed of these proessors togetheradds up to 24.668 DAS-2 nodes (1 GHz Pentium-IIIs). The perentage of the total ompute power that eahindividual luster delivers is shown in the rightmost olumn of Table 4.4.Table 4.5Performane of the ray traer appliation on the GridLab testbed.run ommuniation parallelizationalgorithm time (s) time (s) overhead time (s) overhead e�ienynighttimeRS 877.6 198.5 36.1% 121.9 23.5% 62.6%CRS 676.5 35.4 6.4% 83.9 16.6% 81.3%daytimeRS 2083.5 1414.5 257.3% 111.8 21.7% 26.4%CRS 693.0 40.1 7.3% 95.7 18.8% 79.3%single luster 25RS 579.6 11.3 2.0% 11.0 1.9% 96.1%We also ran the ray traer on a single DAS-2 mahine, with the large problem size that we will use for thegrid runs. This took 13746 seonds (almost four hours). The sequential program without the Satin onstrutstakes 13564 seonds, the overhead of the parallel version thus is about 1%. With perfet speedup, the run timeof the parallel program on the GridLab testbed would be 13564 divided by 24.668, whih is 549.8 seonds (aboutnine minutes). We onsider this run time the upper bound on the performane that an be ahieved on thetestbed, tperfect . We an use this number to alulate the e�ieny that is ahieved by the real parallel runs.We all the atual run time of the appliation on the testbed tgrid . In analogy to Setion 2.3, e�ieny an bede�ned as follows:
efficiency =

tperfect
tgrid

∗ 100%We have also measured the time that is spent in ommuniation (tcomm). This inludes idle time, beause all idletime in the system is aused by waiting for ommuniation to �nish. We alulate the relative ommuniationoverhead with this formula:
communication overhead =

tcomm

tperfect
∗ 100%Finally, the time that is lost due to parallelization overhead (tpar ) is alulated as shown below:

