
VU Research Portal

Programming Many-Cores on Multiple Levels of Abstraction

Hijma, H.P.

2015

document version
Publisher's PDF, also known as Version of record

Link to publication in VU Research Portal

citation for published version (APA)
Hijma, H. P. (2015). Programming Many-Cores on Multiple Levels of Abstraction. [PhD-Thesis - Research and
graduation internal, Vrije Universiteit Amsterdam].

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 02. May. 2023

https://research.vu.nl/en/publications/327bc2a2-f24b-4824-99ca-18f894a8f9f8

Programming Many-Cores

on

Multiple Levels of Abstraction

Pieter Hijma

Programming Many-Cores

on

Multiple Levels of Abstraction

Pieter Hijma

VRIJE UNIVERSITEIT

Programming Many-Cores
on

Multiple Levels of Abstraction

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad Doctor aan
de Vrije Universiteit Amsterdam,
op gezag van de rector magnificus

prof.dr. F.A. van der Duyn Schouten,
in het openbaar te verdedigen

ten overstaan van de promotiecommissie
van de Faculteit der Exacte Wetenschappen

op dinsdag 9 juni 2015 om 11.45 uur
in de aula van de universiteit,

De Boelelaan 1105

door

Hein Pieter Hijma
geboren te Dokkum

promotor: prof.dr.ir. H.E. Bal
copromotor: dr. R.V. van Nieuwpoort

members of the thesis committee: dr. Rosa M. Badia
prof.dr.ir Henk J. Sips
prof.dr. Paul Klint
dr. Clemens Grelck
dr.-Ing.habil. Thilo Kielmann

Advanced School for Computing and Imaging

This work was carried out in the ASCI graduate school.
ASCI dissertation series number 329.

This thesis was realized with support from the Wijbenga-leen.

Cover image by Pieter Hijma, adapted from the photograph “wafer 3” from
Santi: https://www.flickr.com/photos/s4nt1/15137081219. The photo-
graph was licensed with the Creative Commons Attribution-ShareAlike 2.0 li-
cense: https://creativecommons.org/licenses/by-sa/2.0. The cover im-
age is licensed with the same license, but version 4.0: http://creativecommons.
org/licenses/by-sa/4.0.

Copyright c© 2015 by Pieter Hijma

https://www.flickr.com/photos/s4nt1/15137081219
https://creativecommons.org/licenses/by-sa/2.0
http://creativecommons.org/licenses/by-sa/4.0
http://creativecommons.org/licenses/by-sa/4.0

Acknowledgements

Although it has not been easy at times, I have learned so much these last years.
I am very grateful for the faith and continuous support from my promotor Henri
Bal and co-promotor Rob van Nieuwpoort. Henri and Rob, you have given me
much freedom and from the beginning we have tried to balance this freedom
with minimizing the risk by avoiding to implement a large compiler. We have
failed in doing so, but I am now glad that we took those risks and I am happy
with the end-result: this thesis.

I have been very lucky to receive much help from many people. Firstly,
Ceriel Jacobs helped in virtually all my papers. In all cases I would start to
implement my ideas, would realize after a while that it would take too much
time for one person, after which Ceriel would step in and learn my completely
undocumented code. This must not have been easy, especially with the Many-
Core Levels (MCL) system as it had a very large code-base. However, Ceriel,
for me it was invaluable to be able to discuss the low-level details with you.

Secondly, I want to thank the Software Analysis and Transformation (SWAT)
team at the CWI. They invited me to come work at the CWI with their system
Rascal in which I implemented MCL. Their direct and active support allowed
me to learn Rascal fast. Rascal has been invaluable for prototyping my lan-
guage designs and it helped me to work very quickly, allowing me to almost
keep up with “a compiler pass a day”. I want to thank Paul Klint, for his
enthusiasm about me using Rascal; Jurgen Vinju, for working incredibly hard
to fix bugs in Rascal; Tijs van der Storm, from whom I learned many things
about programming languages; and Atze van der Ploeg. Atze, thanks for the
countless discussions we have enjoyed. I learned much about my own ideas by
trying to convince you that you were wrong, especially in reaction to your stan-
dard phrase: “Oh, that’s trivial!”. Let us not comment on how many times you
actually were wrong, as it would start another discussion.

Furthermore, I want to thank my committee for finding time to take part in

x

my defense and to consider whether I deserve the degree of Ph.D.: Rosa Badia,
Henk Sips, Paul Klint, Clemens Grelck, and Thilo Kielmann. Thank you for
your kind words and your constructive feedback that allowed me to improve the
thesis further.

I want to thank all my colleagues at the VU: My paranymphs Ben van
Werkhoven and Stefan Vijzelaar: Ben, I am glad that after sharing the same
office for so long (and after you left), we have finally started working together
with a nice paper as outcome. Stefan, thank you for the nice collaboration in
the Concurrency and Multithreading class. I hope the students learned many
things, but in any case we learned more and more about concurrency each
iteration. I want to thank all my office mates during the years for the enjoyable
time: Albana Gaba, Suhail Yousaf, Christian Rossow, Rena Bakhshi, Ben, and
Alessio Sclocco.

I want to thank Andy Tanenbaum for appreciating the proposal I wrote for
the Research Proposal Writing class and notifying Henri Bal about it. This led
to my Master project which transitioned into my Ph.D.; Kees van Reeuwijk for
supervising me initially in the sync generator project; Kees Verstoep for keeping
the DAS-4 always up, especially in paper deadline periods; and Wan Fokkink
for working together on the Concurrency and Multithreading class and giving
me the opportunity to do a guest lecture.

Alessandro Margara, I much enjoyed our discussions during the many bike
rides to the swimming pool, even though I knew you would beat me in swimming
afterwards. Thanks also for your feedback on the MCL papers from which I
learned much; Roelof Kemp, thank you for the coffee moments. I especially
remember the coffee breaks in the summer of 2012 in which you looked back
on your Ph.D. time. This has influenced the way I worked; Timo van Kessel,
I regret that we did not manage to work together on a paper but I wish you
all the best; Remco Vermeulen, I admire the fact that you took even more risk
than I did with the incredibly difficult subject that you chose.

Many thanks to everybody of Henri’s group: Ismail El-Helw, Jacopo Ur-
bani, Kaveh Razavi, Alex Uta, Ana Oprescu, Stefania Costache, Rutger Hof-
man, Daniela Remenska, and old colleages Nick Palmer, Frank Seinstra, Jason
Maassen, Niels Drost, and Maarten van Meersbergen. Many thanks as well
to all others in the Computer Systems group. Thank you Caroline Waij, for
arranging many things so swiftly, from barbecues to printer paper.

The Netherlands eScience Center needs special mention as they allowed Rob
van Nieuwpoort to continue supervising me. Thanks to Cees de Laat and Ana
Varbanescu from the UvA for allowing me to continue in academia; Raphael
Poss and Merijn Verstraaten for their interest in my work and discussing new

xi

angles for MCL I did not think about. I want to thank Zeno Gerardts, Pelle
Barens, Ewald Snel, and Arjan Mieremet from the NFI for their interest in MCL
and Cashmere and providing an interesting forensics application.

I want to thank my parents for always supporting but never pushing me,
even when I took drastic decisions such as starting with a Computer Science
study. I am very grateful for all the chances you offered me. My brother Durk,
thanks for not taking such drastic decisions as starting a Computer Science
study. Let us agree on me doing the programming, while you remain doing
what you do so well.

Dear Dorine, thank you for all the support and thank you for accepting the
too many times that I had to work: weekends, evenings, and nights. It has been
amazing for me that we could talk about my computer science topics and that
you would not only listen, but also understand and ask questions. It is not for
nothing that you came up with the title “Cashmere” for my system. I am very
grateful I have you in my life.

Finally, all my friends that showed support: Sandra, Mandana, Haiko,
Thomas, Renée, Atze, Herman, Melanie, Remco, Steven, Martijn, Despo, Abhi,
Gerard, Femke, Martin, Hannah, Maarten, Koen, and Alessandro, thank you
for your understanding in case I was stressed or busy, probably both. I hope we
can catch-up the lost time of the last few years after the defense.

xii

Contents

Acknowledgements ix

Contents xiii

1 Introduction 1
1.1 Background . 4
1.2 Scope . 6
1.3 Problem Statement and Research Questions 6
1.4 Outline of this thesis . 7

2 Generating Synchronization Statements 11
2.1 Introduction . 12
2.2 The Satin programming model 13
2.3 Problem description . 16
2.4 Implementation . 19

2.4.1 Basic algorithm . 19
2.4.2 Analysis phase . 20

2.5 Evaluation . 26
2.5.1 Evaluation per application 29

2.6 Discussion . 31
2.6.1 Precision of the Alias-Analysis 32
2.6.2 Improving Sync Generation with Programmer Support . . 34
2.6.3 Cilk . 35
2.6.4 Futures . 36

2.7 Programming model design considerations 36
2.8 Related Work . 37
2.9 Conclusion . 38

xiv Contents

3 Stepwise-refinement for performance 41
3.1 Introduction . 42
3.2 Related work . 44

3.2.1 Programming Many-cores 44
3.2.2 Other related Work . 47

3.3 Stepwise-refinement for Performance 48
3.3.1 Philosophy . 49
3.3.2 Methodology . 50

3.4 Design of MCL . 51
3.4.1 Overview . 52
3.4.2 Hardware Description Language HDL 54
3.4.3 Programming Language MCPL 57
3.4.4 Compiler . 59

3.5 Example: Matrix Multiplication 61
3.5.1 GTX480 . 65
3.5.2 Xeon Phi . 72
3.5.3 Summary . 75

3.6 Implementation . 76
3.6.1 Translation between Abstraction Levels 76
3.6.2 Operation Statistics . 79
3.6.3 Data Reuse Analysis . 80
3.6.4 Cache Analysis . 82
3.6.5 Performance Feedback Functions 83

3.7 Evaluation . 84
3.8 Discussion . 91
3.9 Conclusion . 92

4 Cashmere: Heterogeneous many-core computing 95
4.1 Introduction . 96
4.2 Cashmere Programming Model 98

4.2.1 Satin . 98
4.2.2 MCL . 100
4.2.3 Cashmere programming model 100

4.3 Implementation . 103
4.3.1 MCL . 103
4.3.2 Cashmere . 104

4.4 Methodology . 106
4.5 Evaluation . 109

4.5.1 Kernel performance . 109

Contents xv

4.5.2 Scalability . 110
4.5.3 Heterogeneity . 111

4.6 Related Work . 117
4.7 Conclusion . 120

5 Conclusions 123
5.1 Summary . 123
5.2 Future Directions . 126

5.2.1 Conclusions . 128

A Many-Core Levels Language Descriptions 129
A.1 Hardware Description Language HDL 129
A.2 Programming Language . 134

B Translating to a lower level of abstraction 139
B.1 The top-level functions . 140
B.2 Finding equivalent ParGroups . 141
B.3 Translating memory spaces . 142
B.4 Translating ForEach statements 144

References 151

List of Publications 163

Samenvatting 165

xvi Contents

Chapter 1

Introduction

In the last decades we have witnessed an incredible increase in CPU perfor-
mance. As a result, we were in the fortunate position of obtaining higher
performance by running virtually the same software on newer generations of
hardware. Fig. 1.1 illustrates Moore’s Law, the exponential increase of the
number of transistors over time that made this performance increase possible.

However, Fig. 1.1 also shows the clock-frequency over time. It shows that
clock-frequency increased exponentially until the mid 2000s after which it lev-
eled, while Moore’s Law remained as before. Thus, every 18 months the number
of transistors that we could fit on a die increased, but we were not able to in-
crease the clock-speed due to power dissipation excesses. This meant a major
change in the design of processors: the solution was to fit multiple processors
or cores on one die running on a lower clock-frequency and therefore reducing
the power dissipation. We call these processors multi-core processors (starting
from “Core 2” in Fig. 1.1).

This was a fundamental change from a software viewpoint because from that
moment processors exposed parallelism to the programmer. In fact, the tradi-
tional single-core machines were already highly parallel machines with much
logic dedicated to optimize sequential instruction streams. However, to gain
the same performance increase associated with the increase of the number of
transistors for multi-core processors, the programmer has to offer the proces-
sor multiple parallel instruction streams. In other words, traditional sequential
software will not run faster automatically on multi-core processors, but the soft-
ware has to be made parallel to benefit from the increased performance of the
multi-core processors.

2 Chapter 1. Introduction

103

104

105

106

107

108

109

1010

 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015
 0.1

 1

 10

 100

 1000

 10000

#
 t

ra
n
si

st
o
rs

cl
o
ck

sp
e
e
d
 (

M
H

z)

transistors

80088080

8086

80286

80386

80486

Pentium

Pentium II

Pentium III
Pentium 4

Core 2

Core i7 (Nehalem)
Core i7 (Sandy)

Core i7 (Haswell)clockspeed (MHz)

Figure 1.1: Development of processors over time (source Intel).

So far, we have seen two types of processors: traditional single-core proces-
sors, with much logic dedicated to optimize sequential programs and multi-core
processors with multiple cores of which each core has still much logic dedicated
to optimize sequential programs. It exposes parallelism to the programmer, but
in a moderate way (the number of cores). This thesis, however, studies how to
program many-core processors. Instead of dedicating logic to optimize sequen-
tial programs as single-core and multi-core processors do, many-core processors
use most logic to expose a high degree of parallelism to the programmer in the
form of many simple cores. Its programs need to be highly parallel, but in
return the programmer is able to achieve much higher performance than with
multi-core processors because a large degree of the logic of a chip is used for
computing instead of analyzing sequential instruction streams.

Examples of the many-core processors that we use in this thesis are the
Graphics Processing Unit (GPU) and the Xeon Phi from Intel. GPUs have
become more general over the years and are now often used to accelerate large
scientific codes or other compute intensive applications. The Xeon Phi is also
typically used in this way. Both processors have in common that they expose

3

large amounts and multiple levels of parallelism. Typically, they provide tens
of cores that need hundreds of parallel tasks to keep the device busy. Each
core then exposes another level of parallelism in the form of small, simple data-
parallel cores or vector processor units.

The design of these processors is important for the energy consumption.
Because most of the logic of the chip is dedicated to computation and not op-
timizing instruction streams, many-cores deliver much higher performance per
Watt [1, 2]. This is not only important for mobile devices, but also for super-
computers that start to use unacceptable amounts of energy. From 1972 to 2007,
the performance of supercomputers increased 10,000 fold, but the performance
per Watt ratio only increased 300 fold. Nowadays, supercomputers draw power
equivalent to small cities [3]. It is clear that many-cores provide an opportunity
in this context and many supercomputers are already fitted with many-core pro-
cessors today. It is highly likely that massively parallel hardware in the form of
many-cores will play an important role in computing in the future.

However, many-core processors are difficult to program for multiple reasons.
The only goal of many-core processors is obtaining high performance. They ex-
pose a complicated interface to the programmer with many levels of parallelism
and a complicated memory hierarchy, all meant to reach high performance.
They do not have a standardized instruction set as single-core and multi-core
processors have, there are many different kinds of many-core processors, and the
hardware evolves quickly. Because of the many levels of parallelism that closely
interact with the memory subsystem, the performance of a program can improve
drastically if it accounts for the limitations of the processor and makes proper
use of the available hardware. Therefore, optimizing a program for many-cores
is often beneficial but also very difficult.

This thesis proposes solutions for this programming problem. It takes a
fundamental approach: It considers the hardware limitations that we face, for
example the memory wall (computation speed increases faster than memory
access speed) and the energy wall (clock-frequency cannot increase any fur-
ther) as programming problems. Thus, we consider the single-core era to be
a fortunate situation in which the increase of clock-frequency meant automatic
performance gains without changing the software, but it was never truly sustain-
able; multi-core hardware shows a transition from offering a sequential hardware
interface to a parallel hardware interface with still much logic to optimize se-
quential programs. This transition will ultimately lead to hardware that will
not make any compromises in its interface to programmers to overcome the
hardware limitations that we face. This thesis considers many-core processors
as a first manifestation of this kind of hardware. To summarize what this thesis

4 Chapter 1. Introduction

is about: Eventually we will reach the limits of hardware which will result in
a complicated interface to the programmer, making this hardware increasingly
more difficult to program. The main question that this thesis tries to answer is
how to effectively program this hardware while still achieving high performance.

The next section describes some background to clarify why we believe that
the shift from single-core and multi-core processors to many-core processors
should change the traditional view on the role of programmers and compilers.
In Sec. 1.2 we explain the scope of the thesis and Sec. 1.3 defines the problem
and presents the research questions. Section 1.4 presents the outline of the
thesis.

1.1 Background
Computer hardware exposes a set of instructions that one can execute on this
hardware. Programming means to find a sequence of instructions such that a
problem is solved. Problems can be solved in many ways and the particular
way a problem is solved is called an algorithm. Given an algorithm for solving a
problem, programming is finding the sequence of instructions that implements
this algorithm.

Usually, the exposed instructions are very low level and cumbersome to use.
As a result, a fundamental step in computer science is to find a sequence of
instructions that occurs often and find a simple expression that can be translated
into this sequences of instructions. For example, adding two numbers in memory
locations a and b and loading the result in memory location c could be encoded
into the following instructions:
mov(r1, a)
mov(r2, b)
add(r1, r2)
mov(c, r1)

The first two instructions move the value in memory locations a and b into
registers r1 and r2 as an add instruction cannot operate directly on memory but
only on special purpose registers. The add instructions computes the addition
and puts the result in register r1 that we move back into memory location c in
the final instruction. Because this is cumbersome we prefer an expression such
as
c = a + b

which computes the same. We call this a higher-level abstraction because it
abstracts away the movement from and to registers. The task of translating

1.1 Background 5

a higher-level abstraction to the lower-level representation is performed by a
compiler. In a way, the compiler exposes a new interface to the hardware that
matches better with how we think.

Another task of the compiler is optimizing code. For example, it may be
natural for us to write an expression as

c = (a + b) * (a + b)

The compiler may be able to perform common sub-expression elimination and
transforming this code into

t = a + b
c = t * t

removing one addition. This seems like a good idea, but it is important to note
that by doing this, the compiler makes certain assumptions about the hardware.
In this case, the compiler assumes that using a temporary memory location t
is beneficial for the overall performance. However, dependent on the hardware,
this may not be the case. For example in many-core hardware, it may be faster
to recompute the value than reusing a register.

This scheme, consisting of

• provide the programmer high-level abstractions,

• automatically translate to lower-level representations and optimize the
instructions where possible, and

• run the instructions while extracting parallelism from the instruction-
stream on the fly in hardware

has been very successful in the single-core era because 1) the interface of hard-
ware has not changed much over the years, and 2) obtaining higher performance
could be achieved by buying newer hardware.

Due to the increasing complexity of the hardware interface that is exposed to
programmers, we reconsider the responsibilities in achieving high performance in
this thesis. We envision that programmers will be responsible for achieving per-
formance and expressing parallelism. We change the role of compilers as being
a black box translator and optimizer to a more advisory role where program-
mers have much control. Because performance becomes a software problem and
not a hardware problem we also reconsider high-level abstractions in relation to
control over the hardware.

6 Chapter 1. Introduction

1.2 Scope
In this thesis we study the problem of programming many-cores. Programming
in itself is already very challenging. Humans are experts in communicating
through natural language where a context is always implied to resolve the many
ambiguities that natural language contains. However, to communicate with
(read: programming) a machine we need formal languages that leave no room
for ambiguities. For humans, it is very challenging to adapt to these formal
languages and remove all ambiguities, especially when programs become larger
and more complex [4].

It is also important to note that software is not only written for machines,
but also for humans. Typically, software grows slowly and remains in use much
longer than anticipated. This means that software has to be maintained. Al-
ready in 1968 it was clear that the cost of software engineers writing and main-
taining codes exceeded the cost of hardware [5].

Sequential programming is challenging, but parallel programming is even
more demanding. Instead of expressing the steps for one sequential program,
programmers have to decide on the granularity of parallelism, how the parallel
tasks interact and how shared data can be protected. Lee explains the many
problems that can arise in parallel programming [6].

Within the parallel programming field, this thesis focuses on programming
many-cores. As explained above, many-cores expose all kinds of architectural
intricacies to achieve high performance and the performance differences can be
quite large when a program is well-balanced in how the hardware is used.

In general, many-core processors will be used as components in larger sys-
tems such as supercomputers or clusters, so we also study how to program
clusters of many-cores. More specifically, as many-core hardware shows much
variety and evolves fast, we study clusters of heterogeneous many-core proces-
sors. We expect that in the near future heterogeneity of many-cores in clusters
can play an important roll in improving power consumption and performance.

1.3 Problem Statement and Research Questions
The limitations in hardware (memory wall, energy wall) will have an effect
on the design of hardware that will eventually have repercussions on how to
program these chips. Many-core hardware is the first manifestation of hardware
that provides little compromise in the hardware design and the interface that is
exposed to programmers. The main research question of this thesis is:

1.4 Outline of this thesis 7

• How can we support programmers in their responsibility to achieve high
performance from many-core hardware?

There are several sub-questions that follow from this question that we try
to answer in the following chapters:

1. What are important design considerations for parallel programming mod-
els and their compiler analyses?

2. How to balance control over hardware with raising the level of abstraction?

3. How can we manage the many different types of many-core hardware that
exist?

4. Can we provide programmers a structured approach with which a pro-
gramming system can assist them to achieve high performance?

5. How to achieve good scalability when programming clusters of many-
cores?

6. How to program heterogeneous many-core clusters?

1.4 Outline of this thesis
The major contribution of this thesis is a methodology for programming many-
core devices that we call “Stepwise-refinement for performance”. We present
two programming systems for many-core devices: Many-Core Levels (MCL) and
Cashmere. MCL focuses on writing computational kernels for many-core devices
on multiple levels of abstractions and as a system, it supports the stepwise-
refinement for performance methodology. We define a computational kernel, or
just kernel, as a compute-intensive set of functions within an application that as
a whole can be run on a many-core device. Cashmere combines MCL with Satin,
an existing divide-and-conquer programming model [7] to bring the many-core
compute power to clusters of heterogeneous many-core devices.

Chapter 2 This chapter does not yet focus on many-core devices but presents
an analysis of Satin programs. This chapter gives an answer to research ques-
tion 1 and has important conclusions that influenced the design of MCL and
Cashmere. Most importantly, it led to the insight that it may be preferable to
have compilers in a more advisory role while programmers remain in control.

8 Chapter 1. Introduction

This is a major theme throughout the thesis. This chapter is based on the
following publications:

Automatically Inserting Synchronization Statements in Divide-and-
Conquer Programs. Pieter Hijma, Rob V. van Nieuwpoort, Ceriel J.H.
Jacobs, and Henri E. Bal. In 2011 IEEE International Symposium
on Parallel and Distributed Processing Workshops and Phd Forum
(IPDPSW), pages 1233–1241, May 2011.

Generating synchronization statements in divide-and-conquer programs.
Pieter Hijma, Rob V. van Nieuwpoort, Ceriel J.H. Jacobs, and Henri E.
Bal. Parallel Computing, 38(1-2):75 – 89, January–February 2012.

Chapter 3 This chapter answers research question 2, 3, and 4. It presents the
Many-Core Levels programming system that supports the stepwise-refinement
for performance methodology with which programmers can optimize computa-
tional kernels guided by the compiler. The novelty in MCL is that it supports
multiple levels of abstraction, giving programmers a trade-off in portability and
program maintainability against control to reach high performance. This chap-
ter is adapted from the following publications:

Programming Many-Cores on Multiple Levels of Abstraction. Pieter
Hijma, Rob V. van Nieuwpoort, and Henri E. Bal. In Proceedings of
the 5th USENIX Conference on Hot Topics in Parallelism (Poster pre-
sentation), HotPar ’13, pages 1–7, Berkeley, CA, USA, 2013. USENIX
Association.

Stepwise-refinement for performance: a methodology for many-core
programming. Pieter Hijma, Rob V. van Nieuwpoort, Ceriel J.H.
Jacobs, and Henri E. Bal. Concurrency and Computation: Practice
and Experience, 2015. http://dx.doi.org/10.1002/cpe.3416.

Chapter 4 In this chapter we introduce Cashmere, a programming system
that combines MCL with Satin’s divide-and-conquer programming model to
program heterogeneous clusters of many-core devices. The major contribution
of this chapter is a programming system that achieves good scalability even with
many-cores that vary widely in architectures and performance. This chapters
answers research questions 5 and 6 and is based on the following publication:

http://dx.doi.org/10.1002/cpe.3416

1.4 Outline of this thesis 9

Cashmere: Heterogeneous Many-Core Computing. Pieter Hijma,
Ceriel J.H. Jacobs, Rob V. van Nieuwpoort, and Henri E. Bal. In
29th IEEE International Parallel & Distributed Processing Symposium
(IPDPS 2015), 25-29 May 2015, Hyderabad, India., 2015.

Chapter 5 This last chapter presents a summary of the thesis, our conclu-
sions, and future directions. We conclude that MCL and Cashmere provide
promising solutions to support programmers in their responsibility to extract
performance from many-core devices, whether or not arranged in cluster com-
puters. MCL provides a trade-off in control over hardware and the level of ab-
straction, and it supports a methodology that gives programmers insight in the
compiler and the performance of their application in relation to the hardware.
Cashmere provides a solution for heterogeneous many-core clusters with auto-
matic load-balancing and detailed performance feedback in the form of Gantt-
charts of the execution.

10 Chapter 1. Introduction

Chapter 2

Generating synchronization
statements in
divide-and-conquer
programs

Divide-and-conquer is a well-known and important programming model that
supports efficient execution of parallel applications on multi-cores, clusters, and
grids. In divide-and-conquer systems such as Satin or Cilk, recursive calls are
automatically transformed into jobs that execute asynchronously. Since the
calls are non-blocking, consecutive calls are the source of parallelism. However,
programmers have to manually enforce synchronization with sync statements
that indicate where the system has to wait for the result of the asynchronous
jobs.

In this chapter, we investigate the feasibility of automatically inserting sync
statements to relieve programmers of the burden of thinking about synchro-
nization. We investigate whether correctness can be guaranteed and to what
extent the amount of parallelism is reduced when synchronization statements
are inserted automatically. We discuss the code analysis algorithms that are
needed in detail.

To evaluate our approach, we have extended the Satin divide-and-conquer
system, which targets efficient execution on grids, with a sync generator. Our

12 Chapter 2. Generating Synchronization Statements

experiments show that, with our analysis, we can automatically generate syn-
chronization statements in virtually all real-life cases: in 31 out of 35 real-
world applications the sync statements are placed optimally. The automatic
placement is correct in all cases, and in one case the sync generator corrected
synchronization errors in an application (FFT).

Finally, this chapter presents important design considerations that influ-
enced the design of MCL and Cashmere: most importantly, we conclude that
programmers have application knowledge that compilers lack and that compilers
can overlook optimizations because they have to be conservative to guarantee
correctness.

2.1 Introduction
Writing parallel programs is difficult in general. Writing parallel programs
that execute efficiently on multiple clusters or clouds is even more demanding.
Satin [7] makes cross-grid computing accessible to programmers who are not par-
allel programming experts. It allows programmers to write parallel programs
without much effort by offering a sequential divide-and-conquer programming
model. Typical applications for Satin are large scientific computations or other
compute-intensive problems.

In Satin, programmers annotate recursive methods to indicate that calls to
these methods are spawnable, which means that they can be executed asyn-
chronously. Consecutive spawnable method calls create parallelism in the pro-
gram. These method calls are transformed into jobs that are executed efficiently
on grids or clouds using the Ibis platform [8].

However, since spawnable method calls are non-blocking, programmers also
have to annotate where in the program the system has to block until the re-
sults of the jobs are available. Programmers indicate this by carefully inserting
sync() statements. Placing sync statements too soon results in less parallelism
than possible and placing them too late gives incorrect results. Our goal is to
make grid computing even more accessible to programmers who are not parallel
programming experts by making sync insertion automatic.

Having automatic sync insertion, by means of a sync generator, means that
programmers no longer have to think about synchronization. The following
questions arise: can syncs always be automatically inserted in such a way that
the resulting program is correct; how much parallelism can be obtained; and
what analysis is needed to accomplish this.

We found that the implementation of the sync generator program is able

2.2 The Satin programming model 13

to insert sync statements in such a way that the resulting program is always
correct, but alias and control-flow analysis are needed to accomplish this. More
extensive analysis will not lead to optimal placement in all cases: programmers
sometimes deliberately use unsynchronized variables for performance reasons.
An automatic generator cannot determine this.

In practice, our sync generator achieves excellent results. We tested the
sync generator on 35 pre-existing real-world Satin applications. In 31 of them,
the sync generator found the optimal locations for the sync statements. In all
but one of the remaining cases, the sync generator gave a warning that the
placement was likely suboptimal. In one case, it even corrected an originally
incorrect application (FFT).

Our contributions are the following:

• Wemake implementing parallel divide-and-conquer applications even more
effortless than before. Programmers only have to indicate parallel methods
but not the synchronization points.

• We offer a good understanding of the problems involving automatically
inserting synchronization statements.

• We provide a working implementation in the form of a compilation pass
for the Satin compiler that generates synchronization statements auto-
matically.

• We answer research question 1: What are important design considerations
for parallel programming models and their compiler analyses?

The following section discusses the Satin programming model and explains
some basic concepts. Section 2.3 defines the problem in detail and Sec. 2.4
discusses the implementation of the sync generator. We evaluate the sync gen-
erator in Sec. 2.5 using 35 real-world Satin applications while Sec. 2.6 discuss
the results and presents important design considerations that affected the de-
sign of MCL and Cashmere. Section 2.8 describes related work after which the
chapter concludes.

2.2 The Satin programming model
This section briefly introduces the Satin programming model. Satin [7] is a
divide-and-conquer framework similar to Cilk [9]. The main differences are that

14 Chapter 2. Generating Synchronization Statements

Java compiler

bytecode

Satin code

grid bytecode

Satin compiler

sync generator

code generator

Figure 2.1: Compiler procedure with automatic sync generation.

programs are written in Java instead of Cilk, a C derivative, and that programs
are deployed on a grid and not on shared memory systems.

The Satin compiler rewrites Satin programs in such a way that they can
run in parallel on grids and clouds using Ibis [8]. Ibis is an environment that
provides communication primitives to compute nodes in a grid. Rewriting Satin
programs is performed with help of the bytecode rewriting library BCEL [10].

In order to create parallelism in a Satin program, programmers have to
make some annotations. They have to indicate which methods are spawnable
to ensure that the Satin compiler will rewrite those methods to versions that
spawn jobs on the grid. The second annotation programmers have to make is a
special sync() statement which is a barrier local to the method. The system will
block at the sync statement until all results of the spawnable calls in the current
method have become available. A node that blocks in a sync may execute jobs
resulting from spawnable calls in the meantime.

The Java type and class systems provide all means to annotate Satin pro-
grams. Programmers create spawnable classes by extending the class ibis.
satin.SatinObject that provides methods such as sync(). Programmers can
also create an interface that extends ibis.satin.Spawnable. The method calls
of the methods that are declared in this interface will be rewritten by the Satin
compiler and executed in parallel.

The procedure from writing to deploying a Satin program is as follows: pro-
grammers write a sequential recursive program in Java and annotate the (possi-
bly recursive) calls that have to be spawnable. They also place sync statements

2.2 The Satin programming model 15

1 interface SpawnProg extends ibis.satin.Spawnable {
2 int spawningMethod(Data data);
3 }
4
5 int spawningMethod(Data data) {
6 if (stopCondition) return 0;
7
8 int result1 = spawningMethod(data.part1);
9 int result2 = spawningMethod(data.part2);

10
11 sync();
12 return result1 + result2;
13 }

Figure 2.2: A basic Satin program.

in places where the program has to wait for the results of the spawnable calls.
The program is compiled to normal, sequential Java bytecode. This serves as
input for the Satin compiler that rewrites the bytecode in such a way that Satin
jobs are spawned. The application is now ready to be deployed on the grid.

The procedure in combination with the sync generator differs slightly and is
depicted in Fig. 2.1. Again, programmers write a sequential recursive program
but leave out the sync statements. They compile the program to ordinary
bytecode. The Satin compiler takes the Java bytecode as input and generates
sync statements in an extra compiler pass. It then rewrites the bytecode so that
it spawns Satin jobs. It is still an option to insert sync statements manually.
The sync generator will ignore methods that already contain sync statements.

Throughout the rest of the document the following terms will be used: A
spawning class is a class that contains spawning methods. A spawning method
is a method that contains spawnable calls. A spawnable call is an invocation
of a method with a spawnable method signature. This is the signature of the
method annotated by the programmer to be spawnable. A sync statement is
a local barrier synchronization primitive which makes sure that all spawnable
calls have returned their values.

Parameters of spawnable method signatures need to be serializable. Seri-
alizable classes provide a means to create a deep copy of the object including
all objects that are referenced within the object and even cycles between these
references. This allows applications to store objects on disk or transfer objects
over the network. This last feature is used by the Satin runtime when a spawn-
able call is to be executed on a different node in the grid. Satin serializes every

16 Chapter 2. Generating Synchronization Statements

object in the argument list of the spawnable call to transfer the objects over the
network.

Figure 2.2 depicts a typical Satin program. On line 2, spawningMethod() is
marked to be a spawnable method, as it is defined in an interface that extends
ibis.satin.Spawnable. The method on line 5 is a spawning method, because it
contains two spawnable calls on line 8 and 9 (two recursive calls). These calls are
non-blocking, and as a result the two calls run in parallel. At the statement in
line 8, the Satin runtime may serialize the argument data.part1 depending on
whether the data will be sent over the network or stays on the current node. It
then creates a job, spawns the job, and returns to do the same for the spawnable
call on line 9. The system will block at the sync() statement on line 11 until
both parallel calls have finished and returned their results into result1 and
result2. The method can now safely return the sum of result1 and result2.