tpar = tgrid − tcomm − tperfect

parallelization overhead =
tpar

tperfect
∗ 100%



28 Rob V. van Nieuwpoort, Jason Maassen, Thilo Kielmann and Henri E. BalTable 4.6Communiation statistis for the ray traer appliation on the GridLab testbed.intra luster inter lusteralg. messages MByte messages MBytenighttimeRS 3218 41.8 11473 137.3CRS 1353295 131.7 12153 86.0daytimeRS 56686 18.9 149634 154.1CRS 2148348 130.7 10115 82.1single luster 25RS 45458 155.6 n.a. n.a.The results of the grid runs are shown in Table 4.5. For referene, we also provide measurements on asingle luster, using 25 nodes of the DAS-2 system. The results presented here are the fastest runs out ofthree experiments. During daytime, the performane of the ray traer with RS showed a large variability, someruns took longer than an hour to omplete, while the fastest run took about half an hour. Therefore, in thispartiular ase, we took the best result of six runs. This approah thus is in favor of RS. With CRS, this e�etdoes not our: the di�erene between the fastest and the slowest run during daytime was less than 20 seonds.During night, when there is little Internet tra�, the appliation with CRS is already more than 200 seondsfaster (about 23%) than with the RS algorithm. During daytime, when the Internet links are heavily used, CRSoutperforms RS by a fator of three. Regardless of the time of the day, the e�ieny of a parallel run with CRSis about 80%.The numbers in Table 4.5 show that the parallelization overhead on the testbed is signi�antly higherompared to a single luster. Soures of this overhead are thread reation and swithing aused by inomingsteal requests, and the loking of the work queues. The overhead is higher on the testbed, beause �ve of thesix mahines we use are SMPs (i.e. they have a shared memory arhiteture). In general, this means thatthe CPUs in suh a system have to share resoures, making memory aess and espeially synhronizationpotentially more expensive. The latter has a negative e�et on the performane of the work queues. Also,multiple CPUs share a single network interfae, making aess to the ommuniation devie more expensive.The urrent implementation of Satin treats SMPs as lusters (i.e., on a N -way SMP, we start N JVMs).Therefore, Satin pays the prie of the SMP overhead, but does not exploit the bene�ts of SMP systems, suhas the available shared memory. An implementation that does utilize shared memory when available is plannedfor the future.Communiation statistis of the grid runs are shown in Table 4.6. The numbers in the table totals for thewhole run, summed over all CPUs. Again, statistis for a single luster run are inluded for referene. Thenumbers show that almost all of the overhead of RS is in exessive wide-area ommuniation. During daytime,for instane, it tries to send 154 MByte over the busy Internet links. During the time-onsuming wide-areatransfers, the sending mahine is idle, beause the algorithm is synhronous. CRS sends only about 82 MBytesover the wide-area links (about half the amount of RS), but more importantly, the transfers are asynhronous.With CRS, the mahine that initiates the wide-area tra� onurrently tries to steal work in the loal luster,and also onurrently exeutes the work that is found.CRS e�etively trades less wide-area tra� for more loal ommuniation. As shown in Table 4.6, the runduring the night sends about 1.4 million loal-area messages. During daytime, the CRS algorithm has to domore e�ort to keep the load balaned: during the wide-area steals, about 2.1 million loal messages are sentwhile trying to �nd work within the loal lusters. This is about 60% more than during the night. Still, only40.1 seonds are spent ommuniating. With CRS, the run during daytime only takes 16.5 seonds (about 2.4%)longer than the run at night. The total ommuniation overhead of CRS is at most 7.3%, while with RS, thisan be as muh as two thirds of the run time (i.e. the algorithm spends more time on ommuniating than onalulating useful work).Beause all idle time is aused by ommuniation, the time that is spent on the atual omputation an bealulated by subtrating the ommuniation time from the atual run time (tgrid). Beause we have gatheredthe ommuniation statistis per mahine (not shown), we an alulate the total time a whole luster spends
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Fig. 4.2. Distribution of work over the di�erent sites.omputing the atual problem. Given the amount of time a luster performs useful work and the relative speedof the luster, we an alulate what fration of the total work is alulated by eah individual luster. We anompare this workload distribution with the ideal distribution whih is represented by the rightmost olumn ofTable 4.4. The ideal distribution and the results for the four grid runs are shown in Figure 4.2. The di�erenebetween the perfet distribution and the atual distributions of the four grid runs is hardly visible. From the�gure, we an onlude that, although the workload distribution of both RS and CRS is virtually perfet, theRS algorithm itself spends a large amount of time on ahieving this distribution. CRS does not su�er from thisproblem, beause wide-area tra� is asynhronous and is overlapped with useful work that was found loally.Still, it ahieves an almost optimal distribution.To summarize, the experiment desribed in this setion shows that the Java-entri approah to grid om-puting, and the Satin/Ibis system in partiular, works extremely well in pratie in a real grid environment. Ittook hardly any e�ort to run Ibis and Satin on a heterogeneous system. Furthermore, the performane resultslearly show that CRS outperforms RS in a real grid environment, espeially when the wide-area links are alsoused for other (Internet) tra�. With CRS, the system is idle (waiting for ommuniation) during only a smallfration of the total run time. We expet even better performane when larger lusters are used, as indiatedby our simulator results from Setion 2.3.5. Related work. We have disussed a Java-entri approah to writing wide-area parallel (grid omput-ing) appliations. Most other grid omputing systems (e.g., Globus [10℄ and Legion [13℄) support a variety oflanguages. GridLab [2℄ is building a toolkit of grid servies that an be aessed from various programminglanguages. Converse [15℄ is a framework for multi-lingual interoperability. The SuperWeb [1℄, and Bayani-han [29℄ are examples of global omputing infrastrutures that support Java. A language-entri approahmakes it easier to deal with heterogeneous systems, sine the data types that are transferred over the networksare limited to the ones supported in the language (thus obviating the need for a separate interfae de�nitionlanguage) [32℄.The AppLeS (short for appliation-level sheduling) projet provides a framework for adaptively sheduling