Besides returning values using the return statement, a spawning method
can also return using exceptions. Figure 2.3 illustrates this. The non-blocking
spawning method is called on line 10 in the try block, and the program continues
immediately beyond the catch clause. It executes the second try block, calling
the second spawnable call on line 17 in parallel. The program continues beyond
the catch clause and blocks on the sync(). When the first spawnable call has
finished and the result has been thrown, a new thread stores the results in local
variables in the catch block on line 12 and returns from the method. When this
has happened for all spawnable calls, the main thread that blocked on the sync
can continue and throw the result of this method.

This exception mechanism allows applications to perform work immediately
after a spawning call has finished and is often used for speculative parallelism.
An example is a parallel search. As soon as a spawnable call locates the item
that is searched for and throws an exception, the new thread in the catch block
can abort the other spawnable calls in order to prevent that more items are
searched than necessary.

2.3 Problem description
The sync generator’s objective is to determine a suitable location for sync state-
ments. Results of spawnable calls are generally stored temporarily to allow
parallelism. For instance, on lines 8 and 9 in Fig. 2.2, the two spawnable calls
store the results in result1 and result2. Sync statements should precede the
part of the code where these results are used again. Therefore, because result1
and result2 are used again on line 12, there is a sync statement on line 11.

2.3 Problem description 17

1 interface SpawnProg extends ibis.satin.Spawnable {
2 void spawningMethod() throws Result;
3 }
4
5 void spawningMethod() throws Result {
6 if (stopCondition) throw new Result();
7
8 int result1, result2;
9 try {

10 spawningMethod();
11 }
12 catch (Result r) {
13 result1 = r.result;
14 return;
15 }
16 try {
17 spawningMethod();
18 }
19 catch (Result r) {
20 result2 = r.result;
21 return;
22 }
23
24 sync();
25
26 Result finalResult = new Result();
27 finalResult.result = result1 + result2;
28 throw finalResult;
29 }

Figure 2.3: A basic Satin program throwing exceptions.

Placing the sync statements too soon may reduce parallelism. For example,
placing sync statements between lines 8 and 9 and after line 9 in Fig. 2.2 results
in sequential execution of the two spawnable calls. Placing sync statements too
late, after result1 and result2 have been used again, can lead to incorrect
results.

The implementation of the sync generator focuses first of all on correctness.
The main question is: is it possible to create a sync generator compilation
pass that inserts sync statements in such a way that the resulting program is
guaranteed to be correct? Correctness in this sense means that the placement
of sync statements is such that the parallel version delivers the same results as

18 Chapter 2. Generating Synchronization Statements

the sequential version.
The second issue is then: is it possible to find a location for the sync state-

ments in such a way that parallelism is created? If this is true, then the ques-
tion is how optimal the placement is. Other questions are whether this can be
achieved in a way that does not require complicated analysis or results in many
spurious sync statements.

The sync generator operates under the assumption that it has as input all
classes that are needed to determine which classes are spawning classes. In
addition, there are some assumptions about spawnable calls. Figures 2.2, 2.3,
and 2.4 show parts of typical Satin programs using return values, exceptions,
and loops respectively.

A spawnable call can return in three ways. The spawnable method signature
can be of type void. It then returns with an empty return statement. The
second way is by returning a value using the return keyword. This happens
in Fig. 2.2 and Fig. 2.4. Finally, it can return using exceptions as shown in
Fig. 2.3.

In Satin, it is not possible to return values via parameters. Spawnable calls
have either call-by-reference or call-by-value semantics, depending on whether a
spawnable call is executed on the current node or on a different node in the grid
respectively. In the latter case, the Satin runtime serializes the arguments of the
spawnable call to send them over the network. It is undefined which mechanism
is used, and therefore, programmers cannot assume call-by-reference or call-by-
value semantics.

For example in Fig. 2.2, programmers cannot rely on storing information
in the data parameter at line 5 in order to make this information available to
the method that called this method. The calling method may be on a different
machine in the grid and in that case will not receive the information. So, to
communicate information to the calling method, programmers need to either
return values or throw exceptions.

Return values from spawnable calls are likely to be stored in local variables
to allow parallelism, but this may not be the case. Also, these local variables
may not be loaded again. In this case and the case that the spawnable call is
of type void, the sync generator needs to place a sync as last instruction of the
spawning method.

To conclude the boundaries for the sync generator, it is not an issue when
multiple syncs are placed behind each other. The system will notice during the
sync that there are no spawnable calls running and will just continue without
any problem. It is also no problem to have sync statements when no spawnable
call will be called. The overhead of these sync statements is negligible.

2.4 Implementation 19

1 int spawningMethod() {
2 if (stopCondition) return 0;
3
4 int[] results = new int[NR_SPAWNS];
5 int finalResult = 0;
6
7 for (int i = 0; i < results.length; i++) {
8 results[i] = spawningMethod();
9 }

10
11 sync();
12 for (int i = 0; i < results.length; i++) {
13 finalResult += results[i];
14 }
15
16 return finalResult;
17 }

Figure 2.4: A basic Satin program using loops.

2.4 Implementation
The sync generator analyzes Java bytecode with help of the BCEL bytecode
rewriting library [10]. It implements each of the terms spawning class, spawning
method, spawnable call, and spawnable method signature introduced in Sec. 2.2
as classes that hold all necessary information to do the analysis. The imple-
mentation also provides extensive debugging capabilities, a library to analyze
control-flow graphs, and utilities to inspect the bytecode of classes and control-
flow graphs. The implementation is written in Java and is about 4400 lines of
code including comments and whitespace.

The first subsection describes the basic algorithm of the sync generator com-
pilation pass. The second subsection discusses several analysis strategies and
gives insight into which problems need to be solved to automatically generate
sync statements.

2.4.1 Basic algorithm
The basic algorithm of the sync generator is composed of three phases: the
recording phase, the analysis phase, and the generator phase. During the record-
ing phase, the sync generator reads in all class files. Next, it finds all spawnable
method signatures from the interfaces and it then tries to create spawning classes

20 Chapter 2. Generating Synchronization Statements

for every class file. This succeeds if the class contains spawning methods.
For a spawning method, the recording phase records all spawnable calls, and

for every spawnable call, it keeps track of:

• the invoke instruction of the spawnable call

• the load instruction of the object reference on which the spawnable call is
invoked

• the indices of the local variables in which the results are stored

A spawnable call tracks multiple local variables in case an exception is thrown.
The catch block may store results in multiple local variables and subsequent
loads of these local variables require a sync statement.

When the result is stored into an array or a field of an object, the analysis
uses the local variable index of the object reference. This means that when a
spawnable call stores into a field of this, the analysis tracks the local variable
index of the this reference. In case the result is stored into a static variable,
the analysis will default to no parallelism.

The analysis phase (discussed in detail in the following subsection) takes
as input a spawning method and proposes one or more places to insert a sync
statement. The generator phase will then insert a sync statement at those
places.

2.4.2 Analysis phase
On the basis of four strategies that we employ in the analysis phase, we discuss
the problems involved in automatically generating sync statements. The anal-
ysis phase takes as input a spawning method and the spawnable calls with the
information provided by the recording phase. The analysis phase returns the
instructions in front of which sync statements need to be inserted.

Fallback strategy

The fallback strategy is used when all other analysis fails. It proposes sync
statements immediately behind the spawnable calls. This provides us guaran-
teed correctness as the resulting program is equivalent to the sequential program.
However, this also means that there is no parallelism.

2.4 Implementation 21

1 result1 = spawnableMethod();
2 result2 = spawnableMethod();
3
4 if (someCondition) {
5 sync();
6 return result1;
7 } else {
8 return result2;
9 }

Figure 2.5: Jumping over a sync() statement when someCondition evaluates to
false.

On-first-load strategy

This strategy increases parallelism by postponing the sync statement until the
first load of a variable in which one of the spawnable calls stores. In Fig. 2.2
that would be exactly where the sync is now, on line 11, because result1 is
loaded first.

Unfortunately, this places multiple syncs in case of loops. In Fig. 2.4 this
would mean that the sync statement is placed inside the loop between lines 12
and 13. It is preferable to put the sync in front of the for-loop, but it is not a
problem since multiple syncs are allowed.

The strategy fails in the example in Fig. 2.5. When someCondition evaluates
to false, there would be no sync and the result would be incorrect.

This can easily be solved by inserting sync statements in front of all loads
of local variables in which spawn results are stored. However, there is a larger
problem. The correctness is based on the assumption that loads always occur
in the instruction range behind the spawnable call. In many cases this will
be true, but there may be situations with a backward jump after a spawnable
call. The analysis has to be control-flow aware to place sync statements in
these situations. However, within basic blocks, where no control-flow occurs,
the on-first-load strategy suffices.

Control-flow-aware strategy

The problems discussed above are solved with this strategy. It succeeds in
placing the sync in front of both loads in Fig. 2.5 and, for example, just in front
of a loop that accesses the result of a spawn (Fig. 2.4).

With help of control-flow information provided by the BCEL library [10], a

22 Chapter 2. Generating Synchronization Statements

graph of basic blocks is constructed. A basic block is a sequence of instructions
with only one entry and one exit point. So, within the basic block there is no
branch instruction other than the last instruction and no instruction is targeted
by any branch instruction except the first. The basic block analysis maintains
a successor relation between the basic blocks and determines whether a basic
block is an ending basic block in the graph. This is the case if the last instruction
is a return or a throw instruction.

A path is a sequence of basic blocks, one a successor of the other. An ending
path is a path where the last basic block is an ending basic block. For every
spawnable call in the method the following analysis takes place: find all ending
paths from the spawnable call on. This includes all possible loops.

Then, for every ending path, the implementation of this strategy tries to
construct a store-to-load path for every local variable index in which the spawn-
able call stores. Note that there can be multiple local variable indices when
spawnable calls return using exceptions. A store-to-load path is a path from the
basic block of the spawnable call to a basic block with a load of one of the local
variables in which the spawnable call stores.

In this stage, all spawnable calls of the spawnable method have been an-
alyzed, and every spawnable call is associated with one or more store-to-load
paths. The implementation retrieves all these paths and removes duplicates.
For all these paths, it tries to find a basic block from the end that is not in a
loop. The result is now one or more basic blocks in which a sync needs to be
placed.

For each of these basic blocks, the on-first-load strategy finds the first load
of a variable in which one of the spawnable calls stores, and this instruction is
proposed as an instruction in front of which a sync statement should be inserted.

In the case that a spawnable method signature is of type void, results of a
spawnable call are not read, or exceptions are not handled (there is no catch
block), it is not possible to create a store-to-load path. In this case sync state-
ments will be placed at the ends of all ending paths. This means that on every
exit from the method, a sync will be placed.

The control-flow-aware strategy contains two additional optimizations:

Unnecessary sync statements It is possible that a spawning method con-
tains multiple exclusive store-to-load paths, but where the sync statement is
placed in such a way that it syncs the other paths as well. In this case it is not
necessary to insert later sync statements. An example is Fig. 2.6. There is a
path without the first read on line 7 and then with the second read on line 12,

2.4 Implementation 23

1 for (int i = 0; i < MAX_SPAWNS; i++) {
2 result[i] = spawnableMethod();
3 }
4
5 sync(); // placed by sync generator
6 for (int i = 0; i < MAX_SPAWNS; i++) {
7 readFirstTime(result[i]);
8 }
9

10 // sync left out by sync generator
11 for (int i = 0; i < MAX_SPAWNS; i++) {
12 readSecondTime(result[i]);
13 }

Figure 2.6: Multiple exclusive store-to-load paths.

which is exclusive from the path with the first read and without the second read.
Without this optimization, the sync generator would also place a sync in front
of the third for-loop on line 10. However, because there is already a sync in
front of the second for-loop, the second sync is left out.

Array stores and object putfield If a spawnable call stores into an object,
the load in a store-to-load path is based on the load of the object reference.
In many cases, the load is used to read from the object, which needs a sync
statement. However, there are situations in which the load of an object reference
is used to store into the object, for example a store into an array or to store
something in a field of an object. This does not need a sync statement.

Figure 2.7 shows a store into an array on line 8. The object reference for
result needs to be loaded. Because of this, without optimization, the sync
generator would insert a sync in front of the load. However, this optimization
recognizes that the load of the object references is used for a store into an array
or object field and places it beyond the load of the object reference on line 10.

Alias-aware strategy

The previous strategy places sync statements optimally in many cases, but the
analysis is incorrect when aliases to object references are loaded instead of the
original object references. Figure 2.8 illustrates this. On line 8 and 9, two
result objects are created, and on line 10 and 11 new references are pointing to
the same objects. The results are stored using references r1 and r2 (lines 13

24 Chapter 2. Generating Synchronization Statements

1 for (int i = 1; i < MAX_SPAWNS; i++) {
2 result[i] = spawnableMethod();
3 }
4
5 // the reference to object result is loaded,
6 // but sync is not placed here, because it
7 // is a store into an array
8 result[0] = someValue;
9

10 sync(); // by sync generator
11 for (int i = 0; i < MAX_SPAWNS; i++) {
12 read(result[i]);
13 }

Figure 2.7: Ignoring array stores.

and 14), but the results are loaded using the aliases a1 and a2 (line 16). The
sync() on line 17 is incorrectly placed.

Alias analysis is typically imprecise [11], but aliasing within a spawning
method is not so common in the Satin programming model. Therefore, we take
a pragmatic approach and try to detect situations where aliasing can occur.

Aliases introduced after the spawnable call has executed can only be intro-
duced by loading the original object reference. The implementation detects this
as a load and will insert a sync in front of the load. Therefore, aliases that are
introduced after the spawnable call has executed do not need special treatment
for providing correctness.

Aliases that are introduced before the spawnable call has executed do pose
a problem. Spawnable calls that store into parameters of the spawning method
form a special case. Aliases to these parameters could have been created before
the spawning method was called, and since the implementation has no knowledge
of these aliases, it reverts back to the fallback strategy and issues a warning.
For aliases that are created within the method, as shown in Fig. 2.8 on lines 10
and 11, are handled by the alias-detection algorithm.

The alias-detection algorithm proceeds as follows: if a spawnable call stores
into an object, it is necessary to check for aliases. If the object is a parameter of
the spawning method, the analysis stops, gives a warning, and reverts back to
the fallback strategy. Otherwise, the analysis uses the control-flow graph to find
all predecessors of the basic block that contains the spawnable call. For every
predecessor, the analysis determines whether the object is loaded or stored. If
the object is loaded, it may be introducing an alias, unless the load instruction

2.4 Implementation 25

1 class Result {
2 int v;
3 }
4
5 int spawningMethod() {
6 if (stopCondition) return 0;
7
8 Result r1 = new Result();
9 Result r2 = new Result();

10 Result a1 = r1;
11 Result a2 = r2;
12
13 r1.v = spawnableMethod();
14 r2.v = spawnableMethod();
15
16 int sum = a1.v + a2.v;
17 sync(); // incorrect, should be on line 15.
18 return sum;
19 }

Figure 2.8: Incorrect sync placement due to aliasing within a spawning method.

is used in the following cases: an array load or store, retrieving the length of an
array, or putting data into or retrieving data from a field of the object. If the
object reference is stored into, it may be introducing aliases unless it is used in
the following situations: a non-escaping constructor, a cast, creating a one- or
multi-dimensional array, or setting the reference to null.

A non-escaping constructor is a constructor of an object in which the this
reference does not escape. To verify this, the analysis checks every instruction
of the constructor. If the this reference is used, it may only be used for putting
something into a field or calling the constructor of the super-class. These super-
class constructors are verified recursively as well. The constructor of Object is
non-escaping.

As a result of this algorithm, many situations that are common in Satin
programs and that do not introduce aliases are detected, such as array creation,
object creation, and putting data into a field. As soon as the object references
are used for different reasons, and the analysis cannot guarantee that aliases
are not introduced, the sync generator reverts back to the fallback strategy and
gives a warning that aliases may have been created and that the sync placement
is likely to be sub-optimal (but still correct).

For example, in the Satin programming model, the results of a spawnable

26 Chapter 2. Generating Synchronization Statements

call are often stored into an array, for instance similar to Fig. 2.7. As the array
often needs to be created first, this means that the object reference is stored
into before the spawnable calls are executed. The alias-detection algorithm
recognizes that this does not introduce aliases.

It is also common that results are stored in a result object, similar to r1
and r2 on lines 8 and 9 of Fig. 2.8. The class is defined on line 1. The alias-
detection algorithm recognizes the creation of a new object and performs the
escape analysis on the default constructor. Also in this case, it concludes that
the statements on line 8 and 9 do not introduce aliases.

However, on line 10 and 11, the object references r1 and r2 are loaded but do
not comply to the cases outlined above. The alias-detection algorithm concludes
that aliases may have been introduced here, reverts back to the fallback strategy,
and warns for non-optimal sync placement.

To summarize: the alias-aware strategy cannot optimally place sync state-
ments when a spawnable call stores into object references, except for the cases
described above. However, it can detect possible aliasing and warn for non-
optimal sync placement. This gives the programmer the opportunity to either
restructure the code to reduce possible aliasing, or insert sync statements man-
ually.

2.5 Evaluation
The sync generator is evaluated using 35 pre-existing real-world Satin applica-
tions, amongst others a SAT solver [12], N–body simulation [7], Grammar-based
text analysis [12], Grammar induction [7], Gene sequence alignment [7], FFT,
and Game-tree search [13].

To evaluate the performance of the sync generator, the applications are
stripped from sync statements. The applications are recompiled with the Satin
compiler that runs the sync generator pass. The resulting bytecode is carefully
examined and compared to the original bytecode. The placement of sync state-
ments is compared in relation to the control-flow and variables on which the
correctness and amount of parallelism depends.

The placement is said to be optimal, if it is as late as possible in the control-
flow and allows all spawnable calls to run in parallel. The placement by the sync
generator may be later in the control-flow than the placement of the programmer
(but still correct). The sync generator may also place sync statements in such a
way that sync is called multiple times. This has a negligible performance effect.

Table 2.1 shows the results. The first column shows the name of the ap-

2.5 Evaluation 27

Table 2.1: Automatic sync statement generation in real-world Satin ap-
plications.

application optimal alias warning notes

Adaptive integration yes - programmer placed un-
necessary syncs

Awari: game tree search
with the mtdf algo-
rithm [13]

Reference version with
transposition tables

yes -

Pre-allocated transposi-
tion tables

yes -

Transposition tables as
structure of arrays

yes -

Replicated transposition
tables with Java RMI

yes -

Replicated transposition
tables with sockets

yes -

No speculative paral-
lelism

yes -

Shared objects version yes -
Binomial coefficients yes - programmer placed un-

necessary syncs
Checkers
Reference version yes -
Negamax search with

alpha-beta pruning
no no based on false depen-

dency
Fast Fourier Transform

(FFT)
yes - originally incorrect, cor-

rected by sync generator
Fifteen puzzle, iterative

deepening A* algo-
rithm

yes - programmer placed un-
necessary syncs

Gene sequence align-
ment [7]

yes -

Grammar induction [7] yes -
Grammar-based text

analysis [12]
yes -

Knapsack yes -

Continued on next page

28 Chapter 2. Generating Synchronization Statements

application optimal alias warning notes

Matrix multiplication
Standard version no yes writing into parameter
shared objects version no yes writing into parameter

N-body simulation
(Barnes-Hut) [7]

yes -

N-Queens problem
Reference version yes -
Using exceptions yes -
Using speculative paral-

lelism and aborts
yes -

Using speculative par-
allelism, aborts and
thresholding

yes -

Non-speculative version,
counting total num-
ber of solutions

yes -

2nd prize winner in the
Grids@work 2005
contest [14]

no yes writing into object refer-
ence, writing into param-
eter

Othello: game tree search
with the mtdf algo-
rithm [13]

yes -

Prime factorization yes -
Raytracer yes -
SAT solver [12] yes -
Text indexing yes -
Traveling Salesman Prob-

lem
Reference version yes -
Shared objects version yes -
Young-brothers-wait

version
yes -

VLSI cell router (Locus-
Route) [15, 16]

yes -

2.5 Evaluation 29

plication. Column two shows whether the generated syncs are inserted at an
optimal place. In the case that sync statements are not placed optimally, the
third column indicates whether the programmer receives a warning due to alias-
ing. Column four shows some additional notes.

The table does not show whether the applications are correct, because this is
true for all the applications. Correct means that the applications with automat-
ically inserted sync statements give the same result as the original applications.

The overall result is that the sync generator is able to compute an optimal
sync placement for 31 out of the 35 applications. In the application FFT, the
sync generator inserted correct sync statements that were missing in the original
incorrect application. We also tested the sync generator on 12 additional test
applications, such as a Fibonacci application and a hello world application.
Because the placement is optimal in all cases and these applications are not
real-world applications, we do not discuss these applications.

There are some applications that print the timing measurements incorrectly
with automatically inserted syncs. Programmers often measure execution time
behind the sync statement, but the sync generator postpones the sync beyond
this measurement. We do not regard this as a problem as programmers will
place the timing statements differently when relying on the sync generator.

2.5.1 Evaluation per application
To get more insight in the results, we discuss the applications separately. The
applications that have optimal sync placement and no further problems are
omitted.

Adaptive integration, Binomial coefficients, Fifteen puzzle In these
applications the programmer placed syncs where the sync generator leaves them
out. The sync generator is correct and these syncs can be safely left out. This
shows that unnecessary sync insertion is no problem.

Checkers (negamax version) This application is the only application that
does not have optimal placement and has no warning. Figure 2.9 shows the
cause. The method srch() has a variable beta_cutoff that has value 0 initially.
Depending on this value, the control-flow breaks out of the for-loop (line 19).
The programmer knows that this variable is not important for the result, only
for performance. The sync generator must regard the variable beta_cutoff as
a variable in which some value is stored inside the catch block (line 13). This

30 Chapter 2. Generating Synchronization Statements

1 void srch() throws Result {
2 int beta_cutoff = 0;
3
4 for (x = 0; x < count; x++) {
5 // sequential work
6 try {
7 spawn_srch();
8 }
9 catch (Result res) {

10 killer[p.ply] = move_list[res.choice_ix];
11 // other stuff
12 if (-res.score >= p.beta) {
13 beta_cutoff = 1;
14 abort();
15 }
16 return;
17 }
18 // sync generator’s sync
19 if (beta_cutoff != 0) break;
20 }
21 // programmer’s sync
22 }

Figure 2.9: Skeleton of method srch() in Checkers (negamax version).

means that before this variable is loaded, there should be a sync statement.
Unfortunately, this leads to sync placement right behind the try and catch blocks
of the spawnable call spawn_srch() within the for-loop on line 18, resulting in
sequential execution of this application. To compare, the programmer placed
the sync on line 21, outside of the for-loop which does result in parallelism.

FFT The sync generator inserts more statements than were inserted by the
programmer. Surprisingly, the original application was incorrect. The sync gen-
erator corrected it. This error was most probably introduced after a refactoring
of the code.

Matrix multiplication (both versions), N-Queens (contest version)
These three applications are affected by possible aliasing. The two matrix mul-
tiplication applications write into a parameter of the spawning method. There-
fore, only the first four of eight calls of the application are executed in parallel.
The N-Queens (contest version) application stores into an object that is used by

2.6 Discussion 31

1 int spawningMethod() {
2 Result result1 = createResult();
3 Result result2 = createResult();
4
5 result1.x = spawningMethod();
6 result1.doSomethingHarmless();
7
8 result2.x = spawningMethod();
9

10 //sync(); preferred place
11 return result1.x + result2.x;
12 }

Figure 2.10: Situation not optimally analyzed.

a different spawn and that is also a parameter. Because the sync generator can-
not assure that there are no aliases, syncs are placed conservatively taking away
much of the parallelism. However, the sync generator warns for non-optimal
sync placement in all three cases. This allows the programmer to restructure
the code or insert sync statements manually. Methods that already contain sync
statements are ignored by the sync generator.

2.6 Discussion
The topic of this chapter is to investigate whether sync generation can be made
automatic in such a way that the resulting program is correct, and to what
extent the sync placement is optimal. Another question is with what kinds of
analysis we can solve this problem.

The evaluation shows that all applications remain correct after the sync
generator inserted sync statements automatically. In many cases (31 out of
35 real-world applications), the automatic sync generation resulted in optimal
sync placement. Three out of 35 applications suffered from sub-optimal sync
placement because of aliasing, but the sync generator was able to warn for
this. Analyzing one version of the Checkers application, the sync generator was
unable to warn for sub-optimal sync placement, despite the fact that the sync
placement resulted in sequential code.

To obtain these results and to deal with many cases that are common in Satin
programs, it is not enough to only have an analysis that is control-flow aware.

32 Chapter 2. Generating Synchronization Statements

1 Matrix mult(Matrix a, Matrix b, Matrix c) {
2 // other code
3
4 Matrix f_00 = mult(a._00, b._00, c._00);
5 Matrix f_01 = mult(a._00, b._01, c._01);
6 Matrix f_10 = mult(a._10, b._00, c._10);
7 Matrix f_11 = mult(a._10, b._01, c._11);
8
9 c._00 = mult(a._01, b._10, f_00);

10 c._01 = mult(a._01, b._11, f_01);
11 c._10 = mult(a._11, b._10, f_10);
12 c._11 = mult(a._11, b._11, f_11);
13
14 return c;
15 }

1 WARNING: The result of the spawn at line 9
2 is stored in an object given as parameter
3 to the spawning method. This case is not
4 handled by the sync generator. The
5 resulting sync placement is likely not
6 optimal.
7 WARNING: The result of the spawn at line 10
8 is stored in an ... etc.

Figure 2.11: Matrix multiplication that stores into a parameter and the warnings
given by the sync generator.

Alias analysis is also necessary, but it is sufficient to restrict the analysis to alias-
detection with extensions that are relatively straightforward to implement, such
as analysis of array creation and an escape analysis on constructors.

The following subsection will discuss how the precision of the alias analysis
affects the overall precision. Section 2.6.2 shows what programmers can do
when they receive aliasing warnings from the sync generator. We discuss the
applicability of our analysis to Cilk programs in Sec. 2.6.3 and finally, we discuss
making Satin more general to support futures.

2.6.1 Precision of the Alias-Analysis
Although Java restricts aliasing more than languages such as C, it is still rela-
tively straightforward to write code that contains many potential aliases. There-

2.6 Discussion 33

1 Matrix mult(Matrix a, Matrix b, Matrix c) {
2 // other code
3
4 Matrix f_00 = mult(a._00, b._00, c._00);
5 Matrix f_01 = mult(a._00, b._01, c._01);
6 Matrix f_10 = mult(a._10, b._00, c._10);
7 Matrix f_11 = mult(a._10, b._01, c._11);
8
9 Matrix l_00 = mult(a._01, b._10, f_00);

10 Matrix l_01 = mult(a._01, b._11, f_01);
11 Matrix l_10 = mult(a._11, b._10, f_10);
12 Matrix l_11 = mult(a._11, b._11, f_11);
13
14 c._00 = l_00;
15 c._01 = l_01;
16 c._10 = l_10;
17 c._11 = l_11;
18
19 return c;
20 }

Figure 2.12: Matrix multiplication that is restructured to minimize aliasing
based on the warning given in Fig. 2.11.

fore, we expected that aliasing would give problems in some applications. This
chapter gives an indication to what extent this is a problem.

More precise aliasing analysis will make the complete analysis more precise.
Figure 2.10 illustrates this. Due to possible aliasing and loading of result1 on
line 6, the sync generator will not place the sync on line 10 where we want it. We
could extend the analysis to verify that no aliases are created in createResult()
on lines 2 and 3. We could also analyze doSomethingHarmless() on line 6 to
verify that it does not load variable x. However, this would make the analysis
much more complicated, as it has to extend the analysis to different methods
that may be part of other classes.

Extending the alias analysis to make it more precise, however, will not solve
the problem in the Checkers application. No matter how precise the alias-
detection is, the problem in Fig. 2.9 can never be solved. The beta_cutoff
variable is a variable that is written inside the catch block and is inserted de-
liberately by the programmer for performance reasons. However, the analysis
will never be able to determine whether this write is relevant for a correct result

34 Chapter 2. Generating Synchronization Statements

or not, which led to sequential code in the Checkers application. This case is a
good example of compilers lacking application-specific knowledge that program-
mers have. The conclusion is that there may always be applications that do not
have optimal sync placement, even if the alias-detection would be very precise.

Spawnable calls that store into objects that are parameters of the spawning
method also form a problem. Figure 2.11 shows a sketch of the problem of
Matrix multiplication. On lines 9, 10, 11, and 12, the spawnable calls store into
c, which is a parameter of the spawning method (line 1). For the subsequent
spawnable calls, the sync generator cannot verify that a or b is not an alias of
c (aliases between objects in argument lists are preserved during serialization).
Therefore, the sync generator needs to place a sync statement behind each
spawnable call from line 9 on.

This problem occurs in both of the Matrix multiplication versions and in the
N-Queens problem. The sync rewriter would be able to place sync statements
optimally in these cases as well, if the Satin programming model would be
somewhat more restrictive. If the Satin programming model would disallow
aliases between parameters of spawnable calls, which is not the case, these
applications would also have optimal sync placement.

2.6.2 Improving Sync Generation with Programmer Sup-
port

Although aliasing restricted the parallelism in three cases, the alias-detection
algorithm was able to give very precise warnings about the problems in the
code. Programmers then have the choice to restructure the code to eliminate
the aliasing problems or to insert sync statements manually. In the latter case,
the sync generator will recognize that the spawning method already contains
sync statements and will move on with the analysis.

Figure 2.11 shows the warnings that are given by the sync generator in the
Matrix multiplication programs. The warnings indicate that on lines 9, 10, 11,
and 12 the spawnable calls store into an object that is a parameter (c in this
case).

Programmers can restructure the code with help of these warnings. Fig-
ure 2.12 shows a possible solution. Instead of storing the results of spawnable
calls immediately in a parameter, programmers can decide to store the results
in local variables. Using this simple technique, the sync generator is able to
place sync statements optimally.

2.6 Discussion 35

1 cilk void bucket_sort(float *array, int left, int right) {
2
3 if (right - left >= BASE) {
4 int mid = (left + right) / 2;
5 spawn bucket_sort(array, left, mid);
6 spawn bucket_sort(array, mid + 1, right);
7 }
8 ...

Figure 2.13: Part of a Cilk bucket sort test application in which parameters are
used to return data.

2.6.3 Cilk

In principle, the analysis we describe in this chapter can be used to analyze
Cilk [9] programs as well. However, due to the use of C as a base language,
the implementation needs to take into account unrestricted aliasing (aliasing to
variables of basic types, casting) and global variables which are more common
on shared memory machines. In addition, our analysis operates on bytecode
and does not need the source code. A similar binary rewriting approach would
be difficult with Cilk code.

Comparing Satin applications with Cilk applications and imposing a similar
analysis on the Cilk applications reveals that the Satin programming model has
an important assumption that helps the analysis. Figure 2.13 shows a piece of
a bucket sorting test application from the Cilk distribution. Lines 5 and 6 show
two spawnable calls. The bucket_sort function is of type void which means
that the result is returned via the parameter array (line 1).

A similar approach is not possible in Satin, because the array may be se-
rialized to be sent to other nodes in the grid. If we would apply the analysis
proposed in this chapter on this Cilk application, the analysis would not be
able to determine whether the result that is returned in the array parameter
in line 5 is needed in the spawnable call in line 6. It would therefore place a
sync behind both spawnable calls, which would result in sequential execution.
Therefore, applying the same analysis on Cilk programs would be much more
difficult, because it would need a very detailed view on aliasing relationships
between variables. Due to the unrestricted aliasing in Cilk which would make
such a detailed view even harder, the analysis would probably result in less
impressive results than with Satin programs.

36 Chapter 2. Generating Synchronization Statements

2.6.4 Futures

The sync statement in Satin is a local barrier that waits for all spawnable calls to
be completed. However, for instance the Matrix multiplication application could
benefit from syncing on a specific spawn. To make the first part of Fig. 2.12
correct, there needs to be a sync statement on line 8 that waits for all four
spawnable calls on the preceding lines. However, it might be the case that the
first spawnable call on line 4 finishes first, which would mean that the spawnable
call on line 9 could be started because it depends on f_00. If Satin would
provide a means to sync specifically on the spawnable call on line 4, it might
give a slightly more efficient execution. This mechanism would then resemble
futures [17]. This might make Satin more general and perhaps more powerful,
but the recursive tasks that are now used provide the basis for creating a task
hierarchy that takes into account data locality. The hierarchical nature of grids
allows an efficient mapping of the hierarchical Satin programs to grids [18].
Satin might lose this ability if we would make the programming model more
general with futures.

Although we consider extending Satin with sync statements for specific
spawnable calls future work, we have our reservations because in our expe-
rience, it is precisely the restrictions on the Satin programming model that
makes the model successful. This is underlined by the efficient execution of
Satin applications on grids [18] but also by our sync generation analysis that
is in part possible because of the restrictions of the Satin programming model.
Moreover, if we would restrict the Satin programming model even more by dis-
allowing aliases in parameter lists, we would be able to insert synchronization
statements optimally in 34 out of 35 real-world applications.

Overall, the main contribution of this chapter is that it provides a thorough
understanding of the problems that involve generating synchronization state-
ments automatically. Moreover, we provide a real implementation in the form
of a compiler pass for the Satin compiler that makes creating parallel divide-
and-conquer programs for grids even more effortless than before.

2.7 Programming model design considerations

There are several issues that stand out in this chapter and should be considered
when designing a parallel programming model.

2.8 Related Work 37

Aliasing Firstly, aliasing has severe ramifications for analysis of programs.
This chapter needs aliasing analysis and from the comparison with Cilk in
Sec. 2.6.3 it is clear that unrestricted aliasing has impact on the feasibility
of the analysis.

Restrictions Secondly, restrictions on the language have a positive effect on
the feasibility of the analysis. Our analysis is helped by the fact that Java
restricts aliasing more than Cilk and also by the fact that Satin is more restricted
than Java in returning values through parameters. Additionally, if Satin would
have restrictions on aliasing between parameters in spawnable calls, the analysis
in this chapter would perform better. Finally, the analysis is also possible
because Satin has all input classes available. This would allow us to do even
more precise alias analysis.