30 Rob V. van Nieuwpoort, Jason Maassen, Thilo Kielmann and Henri E. Balappliations on the grid [5℄. AppLeS fouses on seleting the best set of resoures for the appliation outof the resoure pool of the grid. Satin addresses the more low-level problem of load balaning the parallelomputation itself, given some set of grid resoures. AppLeS provides (amongst others) a template for master-worker appliations, whereas Satin provides load balaning for the more general lass of divide-and-onqueralgorithms.Many divide-and-onquer systems are based on the C language. Among them, Cilk [7℄ only supports shared-memory mahines, CilkNOW [9℄ and DCPAR [12℄ run on loal-area, distributed-memory systems. SilkRoad [27℄is a version of Cilk for distributed memory systems that uses a software DSM to provide shared memory to theprogrammer, targeting at small-sale, loal-area systems.The Java lasses presented by Lea [18℄ an be used to write divide-and-onquer programs for shared-memory systems. Satin is a divide-and-onquer extension of Java that was designed for wide-area systems,without shared memory. Like Satin, Javar [6℄ is ompiler-based. With Javar, the programmer uses annotationsto indiate divide-and-onquer and other forms of parallelism. The ompiler then generates multithreadedJava ode, that runs on any JVM. Therefore, Javar programs run only on shared-memory mahines and DSMsystems.Herrmann et al. [14℄ desribe a ompiler-based approah to divide-and-onquer programming that usesskeletons. Their DHC ompiler supports a purely funtional subset of Haskell, and translates soure programsinto C and MPI. Alt et al. [3℄ developed a Java-based system, in whih skeletons are used to express parallelprograms, one of whih for expressing divide-and-onquer parallelism. Although the programming systemtargets grid platforms, it is not lear how salable the approah is: in [3℄, measurements are provided only fora loal luster of 8 mahines.Most systems desribed above use some form of random stealing (RS). It has been proven [8℄ that RS isoptimal in spae, time and ommuniation, at least for relatively tightly oupled systems like SMPs and lustersthat have homogeneous ommuniation performane. In previous work [26℄, we have shown that this propertyannot be extended to wide-area systems. We extended RS to perform asynhronous wide-area ommuniationinterleaved with synhronous loal ommuniation. The resulting randomized algorithm, alled CRS, doesperform well in loosely-oupled systems.Another Java-based divide-and-onquer system is Atlas [4℄. Atlas is a set of Java lasses that an be usedto write divide-and-onquer programs. Javelin 3 [24℄ provides a set of Java lasses that allow programmersto express branh-and-bound omputations, suh as the traveling salesperson problem. Like Satin, Atlas andJavelin 3 are designed for wide-area systems. Both Atlas and Javelin 3 use tree-based hierarhial shedulingalgorithms. We found that suh algorithms are ine�ient for �ne-grained appliations and that CRS performsbetter [26℄.6. Conlusions. Grid programming environments need to be both portable and e�ient to exploit theomputational power of dynamially available resoures. Satin makes it possible to write divide-and-onquerappliations in Java, and is targeted at lustered wide-area systems. The Satin implementation on top of ournew Ibis platform ombines Java's run everywhere with e�ient ommuniation between JVMs. The resultingsystem is easy to use in a grid environment. To ahieve high performane, Satin uses a speial grid-aware load-balaning algorithm. Previous simulation results suggested that this algorithm is more e�ient than traditionalalgorithms that are used on tightly-oupled systems. In this paper, we veri�ed these simulation results in a realgrid environment.We evaluated Satin/Ibis on the highly heterogeneous testbed of the EU-funded GridLab projet, showingthat Satin's load-balaning algorithm automatially adapts both to heterogeneous proessor speeds and varyingnetwork performane, resulting in e�ient utilization of the omputing resoures. Measurements show thatSatin's CRS algorithm indeed outperforms the widely used RS algorithm by a wide margin. With CRS, Satinahieves around 80% e�ieny, even during daytime when the links between the sites are heavily loaded. Inontrast, with the traditional RS algorithm, the e�ieny drops to about 26% when the wide-area links areongested.Aknowledgments. Part of this work has been supported by the European Commission, grant IST-2001-32133 (GridLab). We would also like to thank Olivier Aumage, Rutger Hofman, Ceriel Jaobs, Maik Nijhuis andGosia Wrzesi«ska for their ontributions to the Ibis ode. Kees Verstoep is doing a marvelous job maintainingthe DAS lusters. Aske Plaat suggested performing an evaluation of Satin on a real grid testbed. John Romein,Matthew Shields and Massimo Cafaro gave valuable feedbak on this manusript.
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