Adapting to compilers Section 2.6.2 touches an interesting issue. It explains
a strategy to adapt the program such that a compiler understands the program
better. This sounds like a good idea, but it also shows a slippery slope. The
question becomes what the platform is that the programmer is programming for.
Are programmers programming hardware or are they programming a compiler?
Do the programmers have to know the inner workings of the compiler to adapt
their program to the compiler? This is an important design consideration for
programming models.

Compiler/programmer interaction Finally, Sec. 2.6.1 shows that compil-
ers need to be conservative to guarantee correctness. The compiler lacks a small
piece of information, namely that the variable beta_cutoff is not important
for correctness. However, programmers typically have this piece of information,
this application knowledge. On the other hand, the evaluation showed that pro-
grammers are not infallible and make mistakes. Our conclusion is that parallel
applications may benefit from a compiler and programmer that interact more
closely together and use each other strengths.

2.8 Related Work
Satin [7] is closely related to Cilk by Blumofe et al. [9]. Both systems provide a
divide-and-conquer programming model with asynchronous spawnable calls and
a local barrier synchronization primitive called sync. Cilk differs from Satin in
the base language. Where Cilk extends C and C++ with keywords such as

38 Chapter 2. Generating Synchronization Statements

spawn and sync, Satin uses the Java type and class systems to make similar
annotations. As a result, a Satin program is still a valid Java program, whereas
a Cilk program is not a valid C or C++ program. Another difference is that Cilk
targets multi-core architectures, whereas Satin targets execution on clusters and
grids using the Ibis system [8] that provides communication primitives to nodes
on a grid.

We are unaware of any previous work on trying to make sync statements
implicit in a divide-and-conquer model. Implicit sync statements show resem-
blance with implicit futures, introduced by Baker and Hewitt [17]. A future
evaluates an expression in a separate thread or process. The original process
can perform other work and blocks when it tries to use the expression of the
future until the result is computed. Flow Java [19] is a variant of Java that
implements futures through the use of single assignment variables. The differ-
ence between implicit syncs and implicit futures is that a future can block on a
specific spawn, whereas a sync blocks for all spawns in the method.

The sync generator uses several well known techniques to decide where to
place sync statements. We are interested in which variables a spawnable call
stores and where these variables are loaded again. The analysis can be incorrect
due to aliasing of variables before a spawnable call is called. We perform sim-
ple alias-detection, but the analysis could be made more precise through more
advanced alias analysis, for example with help of the Spark framework [20]. In
the context of Java, a type-based alias analysis would be a good choice [21],
opposed to analysis that can handle unlimited pointer access [22]. In addition,
we perform a simple escape analysis that can also be made more precise, for
example by implementing work of Whaley and Rinard [23] or Blanchet [24].

2.9 Conclusion
Satin provides a divide-and-conquer programming model to execute applica-
tions efficiently on clouds and grids. Programmers annotate recursive calls to
be spawnable so that these calls are executed in parallel on the grid. Sync
statements indicate where the system has to block to wait for the result. In this
chapter we discussed a sync generator that automatically generates these sync
statements.

We conclude that it is possible to automatically insert sync statements in
Satin code in such a way that every resulting program is correct. Correctness
in this sense is that the resulting program that is run on a grid will deliver the
same result as the sequential version. The fact that we provide correctness is

2.9 Conclusion 39

well illustrated by a previously incorrect application (FFT) that was corrected
by the sync generator.

In many cases the sync generator will be able to place sync statements opti-
mally. An optimal place in this sense is that as many independent asynchronous
spawnable calls as possible are called within a spawning method. To perform
the analysis, the sync generator needs to be control-flow and alias aware.

We evaluated the sync generator using 35 pre-existing real-world applications
and an additional 12 test applications. The sync generator finds an optimal place
in all tests and in 31 out of 35 real-world applications. For three applications, the
sync generator does not place syncs optimally due to possible aliasing. However,
these applications still have some parallelism and the sync generator also warns
for non-optimal placement. One application is completely sequentialized by
the sync generator due to a false dependency, deliberately introduced by the
programmer, that does not affect the result of the computation but only the
performance. However, no analyzer can dismiss this false dependency and place
sync statements in such a way that more parallelism is enabled.

The current analysis could be made more precise by extending the analysis
to methods that are called from the spawning method. However, this analysis
also cannot disregard false dependencies as above.

Although this chapter is not about many-core hardware, it still led to valu-
able considerations for the design of MCL and Cashmere and as such gives
answers to the sub-question:

1. What are important design considerations for parallel programming mod-
els and their compiler analyses?

Aliasing is an important issue and restrictions in the language may be beneficial
to limit these kinds of problems. This chapter also shows that compilers can
become the platform: programmers adapt their programs so that the compiler
can do proper analysis, whereas for many-cores it may be preferable to target
actual hardware instead of the compiler. Finally, this chapter shows that com-
pilers have to be conservative and therefore miss out on optimizations, while
programmers having better application knowledge can make better decisions.

40 Chapter 2. Generating Synchronization Statements

Chapter 3

Stepwise-refinement for
performance: a
methodology for many-core
programming

Many-core hardware is targeted specifically at obtaining high performance, but
reaching high performance is often challenging because hardware-specific details
have to be taken into account. Although there are many programming systems
that try to alleviate many-core programming, some providing a high-level lan-
guage, others providing a low-level language for control, none of these systems
have a clear and systematic methodology as foundation.

Based on the design considerations we found in Chapter 2, we propose
stepwise-refinement for performance: a novel, clear, and structured method-
ology for obtaining high performance on many-cores. We present a system that
supports this methodology and offers multiple levels of abstraction to provide
programmers a trade-off between high-level and low-level programming. The
system contains a compiler that gives programmers detailed performance feed-
back. We evaluate our methodology with several widely varying compute kernels
on two different many-core architectures: a GPU and the Xeon Phi. We show
that our methodology gives insight in the performance and that in almost all
cases we gain a substantial performance improvement using our methodology.

42 Chapter 3. Stepwise-refinement for performance

3.1 Introduction
The high performance that many-cores offer makes them a compelling target
for the growing performance needs in industry and science. However, obtain-
ing high performance – the main purpose of many-cores – is challenging as
hardware-specific details need to be taken into account, such as multiple levels
of parallelism, explicit fast memories, and memory access patterns.

Languages such as CUDA and OpenCL offer much control over hardware-
specific details. However, managing all these hardware-specific details to obtain
high-performance is a complex task. Manually optimized programs are usually
difficult to read and do often not portray well why they obtain high performance.

A common approach to simplify many-core programming is to raise the level
of abstraction. However, whereas a high abstraction-level simplifies program-
ming in general purpose computing where performance is less critical, in many-
core computing it often results in hiding the very details that are important for
performance.

In our view, this tension between control over hardware-specific details and
raising the level of abstraction is not supported by a proper methodology in
current work. In this chapter we present a methodology that we call stepwise-
refinement for performance. This methodology presents programmers a struc-
tured approach in which they can start on a high-level and can then, if they
desire, move on to lower levels of abstraction that expose more hardware details.
We can illustrate this with a quote from Alan J. Perlis: “A programming lan-
guage is low-level when its programs require attention to the irrelevant.” In our
experience, the difficult issue in many-core programming is deciding which de-
tails are relevant for performance. Our methodology aims to assist programmers
with this decision.

Inspired by the observations made in Chapter 2, we made the interaction
between the compiler and programmer to obtain high performance a crucial as-
pect of the methodology. The compiler is augmented with hardware knowledge
with varying levels of detail resulting in multiple levels of abstraction. Using
this hardware knowledge, the compiler assists the programmer by providing de-
tailed performance feedback. The goal of our methodology is to structure the
optimization process, give programmers a trade-off between high-level and low-
level programming, and give programmers understanding of the performance
they obtain.

We evaluate our methodology with Many-Core Levels (MCL), a system that
supports multiple abstraction-levels for multiple many-core architectures. Our
system has knowledge of many-core hardware by means of hardware descrip-

3.1 Introduction 43

tions encoded in our Hardware Description Language (HDL). Compute kernels
are expressed in Many-Core Programming Language (MCPL) that makes the
mapping between algorithm and hardware description explicit. Our compiler
can generate code for each level of abstraction and combines the knowledge of
the program and the hardware to provide detailed performance feedback to the
programmer who can then manually transform the program.

This approach was inspired by the conclusions from Chapter 2 and com-
bines the strengths of both the compiler and the programmer. On the one
hand, programmers gain insight in the compiler, remain in control, and can
use their application knowledge to transform the program. On the other hand,
the compiler does not have to be as conservative in providing feedback as an
automatically optimizing compiler has to be.

To show that our approach is effective, we implemented several widely vary-
ing and well-known compute kernels in MCL for two very different many-core
architectures: an NVIDIA GPU and Intel’s Xeon Phi. In almost all cases our
approach results in substantial performance improvements over our highest-
level code. We show that programmers in cooperation with our compiler have
enough control to obtain high performance and gain an understanding of the
performance during the stepwise-refinement process that leads the programmer
through multiple abstraction-levels.

To summarize, this chapter presents the following contributions:

• A clear methodology for optimizing many-core programs,

• our system MCL that implements this methodology, released as open
source [25],

• an evaluation of the methodology with several widely different many-core
programs on two different many-core architectures,

• several implementation techniques that exploit the strong relation between
hardware description and program, and

• answers to research questions 2, 3, and 4 of this thesis.

Section 3.2 elaborates how various many-core programming approaches re-
late to MCL. In Sec. 3.3 we introduce our methodology stepwise-refinement for
performance. Section 3.4 gives an overview of Many-Core Levels and how our
system implements our methodology. In Sec. 3.5 we give a detailed example of
how the process of stepwise-refinement for performance takes place. Section 3.6
discusses several of the implementation techniques of our system. Section 3.7

44 Chapter 3. Stepwise-refinement for performance

Table 3.1: Comparison of several programming approaches.
approach control portability understanding high-level
high-level programming - + - +
separation of concerns - + - +
tuning cycle approach + - + -
MCL + (choice) + (choice)

evaluates our techniques for various well-known compute kernels. We conclude
the chapter with a discussion and conclusion.

3.2 Related work
The challenges in many-core programming are widely recognized and there are
many approaches that try to alleviate it. This following section discusses the
current status of programming many-cores and identifies issues (summarized in
Table 3.1) that we try to address in our work. We distinguish three programming
approaches: high-level programming, separation of concerns, and a tuning cycle
approach. Section 3.2.2 discusses systems that influenced MCL.

3.2.1 Programming Many-cores
High-level programming The fact that low-level many-core programming
is difficult is a well-recognized problem and several systems raise the level of
abstraction to make many-core programming more accessible. Often, these
systems center around a main abstraction, such as streaming [26, 27], Bulk-
Synchronous Parallelism [28, 29], Nested Data-Parallelism [30, 31, 32, 33], divide-
and-conquer [34], or powerful arrays [35, 36, 37, 38, 39, 40, 41].

Automatic optimization and algorithmic skeletons are two means to obtain
performance from high-level programs. Automatic optimization relies on the
premise that high performance can be obtained in all cases. This is difficult
to realize in practice, because compilers have to work in the general case, have
no application knowledge, and have to be conservative (e.g. assume aliasing).
In general-purpose computing, since the focus is not on high-performance, sub-
optimal performance may not be a problem, but it is an issue in many-core
programming because obtaining high performance is the main goal.

3.2 Related work 45

There are two examples of automatic optimizers that optimize naively writ-
ten GPU kernels [42, 43]. Although this is valuable work, a drawback of auto-
matic optimizers is that the optimization knowledge is contained in the compiler
and cannot be reused by programmers for applications that are less amenable
to automatic optimization.

A second means to obtain performance from a high-level programs is to
provide a programming model in which programmers express their algorithms
in terms of algorithmic skeletons [44, 45, 46]. The skeletons are often manually
implemented and optimized. These skeleton-based programming models rely
on programmer insight to select the right parallel patterns for the application.
Additionally, performance often relies on the composition of these algorithmic
skeletons, which is a challenging transformation [47, 48], but has been applied
to GPU programming [49].

Although raising the level of abstraction often provides a cleaner program-
ming model and helps to achieve (non-performance) portability, it also means
that hardware-specific details are hidden that may be necessary for obtaining
high performance. This makes understanding why a particular program has a
particular performance more difficult and in case an application performs less
than expected, programmers have fewer means to adapt the code to gain more
performance.

Separation of concerns Another approach is based on separation of con-
cerns. Delite [50] and the work by Cartey et al. [51] provide frameworks for
building DSLs (Domain-Specific Languages) on top of a performance library to
separate the concerns between domain-experts and performance-experts. This
is an interesting approach that can be tailored to the needs of domain-experts.
However, building DSLs is a difficult task, especially when two different goals
need to be addressed, namely making them expressive for the domain-experts
and making the generated code amenable to optimizations. Besides, a DSL pro-
vides the domain-experts, the ones requiring performance, no understanding of
and no control over the performance. Additionally, the performance depends on
good communication between the performance-experts and the domain-experts.

Tuning cycle approach The tuning cycle approach is an iterative process
that usually consists of the following steps: evaluate the performance of an
application, analyze the gathered results, and refactor the code to increase the
performance. This approach can be applied to directive based systems such as
OpenACC [52, 53], becoming an industry standard, and others [54, 55, 56, 57].

46 Chapter 3. Stepwise-refinement for performance

In each iteration more detailed directives can be inserted to attempt to increase
the performance. However, this approach usually suits low-level languages such
as CUDA [58] or OpenCL [59] better because these languages offer programmers
more control in restructuring the program to increase the performance.

The first step in this process, evaluating the performance of the application,
can be done in several ways. The performance can be measured using profilers
or it can be estimated using performance models. Lopez-Novoa et al. conducted
an excellent survey on performance modeling for many-cores [60].

The second step, analyzing the results, can be very challenging. Profilers
usually give feedback in the form of statistics about the code, which makes it
difficult to understand how to act on the feedback. Some tools, however, help
programmers to interpret the result. PerfExpert [61], for instance, does sup-
port many-core architectures but only gives feedback about which code-parts of
an application could run well on a Xeon Phi or GPU [62, 63]. It is not capa-
ble of optimizing those kernels taking into account non-standard architectural
details, such as warp execution or scratchpad memories. PerfExpert operates
by interpreting the results from measurements, matching it against rules about
the architecture to find a bottleneck in the program and recommends a list of
optimizations, complete with code patterns that may solve the bottleneck.

In the final step, the code is refactored to increase the performance. Often
this is done manually by the programmer, but PerfExpert can in some cases
also apply the optimizations automatically [64].

This approach is performed on the lowest level of abstraction, which makes
the applied optimizations not portable to other architectures. This is a major
disadvantage considering the rapid evolution of many-core hardware. In addi-
tion, optimizations in low-level languages make the code difficult to understand.

MCL Table 3.1 presents an overview of the discussed programming approaches
in relation to our work. In comparison to high-level approaches and separation
of concerns, MCL also provides a high-level of abstraction, but offers program-
mers control by allowing lower levels of abstraction, although this diminishes
the portability. MCL is specifically targeted at providing programmers under-
standing of the performance they obtain and MCL offers a choice in the level of
abstraction to work on.

In relation to the tuning cycle approach, tuning is often performed only to the
lowest level of abstraction, where programmers have much control. This makes
the optimizations not portable to other many-core architectures. In contrast,
MCL allows to write optimizations on each level of abstraction, making the

3.2 Related work 47

optimization available to all lower levels of abstraction in the sub-tree of the
hardware-description hierarchy (Sec. 3.5 gives an example of this).

Additionally, low-level languages do often not provide enough language fea-
tures to express optimizations clearly in relation to the underlying hardware.
For example, CUDA and OpenCL have explicit constructs for low-level hardware
features, such as accessing fast on-chip memory, but other important hardware
features remain implicit, such as parallel banks in accessing memory, or GPU
threads that execute in warps, a pipelined manner to overcome memory latency.

Since not all hardware features are explicitly part of these languages but are
important for performance, in our experience, optimizing programs often leads
to code that does not explain well why certain optimization decisions were made.
Examples are data structures with a non-standard layout and loops that iterate
in a particular manner for improved memory access. This makes implementing
suggestions from analysis tools difficult because programmers cannot relate the
code to the underlying hardware. MCL provides more means to express the
optimizations in relation to the hardware, because hardware descriptions in
MCL are tightly coupled to the programming language.

Furthermore, because optimizations are applied on multiple levels of ab-
straction, the optimizations are also traceable. It is clear which optimizations
have been applied for which hardware and it is also clear on which feedback the
optimizations are based.

MCL mainly relies on static information encoded in the program and hard-
ware descriptions, which allows a fast development cycle for experimentation.
In contrast, profilers need several runs to record data or runs with instrumented
code for tools such as PerfExpert, which results in a longer development cycle.
However, since run-time information is more accurate than static information,
we consider this type of analysis as very valuable and in alignment with MCL.
However, in MCL run-time analysis is typically performed at the lowest-level of
abstraction where static information is no longer precise enough and where the
longer development cycle can be traded-off with performance.

In summary (as can be seen from Table 3.1), MCL is a different and novel
choice in the design space of programming approaches for accelerators, favoring
‘control’ and ‘understanding’ by the programmer, and allowing the programmer
the freedom to work on different levels of abstraction and portability.

3.2.2 Other related Work
There are several approaches from which our work draws inspiration. NVIDIA’s
Thrust library [65] provides a C++ Standard Template Library-like interface

48 Chapter 3. Stepwise-refinement for performance

with a vector data-structure. Thrust is tightly integrated with CUDA which
makes it possible to replace performance critical Thrust code with specialized
CUDA functions. This programming model advocates a methodology, albeit
a simple one: prototype with Thrust, rewrite the hot-spots by falling back to
CUDA and optimize these kernels.

Sequoia introduces tasks that recursively call each other as main program-
ming abstraction [66]. It also provides user-defined descriptions of memory
hierarchies that define how different task variants are mapped to the memory
hierarchy. In comparison to Sequoia, our system generalizes the memory hierar-
chy descriptions to hardware descriptions, does not depend on task abstractions,
provides a more direct mapping between algorithm and hardware than Sequoia
does, and offers multiple levels of abstraction.

MCL’s hardware description language is inspired by Aspen, a performance
modeling language [67]. Aspen describes high-level properties of compute ker-
nels with hardware of cluster computers. In MCL we focus on describing many-
core hardware instead of cluster computers and we do this on a lower level. Our
approach also differs in that we do not describe properties of compute kernels,
but instead explicitly define the mapping between the algorithm and hardware
constructs.

In general our hardware descriptions could be seen as models of the hardware
that have certain performance characteristics. In this sense our work relates
to performance modeling. In the context of distributed systems, Ammar [68]
worked on hierarchical performance models with multiple abstraction-levels. At
the highest level they describe the performance characteristics and requirements
of a distributed system at the application level. At lower levels, the performance
characteristics of interacting software components are modeled with increasing
precision, resulting in an accurate performance model. While Ammar’s hierar-
chy models performance characteristics of software components, our hierarchy
entails multiple abstractions for hardware.

3.3 Stepwise-refinement for Performance
From the previous section we can distill several requirements for many-core
programming. First, there is a need for low-level programming languages that
provide programmers control over the hardware. Solutions differ in how explicit
this control is in the language. Second, architectures of many-cores change
rapidly which makes portability an important issue. A third important aspect
is understanding performance. Tools such as profilers and PerfExpert try to

3.3 Stepwise-refinement for Performance 49

fill this gap. Furthermore, there is also a need for high-level programming that
abstracts away hardware-details. However, this comes at the cost of loss of
control. Finally, none of the approaches has a good solution for handling the
tension between control over hardware and raising the level of abstraction, and
shows support for the optimization process over more than one abstraction level.
This is an important point because optimizing is a laborious process which often
leads to code that is difficult to read and maintain. Often, it is also unclear why
exactly these codes perform as well as they do.

In this section we propose the stepwise-refinement for performance method-
ology, a structured approach that combines all of these requirements to help
the programmer to obtain high performance. For our methodology, we assume
an existing application with computational hot-spots or kernels that are to be
ported to a many-core device. Such a computational kernel is the starting point
of our methodology.

3.3.1 Philosophy
Our stepwise-refinement for performance methodology addresses the tension be-
tween low-level programming that offers control and raising the level of abstrac-
tion. It gives programmers a trade-off between high-level programming which is
good for portability and code maintainability, and low-level programming that
gives programmers a clear, explicit, and well-defined interface to hardware fea-
tures that are necessary for performance. To summarize, stepwise-refinement
for performance provides programmers control and understanding on levels of
abstraction they can choose themselves.

Inspired by the observations in Chapter 2, our approach relies on cooperation
between the compiler and programmer, unlike relying on black-box compilers
that automatically optimize. The compiler is extended with knowledge about
many-core architectures and combines this with the knowledge about the pro-
gram to give detailed performance feedback. The programmer acts on the feed-
back and rewrites the program to obtain higher performance. This approach
combines the strengths of both the compiler and programmer. The compiler
does not have to be as conservative in providing feedback as it would normally
be in applying transformations, whereas the programmer has application knowl-
edge that the compiler lacks and gains an understanding of the performance of
the program.

In each stage during the iterative process that our methodology advocates,
a part of a program is rewritten to incorporate the feedback from the compiler.
The different versions of the program that arise as a result of this process in

50 Chapter 3. Stepwise-refinement for performance

optimization
(inner process)

translate to
lower level

hardware
description

manually
rewrite

compiler
feedback

lower
abstraction

level?
optimize?

hardware
description

kernel

kernel

yes yes

no no

select abstraction-level manually optimize

Figure 3.1: A diagram of the iterative processes. At the left is the outer process,
at the right the inner process.

effect capture the reasoning and knowledge about the optimizations.

3.3.2 Methodology
The stepwise-refinement for performance methodology contains two intertwined
iterative processes where in each stage a program is rewritten to incorporate
feedback from the compiler. The outer process centers around moving from a
high abstraction-level to a lower abstraction-level. Hardware descriptions de-
fined with different levels of detail effectively create multiple levels of abstrac-
tion.

Figure 3.1 shows that the outer process at the left has as input a hardware
description and a computational kernel. With these inputs, the iterative in-
ner process is started (discussed below). After this process has finished, the
programmer has to decide whether to move to a lower level of abstraction to
introduce more hardware details, or to stop, for example to remain portable
among architectures.

If a programmer decides to move to a lower level of abstraction, the kernel
has to be translated to a version that adheres to the rules of the lower-level
hardware description. This process may be automated, but does not necessarily
result in a kernel that has higher performance. It merely results in a kernel

3.4 Design of MCL 51

that represents the more detailed hardware features defined in the lower-level
hardware description. The outer process restarts with this new kernel and its
lower-level hardware description that serve as input for the inner process. If a
programmer decides to not move to a lower level of abstraction, the outer process
stops. The resulting kernel can now be further processed to be incorporated in
an application.

The outer process gives programmers a trade-off in the level of abstraction
for the inner process that focuses on optimizing the kernel. For example, there
could be a hardware description that defines a generic GPU independent of ven-
dor. The hardware description at the next level of abstraction could introduce
hardware features that are vendor-specific. At this point, the programmer may
decide to stop at this level to remain portable between GPU vendors.

The inner process at the right in Fig. 3.1 has as input a hardware descrip-
tion and a kernel and focuses on optimizing the kernel at the current level of
abstraction. Applying the lessons learned from Chapter 2, instead of automat-
ically optimizing the code, our approach gives the compiler a different role,
namely providing the programmers with detailed performance feedback based
on analysis of the kernel and the hardware description.

The role of the programmer is to decide whether the feedback is useful and
can lead to better performance. If this is the case, the programmer manu-
ally rewrites the kernel to incorporate the feedback from the compiler. This
rewritten kernel can then be reevaluated by the compiler to generate additional
feedback. If the programmer decides that no further optimizations are necessary
at this specific level of abstraction, the inner process stops after which the outer
process continues giving the programmer an option to move to lower levels of
abstraction.

3.4 Design of MCL
The previous section discussed our methodology without any implementation
details. This section introduces Many-Core Levels (MCL) and discusses our
choices in implementing the stepwise-refinement for performance methodology.
MCL has been released as open source [25].

There are several consequences for programming systems that support the
stepwise-refinement for performance methodology. First of all, compilers usually
have a view of how hardware behaves, but to support this methodology, the
compiler has to be able to interpret hardware descriptions with varying levels
of detail to support the multiple abstraction-levels. Second, the compiler has to

52 Chapter 3. Stepwise-refinement for performance

combine the knowledge from these hardware descriptions with the knowledge
about the program to generate feedback for the programmer.

There are also consequences for the programming language. It has to show
how the program is mapped to the hardware, so that the compiler can reason
about the mapping. Moreover, as we have seen in Chapter 2, the programming
language may have to be more restricted to allow the compiler to give feedback.
Finally, for the feedback to be useful, it has to be closely related to the code
that the programmer wrote and not to already optimized machine code, as is
traditionally done.

In MCL, we consider a program as a mapping of an algorithm to hardware.
Since hardware-specific details are so important for performance, we make the
mapping explicit in the programming model. Therefore, MCL introduces hard-
ware descriptions in the programming model. The hardware descriptions are
user-defined and can describe hardware with different levels of detail.

Usually, a programming language exposes a machine model to the program-
mer through the abstractions it defines. For example, OpenCL exposes the ab-
stractions of local memory and global memory to the programmer even though
those memories may be represented by the same physical memory (in case of
CPUs) or separate physical memories (usually the case in GPUs). So, the pro-
gramming language defines abstractions that may or may not have their physical
counterparts in hardware. In MCL we take a different approach: it allows us
to describe the physical entities on a many-core device to create programming
abstractions from them, such that programmers can map their algorithm to the
physical device.

We can define two roles for our system: Programmers are the users of the
system writing code in the programming language. The other role describes
hardware in the hardware description language, ideally fulfilled by hardware
vendors. However, the hardware descriptions can be adjusted by programmers
to define new abstraction-levels, for example if programmers want a hardware
description that focuses mainly on the memory hierarchy when working on data-
intensive applications. MCL provides a library of predefined hardware descrip-
tions. Before describing the hardware description language and the program-
ming language, we first provide an overview of the interaction between the two
languages.

3.4.1 Overview
MCL is solely targeted at writing computational kernels for many-core hardware.
These kernels are often just a small part of a larger application. Since many-core

3.4 Design of MCL 53

1 perfect void matmul(int n, int m, int p,
2 main float[n,m] c,
3 main float[n,p] a, main float[p,m] b) {
4
5 foreach (int i in n threads) {
6 foreach (int j in m threads) {
7 float sum = 0.0;
8 for (int k = 0; k < p; k++) {
9 sum += a[i,k] * b[k,j];

10 }
11 c[i,j] += sum;
12 } } }

Figure 3.2: A matrix multiplication program for hardware description perfect.

hardware is highly parallel with complicated memory hierarchies, programmers
need programming abstractions to control these hardware features. In Many-
Core Programming Language (MCPL) parallelism is expressed in terms of units
of parallelism such as threads or vectors and it is possible to target specific
memories by declaring variables to reside in specific memory spaces.

Figure 3.2 shows a matrix multiplication program written in MCPL. The
foreach-loops on line 5 and 6 express parallelism in terms of parallelism units
threads. The variables a, b, and c are declared to reside in memory space main
(line 2 and 3). The units of parallelism and the memory-spaces are defined in
the hardware description.

For each compute kernel, to select a level of abstraction, programmers indi-
cate which specific hardware description they target. The function in Fig. 3.2
targets hardware description perfect (line 1). The targeted hardware descrip-
tion governs which memory spaces and units of parallelism are available to the
programmer for a specific compute kernel. MCPL is explained in more detail in
Sec. 3.4.3 and we refer to App. A.2 for a complete description of the syntax.

A hardware description written in HDL has two distinct sections. The first
section is called the parallelism hierarchy and defines the programming abstrac-
tions that are available to the programmer in terms of units of parallelism and
memory spaces. Lines 1 to 9 in Fig. 3.3 show that a memory space main is
defined (line 2) and that a par_group threads is defined (line 4) that can be
used in foreach-statements.

The second part of the hardware descriptions defines the physical device.
The main components are execution units, memories, and interconnects that
connect the execution units and memories. The memories are associated with

54 Chapter 3. Stepwise-refinement for performance

1 parallelism hierarchy {
2 memory_space main {
3 }
4 par_group threads {
5 nr_units = unlimited;
6 par_unit thread {
7 memory_space reg {
8 default;
9 } } } }

10
11 device perfect {
12 mem;
13 ic;
14 cores;
15 }

16 memory mem {
17 space(main);
18 capacity = unlimited B;
19 }
20 execution_group cores {
21 nr_units = unlimited;
22 execution_unit core {
23 slots(thread, 1);
24 } }
25 interconnect ic {
26 connects(mem, cores.core[*]);
27 latency = 1 cycle;
28 bandwidth = unlimited bit/s;
29 }
30 ...

Figure 3.3: Part of the hardware description perfect.

the memory spaces and the execution units with the units of parallelism. The
next section explains HDL in greater detail, while we refer to App. A.1 for a
more thorough specification.

3.4.2 Hardware Description Language HDL
The main purpose of HDL is to describe hardware features, but only those
that are important for performance. Hardware descriptions may vary in the
level of detail to define the abstraction-levels. Another goal is to formalize the
knowledge that is often informally described in programming guides to make it
accessible to both the programmer and the compiler, and to relate the hardware
features with the program.

As shown in Fig. 3.4, hardware descriptions are organized in a hierarchy. The
root is hardware description perfect that describes idealized many-core hardware
and provides the highest level of abstraction for programmers. This description
is provided in MCL and cannot be modified. Each lower level describes hardware
in more detail and extends a parent resulting in the hierarchy.

Figure 3.3 shows a part of hardware description perfect. We first present an
overview of what the hardware description expresses and then discuss the de-
tails. Hardware description perfect provides the programmer a flat parallelism
hierarchy with only two memory spaces to consider. The memory mem is re-
sponsible for memory_space main (line 17) and has unlimited capacity (line 18)
device perfect has an unlimited amount of cores (line 21-24) and each core

3.4 Design of MCL 55

perfect

mic gpu

nvidia amd

fermi

xeon phi

kepler

accelerator

Figure 3.4: An example of a possible hierarchy of hardware descriptions. All
hardware descriptions except perfect are user-defined.

can run 1 thread (line 23). The memory is connected with all cores (line 26)
and has 1 cycle latency (line 27) and unlimited bandwidth (line 28).

In HDL, the main syntactic construct to express hardware properties is a
block with syntax:

Block = BlockKeyword Identifier "{" Statement* "}"
Statement = PropertyStatement

| Block
BlockKeyword = "parallelism" | "memory_space"

| "par_unit" | ...

Hardware description perfect shows several of those blocks, for example on
lines 1, 11, 16, 20, and 25. The semantics of a block are primarily deter-
mined by the specific BlockKeyword, such as parallelism, memory_space, or
interconnect. Blocks contain a list of Statements that define some properties
of the Block. A Statement can be a PropertyStatement or a nested Block. HDL
defines precisely what kind of properties and nestings of Blocks are allowed.
For example a parallelism block must have a memory_space block. A more
complete description of the syntax and semantics is given in App. A.1.

A valid hardware description with the name name has at least two blocks,
a parallelism block (line 1 in Fig. 3.3) and a device block with name as
Identifier (line 11). The parallelism block defines a hierarchy of programming
abstractions and the device block describes the physical device.

56 Chapter 3. Stepwise-refinement for performance

device device_group/unit

memory

interconnect

execution_group/unit load_store_group/unitsimd_group/unit

cache

Figure 3.5: The device hierarchy.

Programming abstractions In a parallelism block the hardware descrip-
tion enforces which and how many units of parallelism programmers can use and
to which memory spaces each unit of parallelism has access. This is achieved by
nesting memory_space, par_group, and par_units in the parallelism block.
The scope of the memory spaces defines which units of parallelism can make
use of the memory space. For example, if a memory_space is defined within a
par_unit, then this memory space is local to the par_unit.

Line 4 in Fig. 3.3 shows a par_group threads. Blocks ending with _group
are special blocks that can group matching _unit blocks. The _group blocks
must always contain a nr_units or max_nr_units property that expresses the
allowed number of units.

Lines 1-9 show that the parallelism hierarchy hierarchy defines (on line 2) a
memory_space main and a par_group block threads (line 4) with an unlimited
number of parallelism units par_unit thread (lines 4-6). This means that
the programmer can use a memory space main in a program and can express
parallelism with threads. The scoping of the memory_space blocks indicates
that a thread has private access to reg, but that all par_units have access to
memory_space main. The default property will be explained in Sec. 3.4.3.

Physical device Describing the physical device is achieved with device blocks
that can be organized in a subclass hierarchy similar to a class hierarchy in
Object-Oriented Programming. The hierarchy is shown in Fig. 3.5. The root is
a generic device block. A device_group and device_unit are generic devices
to make it possible to group devices.

A memory is a more specialized device of which we can describe, among other
properties, its capacity. The memory blocks need to have a space property with
an identifier as argument. The identifier has to refer to a memory_space in
the parallelism hierarchy and indicates for which memory space the memory
is responsible. For instance, in Fig. 3.3, the memory mem is responsible for
memory_space main (line 17). A cache is a specialized memory. It inherits
all the properties of memory, but it is also necessary to specify the cache-line

3.4 Design of MCL 57

size.
Execution units can be described by the various execution_group/unit

blocks. Execution units execute instructions that are defined in the instruction
block (not shown in Fig. 3.3). The block execution_unit describes a generic
execution unit. A simd_group describes an execution unit that executes its
instructions in lock-step: each simd_unit executes the same instruction in
parallel. A load_store_group is a simd_group that only executes the two
instructions “load” and “store”. This execution unit is responsible for mov-
ing data between the memories and each hardware description must have a
load_store_unit (not shown in Fig. 3.3).

Execution groups and units must have a property slots. This property
takes as argument an identifier and an integer expression. The identifier has
to refer to a par_unit and the integer expression defines how many “slots” or
“contexts” are available for an execution unit or group, which indicates how
much parallelism is available on an execution unit. For example, if an execution
group has 4 execution units and 8 slots for threads, this would mean that 2
threads have to share the time on each execution unit and have to be scheduled
after each other. Scheduling cannot be further expressed in HDL.

An interconnect block describes a device that connects the various device
blocks with each other. It is possible to specify the latency, the bandwidth or
the width of the bus (in bits). The connects property specifies how execution
units and memories are connected to each other. It takes two identifiers as
arguments with possibly a [*] suffix. The suffix [*] has to be used for a device
in a _unit in a _group and means that the connection leads to all units.

Figure 3.3 shows that the device perfect on line 11 holds a memory mem, an
interconnect ic and an execution_group cores. A statement with solely an
identifier means that this specific statement can be replaced with the block it
refers to. This mechanism also supports inheriting blocks from other hardware
descriptions, but in this case the identifiers have to be fully qualified. For exam-
ple, a hardware description may reuse the par_group threads from hardware
description perfect. It then has to refer to this block with the qualified identifier
perfect.hierarchy.threads.

3.4.3 Programming Language MCPL
To provide a familiar interface to many-core programmers, MCPL is imper-
ative and C-like. In contrast to C, MCPL has constructs to explicitly map
the program to hardware using the programming abstractions defined in the
parallelism block in a hardware description. We describe the syntax in more

58 Chapter 3. Stepwise-refinement for performance

detail in App. A.2.
Figure 3.2 shows matrix multiplication written for hardware description per-

fect. On line 1, the function matmul() is declared to adhere to the rules of
hardware description perfect. Thus, it is possible to specify a hardware descrip-
tion per function. The hardware description determines which memory spaces
are available and how parallelism can be expressed. MCPL has a foreach con-
struct that expresses parallelism in terms of units of parallelism. In Fig. 3.2 on
lines 5 and 6, the units of parallelism are par_group threads (defined on line 4
in Fig. 3.3). Barrier statements (not shown in Fig. 3.3) and declarations are
associated with memory spaces. Figure 3.2 shows that variables c, a, and b are
declared to reside in memory space main (lines 2 and 3).

In an MCPL program, the compiler can automatically infer which variables
are constant or written. In an MCPL module, the whole call hierarchy has to
be fully specified. Library functions are annotated with signatures that specify
which of the parameters are written and/or read.

Variables that have an array type or that are written need to have a memory
space modifier unless the hardware description has the property default (line 8
in Fig. 3.3 for reg). Thus, sum (line 7 in Fig. 3.2) is implicitly declared to
reside in memory space reg. Variables are passed by reference unless types are
primitive and constant. Guided by our conclusions in Chapter 2 MCPL does
not allow aliasing and global variables.

MCPL provides multi-dimensional arrays with array-size specifiers. This
helps the compiler to reason about different dimensions and ensures that the
compiler can express feedback in terms of array-sizes. Variables that are used in
array-size specifications have to be constant. Figure 3.2 shows on lines 2 and 3
variables c, a, and b being declared as two-dimensional arrays.

MCPL supports views and tiles in multiple dimensions on arrays. For ex-
ample, an array int[36]d can be declared as int[2,2][3,3]d2 with 2×2 tiles
of 3× 3 elements. This helps programmers to specify data-layout. More details
are provided in App. A.2.

A foreach-statement declares an indexing variable, contains a dimension
expression and an identifier that indicates which units of parallelism the foreach
targets. Line 5 in Fig. 3.2 states that there will be n units of parallelism of
par_group threads each with a unique index i where 0 ≤ i < n. The dimension
expressions in foreach-statements are not allowed to depend on the index of
an outer foreach.

The parallelism block in the hardware description governs how foreach
loops can be nested and where memory spaces can be declared. The nesting has
to follow the nesting in the hardware description with an exception for foreach

3.4 Design of MCL 59

1 par_group blocks {
2 par_unit block {
3 memory_space main {}
4 par_group threads {
5 par_unit thread {
6 memory_space reg {}
7 } } } }

1 foreach (int ib in nb blocks) {
2 foreach (int jb in mb blocks) {
3 main int[n] a;
4 foreach (int it in nt threads) {
5 foreach (int jt in mt threads) {
6 reg int b;
7 } } } }

Figure 3.6: Nesting of memory spaces and units of parallelism in relation to
nesting of foreach statements and declarations.

loops belonging to the same par_group, which are allowed to be nested (as
shown on lines 5 and 6 in Fig. 3.2). Executing statements are only allowed in
the innermost foreach loop. For a declaration of a variable, its nesting must
match the nesting of its memory_space in the hardware description.

Figure 3.6 explains the nesting rules in more detail. It shows at the left
a possible nesting of par_groups in a parallelism block inside a hardware
description. The right side shows a possible nesting of foreach statements.
The nesting follows the nesting in the hardware description and the figure shows
that foreach statements of the same par_group can be nested. At the right
side there is a declaration a with memory space main. The declaration is inside
a foreach-loop with par_group blocks, which means that the declaration is
inside a block. The left side shows that there is indeed a memory space main
defined inside a block par_unit.

Units of parallelism can communicate with each other through memory that
is declared in a scope outside of the units of parallelism. For example, in Fig. 3.6,
threads cannot communicate with each other using memory space reg, but
they can communicate with each other using memory space main. To ensure
that a thread can read what another thread wrote, it is possible to insert a
barrier(main) statement, with a parameter for the memory space.

3.4.4 Compiler
To support the stepwise-refinement for performance methodology, the compiler
is not only responsible for generating code, but also for generating performance
feedback for the programmer. MCL has been implemented in the metapro-
gramming language Rascal [69] which allows us to create an Eclipse Plugin
with feedback annotations and syntax highlighting for both HDL and MCPL.
Figure 3.7 shows a screenshot of the Eclipse Plugin with a menu for activating

60 Chapter 3. Stepwise-refinement for performance

Figure 3.7: Screenshot of the MCL Eclipse Plugin.

several feedback passes in the compiler. The programmer receives messages from
the compiler associated directly with the source code, for example messages for
a specific variable, foreach-loop, or function.

Another task of the compiler is to automatically translate between the
abstraction-levels. Programs written for hardware x can automatically be trans-
lated to hardware description y if y is a child of x in the hierarchy in Fig. 3.4.
The edges in the hierarchy define the translation possibilities, so it is for example
possible to translate from perfect to gpu.

Finally, the compiler can generate OpenCL and C++ code from the leaf
nodes of Fig. 3.4. For example, the compiler takes as input a function written for
hardware description fermi. It reads in the hardware description fermi but also
a configuration file that tells the compiler how the programming abstractions
defined in hardware description fermi can be mapped to OpenCL and C++
constructs. Our system generates OpenCL code for the computational kernels,
header files, and C++ code for setting up the execution on a many-core device,
including the necessary data-transfers. This means that the generated code can
easily be included in many applications.

3.5 Example: Matrix Multiplication 61

As the compiler automatically translates between abstraction-levels and can
generate code from each leaf node, it can generate code for each abstraction level.
For example, following the hierarchy of hardware descriptions in Fig. 3.4, we
can generate code for fermi from a program written in gpu. First, the compiler
translates the program to nvidia, then it translates to fermi, and from there the
compiler generates OpenCL and C++ code.

This section presented an overview of the MCL programming system. Sec-
tion 3.5 will give an example of the stepwise-refinement for performancemethod-
ology using our system. Section 3.6 will discuss several interesting implementa-
tion details.

3.5 Example: Matrix Multiplication
In this section we give a detailed overview of how the process of the stepwise-
refinement for performance methodology took place for matrix multiplication.
We refined the kernel in a stepwise manner to obtain high performance for two
different many-core architectures: a GTX480 GPU and a 60-core Intel Xeon
Phi.

Tables 3.2 and 3.3 give an overview of the feedback that the we received on
each level, what refinements we applied, and the performance of each kernel.
Below we will discuss the details. From level accelerator we will split in Sec. 3.5.1
for the GTX480 and Sec. 3.5.2 for the Xeon Phi. How the compiler translates
and gives feedback is explained in Sec. 3.6. In Sec. 3.7 we will evaluate our
approach with more applications.

perfect The goal of hardware description perfect is to define a high level of
abstraction by making the many-core hardware as simple as possible. Usually,
many-cores expose multiple layers of parallelism and several memories, but to
create a high level of abstraction, hardware description perfect has only one layer
of parallelism and two memory spaces (Fig. 3.3).

Figure 3.2 shows matrix multiplication written for this hardware. Since
programmers write for idealized hardware, they do not have to pay attention to
hardware-specific details. At this level of abstraction, it is no problem to create
n × m threads or read the same data multiple times, because the hardware
description defines that we have an unlimited number of execution cores and an
access time of 1 cycle to data in main memory.

In the inner process, the compiler is not triggered to give optimization feed-
back on this level of abstraction, because the properties of the device do not give

62 Chapter 3. Stepwise-refinement for performance

Table 3.2: Feedback from compiler for the GTX480 on different abstraction-
levels for matrix multiplication. The versions with (v*) are modified by the
programmer according to the feedback from the compiler.
Version Change compared to

previous version
Feedback Performance

(GFLOPS)

NVIDIA GTX480 GPU

perfect (initial version) #computational instructions:
2nmp, #data accesses:
2nmp + nm

89.0

accelerator (auto-translate) PCIe transfers:
4np + 4mp + 4nm bytes

gpu (auto-translate) expression a[i,k] loaded for
each thread t: local memory
can be leveraged

gpu (v1) Use local memory for
p elements

consider computing multiple
elements per threads

100

gpu (v2) Compute multiple
elements per thread

expression b[k,j] loaded for
each block and each iteration
in for-loop (n times)

91.6

gpu (v3) pull b[k,j] out of
for-loop

expression b[k,j] loaded for
each block b1 (n/x times)

205

nvidia (auto-translate) Using 1/8 blocks per SMP.
Reduce the amount of shared
memory used by
storing/loading shared
memory in phases

nvidia
(v1)

multiple store-load
phases

Using 4/8 blocks per SMP. 489

fermi (auto-translate) Optimal memory access.
b[k,j] in loop bi does not
benefit from cache, best case:
256 cache-line fetches

fermi
(v1)

compute more
elements for b[k,j]

b[k,j] in loop bi does not
benefit from cache, best case:
128 cache-line fetches

564

3.5 Example: Matrix Multiplication 63

Table 3.3: Feedback from compiler for the Xeon Phi on different abstraction-
levels for matrix multiplication. The versions with (v*) are modified by the
programmer according to the feedback from the compiler.
Version Change compared to

previous version
Feedback Performance

(GFLOPS)

Intel Xeon Phi (5110P)

perfect (same version as in
Table 3.2)

(same feedback as in
Table 3.2)

39.9

accelerator (same version as in
Table 3.2)

(same feedback as in
Table 3.2)

mic (auto-translate) Consider computing multiple
elements per threads

mic (v1) Compute multiple
elements per thread

Data reuse: a[i,k] accessed
in loop with index ej but
does not depend on it.

35.7

mic (v2) Pull a[i,k] out of
for-loop

47.6

xeon_phi (auto-translate) b[k,j] in loop k does not
benefit from cache, p
cache-line fetches

xeon_phi
(v1)

Pull b[k,j] out of
for-loop

c[i,j] in loop in loop ei
does not benefit from cache,
32 cache-line fetches

87.8

xeon_phi
(v2)

c in temporary
variable

Try to adjust size bTemp with
size 4*p bytes, to cache (32
kB total, cache_line 64 B)

115

xeon_phi
(v3)

Decrease bTemp 488

64 Chapter 3. Stepwise-refinement for performance

rise to this. For example, there is no faster memory. However, we can choose
to investigate the algorithmic properties of the program. For instance, we can
request statistics on the number of operations as shown in Table 3.2.

Matrix multiplication written for perfect is a portable program. We first
automatically translate this program down the hierarchy in Fig. 3.4 via accel-
erator, gpu, and nvidia to fermi to generate code. Running this on an NVIDIA
GTX480 GPU delivers 89.0 GFLOPS. Automatically translating the program
to xeon_phi (via accelerator and mic) and generating code from there results in
a performance of 39.9 GFLOPS. Since the inner process does not give feedback
that we can use to optimize, we move to a lower level of abstraction in the outer
process. We let the compiler automatically translate the program to hardware
description accelerator below perfect in Fig. 3.4.

accelerator In the library of predefined hardware descriptions, an accelerator
is defined to be a many-core device that is connected to a host computer by
means of a PCI-express bus, a common setup for many-core hardware. The
accelerator hardware description specializes hardware description perfect. It
inherits most features from perfect, but a special device host is added that
is responsible for setting up the computation for the many-core machine. We
define an interconnect pcie in a similar way as the interconnect ic in Fig. 3.3
on line 25, but now it connects the memory accelerator.mem and the device
host and has different values for the latency and bandwidth.

Since the parallelism hierarchies of perfect and accelerator are the same,
the translation pass of the compiler only has to change the keyword perfect
on line 1 to accelerator to let the program adhere to the rules of hardware
description accelerator.

At this level of abstraction, we receive feedback that the program has 4nm
bytes of data transfers from device to host, and a data transfer of 4np bytes
plus a data transfer of 4pm from host to device. The analysis to provide this
feedback infers that variables a and b are read and that c is written inside the
foreach loops. The compiler can give this feedback because the sizes of a, b,
and c are known in terms of parameters n, m, and p.

At this level of abstraction and with this feedback, we have no opportunity
to optimize the existing program. Therefore, we move to lower level hardware
descriptions giving up portability between GPU and Xeon Phi. The next sub-
section will discuss the process for the GTX480, while Sec. 3.5.2 discusses the
process for the Xeon Phi.

3.5 Example: Matrix Multiplication 65

1 parallelism hierarchy {
2 memory_space dev {
3 }
4 par_group blocks {
5 max_nr_units = 65535;
6 par_unit block {
7 memory_space local {
8 }
9 par_group threads {

10 max_nr_units = 1024;
11 perfect.hierarchy.threads.thread;
12 } } } }
13
14 memory on_chip {
15 space(local);
16 capacity = 16 kB;
17 }
18 execution_group processors {
19 nr_units = 16;
20 execution_unit processor {
21 slots(block, 1);
22 on_chip;
23 execution_group alus {
24 nr_units = 32;
25 execution_unit alu {
26 slots(thread, 1);
27 } } } }

Figure 3.8: Part of the hardware description gpu.

3.5.1 GTX480

gpu At this level of abstraction, the many-core device becomes more concrete.
Representative values obtained from programming guides are filled in to give the
compiler an indication of the amount of parallelism and the amount of memory
to define a generic GPU. For example, we could define that a gpu has a device
memory of several GBs, 16 processors, and each processor has 32 small ALUs
capable of performing floating point operations and a fast on-chip memory.

Conceptually, a GPU exposes two layers of parallelism to the programmer.
The 32 ALUs can run threads in parallel and the 16 processors can run blocks
of threads in parallel. Figure 3.8 shows how this is reflected in the parallelism
hierarchy. Lines 4 to 12 express that there are two layers of parallelism. Pro-
grammers can define up to 65535 blocks to run in parallel. Outside the block

66 Chapter 3. Stepwise-refinement for performance

1 int nrThreadsM = gpu.hierarchy.blocks.block.threads.max_nr_units;
2 int nrBlocksM = m / nrThreadsM;
3
4 foreach(int bi in n blocks) {
5 foreach (int bj in nrBlocksM blocks) {
6 foreach (int tj in nrThreadM threads) {
7 int i = bi;
8 int j = bj * nrThreadsM + tj;
9

10 float sum = 0.0;
11 for (int k = 0; k < p; k++) {
12 sum += a[i, k] * b[k, j];
13 }
14 c[i, j] = sum;
15 } } }

Figure 3.9: Transformation of the loops on level gpu

scope there is a memory space dev that is shared by blocks. Inside the scope
of a block there is a memory space local. It is not possible to synchronize
between blocks using this memory because it is not declared in a scope that
surrounds blocks. However, threads can synchronize using this memory because
the group of parallelism units threads is defined in the same scope. Per block,
programmers can use up to 1024 threads (line 10). On line 11, this hardware
description inherits the unit of parallelism thread from hardware description
perfect.

To automatically translate matrix multiplication to gpu, the compiler has
to split the foreach loops for parallelism units threads to multiple foreach
loops for parallelism units blocks and threads (loop-tiling). The translation
process is explained in Sec. 3.6, the result is listed in Fig. 3.9 (assuming that m
can be divided by nrThreadsM for simplicity). The code from line 10 on remains
unchanged compared to the code in Fig. 3.2.

Arrived in the inner process (Fig. 3.1), the compiler combines the knowledge
from the hardware description and the program to give the following three
very specific feedback messages: (1) “expression a[i,k] loaded for nrThreadsM
threads tj: local memory can be leveraged.”, (2) “expression b[k,j] is accessed
for n blocks bi.”, and (3) “It may be beneficial to consider computing more than
one element of c per thread.”

The compiler issues the first two messages after analyzing data reuse. Using

3.5 Example: Matrix Multiplication 67

512 threads 4 blocks

2048 blocks

..

..

c[n, m]

c[i, j]

a[n, p] b[p, m]

a[i, *] b[*, j]

Figure 3.10: Schematic view from block division in a 2048 × 2048 matrix mul-
tiplication.

data-flow analysis, it discovers that expression a[i,k] does not depend on tj
and bj. Figure 3.10 shows a schematic view of how the blocks and threads
defined in Fig. 3.9 use the input and output data. Each of the 512 threads
(identified by tj) computes a single output element in a row in array c. To
compute one element, a thread tj (and a block bj) needs access to a complete
row in the a matrix. The compiler discovers this by concluding that expression
a[i,k] does not depend on variable bj or tj. Similarly, the compiler notices
that expression b[k,j] does not depend on bi. Therefore, the compiler issues
the messages that a[i,k] will be loaded for each thread tj, each block bj, and
that b[k,j] will be loaded for each block bi.

Additionally, the compiler combines this information with the information
in the hardware description. In Fig. 3.8 on lines 7 to 12, par_group threads
shares a memory space local, which means that each thread tj can access
this memory. The compiler investigates whether this memory space resides
in faster memory than the memory of array a (memory space dev). Hardware
description gpu shows that there is a memory on_chip that holds memory space
local (lines 14 to 17 in Fig. 3.8). The compiler can infer that this memory is
faster than the memory that holds memory space dev (not shown). Since local
memory is shared between threads tj and is faster than dev, the compiler can
suggest to use memory space local for each thread tj for expression a[i,k].

The feedback that we receive in the inner process is now sufficient to act
upon. We decide to first listen to the most specific feedback message, which is
feedback message (1). We implement the suggested change in version gpu (v1)
by loading p elements in local memory.

68 Chapter 3. Stepwise-refinement for performance

gpu (v1) In this version we want to load p elements of a[i,*] in local mem-
ory. To accomplish this, we add a declaration with memory space local, a for-
loop that loads p elements in cooperation with the threads, and a barrier(local)
statement to make sure that each thread can observe all the updates from the
other threads. This is a standard technique in GPU programming.

The resulting version delivers 100 GFLOPS. The feedback we acted on disap-
pears, but the other two messages remain. We decide to take another iteration
in the inner process. Since it is not clear at this stage how to resolve the issue in
feedback message (2), we decide to act on feedback message (3) by computing
multiple elements per thread.

gpu (v2) We use this version to illustrate that although feedback from the
compiler may not immediately lead to better performance, the feedback is not
bad per se and can ultimately lead to better performance if we listen to the
compiler carefully. In contrast to our structured approach to optimizing, in
ad-hoc optimization, programmers might disregard this opportunity for higher
performance because initially it leads to lower performance.

We implement computing multiple elements in a column per thread, but we
do this naively by splitting the foreach-loop bi into two. We decide to change
the loop having n iterations into a foreach-loop of n/x iterations, where x is a
value that we chose. We add a sequential for-loop of x iterations in the body
of the foreach-statements. (This technique is commonly referred to as vertical
thread-block merge in GPU programming.)

Indeed feedback message (3) disappears. However, feedback message (2)
is repeated in a slightly different form and gives us a deeper understanding
in the performance issue. The compiler repeats that expression b[k,j] does
not depend on each block bi (but now for n/x blocks), and that it is also
independent of the for-loop which we have just introduced having x iterations.
This means that effectively, since b[k,j] is independent of both loops, it is
still loaded n times and that we have only added control flow, compared to the
previous version. This explains the worse performance.

Fortunately, this steers us in the right direction: since, b[k,j] is independent
of the for-loop, we now understand that we have to try to pull expression
b[k,j] outside of this for-loop to reuse the value for multiple iterations. We
implement this in version gpu (v3).

gpu (v3) It is more challenging to incorporate the feedback in this version.
However, if programmers fail to act on the feedback, at least they are informed

3.5 Example: Matrix Multiplication 69

1 local float[x][p] l_a;
2 ...
3 // load x * p elements in l_a
4 ...
5 for (int k = 0; k < p; k++) {
6 float bkj = b[k, j];
7 for (int ei = 0; ei < x; ei++) {
8 sums[ei] += l_a[ei][k] * bkj;
9 } }

Figure 3.11: Structure of the loops in gpu (v3).

of the performance issue.
The insight for this version is that we want to move the for-loop with x

iterations that we have just introduced, inside the loop on line 11 in Fig. 3.9
so we can reuse b[k,j] for each of the x iterations. Unfortunately, this is not
immediately possible, since loading the elements in local memory introduced in
gpu(v1) also relies on this loop. The solution is to use more local memory and
load these elements in a second, separate for-loop of x iterations. Figure 3.11
shows the structure of the loop after rewriting.

This version delivers 205 GFLOPS. For programmers that want to remain
portable between AMD and NVIDIA GPUs and are satisfied with the obtained
performance, this is a good moment to stop optimizing since the hardware
descriptions below gpu contain vendor-specific information. Therefore, this op-
timization applies to both AMD and NVIDIA GPUs. This clearly shows that
MCL offers programmers a trade-off in high-level programming, portability, and
performance. We decide to stop optimizing in the inner process and move to
level nvidia in the outer process.

nvidia The parallelism hierarchy on level nvidia is almost the same as on level
gpu, but memory space dev is renamed to global and memory space local is
renamed to shared to conform to NVIDIA terminology. As a result of more
specific details in the hardware description, the compiler triggers an analysis
that requests example values for m, n, and p from the programmer. It then
tells us that memory on_chip is a scarce resource and that we should carefully
consider the usage of memory space shared, since we use this in our program.
The compiler is even more specific. It tells us that we execute only 1 out of 8
blocks per SMP in parallel which depends on the number of threads, the number

70 Chapter 3. Stepwise-refinement for performance

1 execution_group smps {
2 nr_units = 16;
3 execution_unit smp {
4 slots(block, 8);
5 slots(thread, 1024);
6 performance_feedback("shMem");
7 on_chip;
8 regs;
9 gpu.processors.processor.alus;

10 } } } }

Figure 3.12: Part of the hardware description nvidia.

of registers, and the amount of shared memory we use. Finally, it proposes a
strategy to manage shared memory, namely by reducing the amount of shared
memory by using multiple store-load phases.

To be able to give this feedback, the compiler combines many pieces of in-
formation from the hardware description. Figure 3.12 shows a part of hardware
description nvidia. It defines that an SMP has 8 slots for blocks (line 4). It
also defines that an execution-unit smp contains a memory on_chip (line 7)
that holds memory space shared (not shown). Because of what is defined in
the parallelism_hierarchy block, the compiler also knows that blocks can-
not communicate through memory space shared (similar to the situation in
gpu where blocks cannot communicate through local in Fig. 3.8 on line 7).
Therefore, the compiler knows that memory on_chip has to be divided among
8 blocks, which makes memory on_chip a scarce resource.

On an NVIDIA GPU, the maximum number of blocks that can run on an
SMP (between 1 and 8) is important but governed by complex rules. Therefore,
MCL provides an API in which these complex rules can be encoded. Line 6
in Fig. 3.12 points the compiler to a performance feedback function “shMem”
that expresses these complex rules. Part of the feedback function is shown in
Fig. 3.13. The compiler exposes an API in Java through a data-structure Kernel
that we can ask for the size of memory spaces (line 2), and the number of slots
(line 7).

Because of the feedback, we understand that we have to minimize the amount
of allocated shared memory to run more than one block on an SMP. In version
nvidia (v1) we implement the suggestion from the compiler to load the elements
in multiple load-store phases.

3.5 Example: Matrix Multiplication 71

1 String shMem(Kernel k) {
2 int usedShared = k.context.sizeMemSpace("shared");
3 if (usedShared == 0) {
4 return "";
5 }
6 else {
7 int nrSlotsBlock = smps.smp.nrSlots("block");
8 ...
9 } }

Figure 3.13: Part of user-defined performance function used in hardware de-
scription nvidia.

nvidia (v1) It may not be immediately clear how to implement this optimiza-
tion. In the previous versions we loaded p elements cooperatively with threads
in shared memory (or local in hardware description gpu) which happens in y
iterations. To create multiple store-load phases, we make this loop the outer
loop moving the loading of elements and the computation inside. The insight
for this optimization is that we can merge the loop on line 5 in Fig. 3.11 with
the loop of y iterations. The resulting loop structure is shown in Fig. 3.14. As
a result of this optimization we use y times less shared memory.

We now receive the feedback that we use 4 out of 8 blocks which gives us a
performance of 489 GFLOPS. We translate this version to level fermi.

fermi Hardware description fermi introduces a new layer warp in the paral-
lelism hierarchy, as well as SIMD-units and caches with cache-line sizes. The
difference between a normal execution_group and a simd_group is that the
simd_units are defined to execute in lock-step, so each unit performs the same
instruction in parallel. In the fermi hardware description, it is defined that a
warp of 32 threads is executed on a SIMD-unit, which means that each thread
executes in lock-step with the others.

Using a performance feedback function similar to the one of Fig. 3.13, the
compiler can give feedback on the complex memory-access rules of the fermi
architecture. It tells us that the memory access patterns of a, b, and c are
optimal, and that there are no bank conflicts in the access of shared memory.

The new information about SIMD-units and how warps execute in lock-step
in the hardware description is used in the cache analysis. If a thread in a warp
can access an element in memory that is cached, then the other threads in a
warp also have access to the cache-line and do not need a new cache-line fetch.

72 Chapter 3. Stepwise-refinement for performance

1 shared float[x][nrThreadsM] l_a;
2 ...
3 for (int l = 0; l < y; l++) {
4 for (int ei = 0; ei < x; ei++) {
5 l_a[ei][tj] = a2[bi,l][ei,tj];
6 }
7 barrier(shared);
8
9 for (int k2 = 0; k2 < p/y; k2++) {

10 int k = l * p/y + k2;
11 float bkj = b[k,j];
12
13 for (int ei = 0; ei < x; ei++) {
14 sums[ei] += l_a[ei][k2] * bkj;
15 } }
16 barrier(shared);
17 }

Figure 3.14: Structure of the loops in nvidia (v1).

The cache feedback gives us a worst case scenario and a best case scenario in
terms of the number of cache line fetches. This makes clear that in a specific
loop, access b[k,j] needs at least 256 cache-line fetches.

We decide to try to improve the cache behavior of the memory access of
b[k,j] in version fermi (v1).

fermi (v1) In this version we tweak the parameters x and y such that we
compute twice the amount of elements for each fetch of b[k,j]. This gives us
a performance of 564 GFLOPS.

At this point the compiler gives us no more feedback we can act on. We are
also on the lowest level of abstraction, which ends the stepwise-refinement for
performance process for the GTX480.

3.5.2 Xeon Phi
mic Intel’s Many Integrated Core (MIC) architecture contains several tens
of in-order x86 cores with powerful vector units and several hardware threads
connected through a ring network. The MIC exposes two layers of parallelism:
vector instructions and threads. In the library of hardware descriptions, the mic
hardware description represents this as shown in Fig. 3.15. Besides registers
(line 10), there is only one memory space dev (line 2). It is possible to define

3.5 Example: Matrix Multiplication 73

1 parallelism hierarchy {
2 memory_space dev {
3 }
4 par_group threads {
5 max_nr_units = unlimited;
6 par_unit thread {
7 par_group vectors {
8 nr_units = 16;
9 par_unit vector {

10 memory_space reg {
11 } } } } } }
12

13 interconnect ring {
14 connects(mem, cores.core[*]);
15 latency = 20 cycles;
16 }
17 execution_group cores {
18 nr_units = 60;
19 execution_unit core {
20 slots(thread, 4);
21 regs;
22 vector_group;
23 } }

Figure 3.15: Part of the hardware description mic.

an unlimited amount of threads (line 5) and the vector unit is exposed through
a par_group of 16 vectors (lines 7 to 11). The mic has a ring interconnect
that connects the memory to all cores (line 13). A representative value for the
number of cores is 60 (line 18). Each core has slots for 4 hardware threads
(line 20), registers (line 21) and a simd_unit called vector_group that has
slots for the vector par_units defined on lines 9 to 11).

After automatically translating the accelerator version to mic, the compiler
tells us about data-reuse in variables a and b, similar to the feedback on level
gpu. The compiler does not propose a faster memory because the mic hardware
description does not expose faster memories. However, since the number of
execution units is limited, it does propose to compute multiple elements per
vector.

We implement this in a new iteration of the inner process. We decide to
compute multiple elements in both dimensions in version mic (v1) as it is not
clear what dimension we should compute multiple elements in.

mic (v1) In this version we naively introduce a for-loop for each dimension:
a for-loop with index ei and a for-loop with index ej. For the same reasons as
in version gpu (v2), we get lower performance (35.7 instead of 39.9 GFLOPS),
but again this leads to feedback that can help us to gain more performance.

The compiler tells us that a[i,k] is accessed in a loop that we have intro-
duced with index ej, but that it does not depend on it. Similarly, it tells us
that b[k,j] does not depend on the loop we have introduced with index ei.

Because of the way the loops are organized, it is difficult to do something
about both feedback messages at the same time. Therefore, we decide to choose

74 Chapter 3. Stepwise-refinement for performance

one of the two variables and pull a[i,k] out of the for-loop with index ej
and store it in a temporary array to increase data-reuse. This optimization is
comparable to the one we did in version gpu (v1).

mic (v2) Having implemented the above in this version, we still get feedback
for data-reuse for b, but similar to the previous version, it is not clear how to
act on the feedback. We measure the performance at 47.6 GFLOPS and decide
to automatically translate this version to xeon_phi.

xeon_phi The xeon_phi hardware description introduces many more details
compared to mic. The most important difference is the introduction of level 1
and 2 caches. The hardware description language is expressive enough to give
a realistic representation of the Xeon Phi. The ring interconnect connects the
memory to 60 L2 caches of 512 kB. Each cache is associated with an execution
unit core that holds 32 kB of L1 cache, which is in accordance with the real
hardware. Both caches have cache lines of 64 bytes.

At the xeon_phi level, we receive feedback that we did not receive for GPUs,
namely: “This is a cache-oriented architecture. Make sure that each access
benefits from the cache.” The compiler gives this feedback if it learns from
the hardware description that there are no other opportunities for fast memory
access than caches, which is the case on a Xeon Phi. For every variable declared
in dev memory space we get cache-behavior feedback (explained in Sec. 3.6).
We learn that variable a does benefit from the cache, but that b and c do not
benefit from the cache. The compiler tells us that b has the worst behavior,
namely at least p cache fetches.

We now realize that on level mic we pulled the wrong array out of the for-
loop, since array a has better cache behavior than b. We decide to undo pulling
out a and pull out b instead of a, making sure that we compute as much as
possible for each cache-line fetch for b. This leads to version xeon_phi (v1).

xeon_phi (v1) This change almost doubles the performance to 87.8 GFLOPS.
The compiler gives us two feedback messages: (1) “c may benefit from the cache:
best case 2m cache-line fetches.”, (2) “try to adjust the size of declaration bTemp
with 4p bytes in relation to the cache with capacities 32kB and 512kB and cache-
line size 64B.”, where bTemp is the temporary variable we have just introduced.

Feedback message (1) tells us that we have bad cache behavior for variable
c because m is typically large. A solution would be to store this in a temporary
array. Investigating feedback message (2), we come to the conclusion that if we

3.5 Example: Matrix Multiplication 75

split up bTemp, then we have to store partial results for c for which we need
temporary storage as well. Therefore, we decide to act on feedback message (1)
first, which leads to the next version.

xeon_phi (v2) Measuring the performance for this version where we intro-
duced temporary storage for variable c gives 115 GFLOPS. We decide now to
act on feedback message (2) to reduce the size of bTemp to better fit the caches.
This means that we need to compute partial results in the temporary variable
of c we have just introduced. We implement this in version xeon_phi (v3).

xeon_phi (v3) This has a dramatic effect on performance. Making the ar-
ray small, for example a value of 16 elements for the bTemp array leads to a
performance of 488 GFLOPS. The compiler gives us no longer feedback we can
act on, so we stop the process.

3.5.3 Summary

In the process above, most optimizations are straightforward to do. However,
several optimizations may require considerable thought: From gpu (v2) to gpu
(v3), the compiler complains that expression b[k,j] is loaded many times. To
solve it, we allocate more local memory which may be counter-intuitive for
some programmers. When more hardware details become available, we reduce
this size in nvidia (v1), which may also be a challenging optimization. The
challenge here is to reuse the iteration space of one loop (line 3 in Fig. 3.14) for
another (line 9). Finally, in xeon_phi (v1) it may not be easy to discover how
to decrease the size of the bTemp array.

The benefit of our approach compared to a trial-and-error process is that
our compiler assists and steers the programmer. The compiler helps the pro-
grammer to focus on aspects of the many-core hardware that the compiler deems
appropriate at a certain stage of the program. Moving to lower levels of abstrac-
tion, the compiler gains more and more knowledge about the hardware. This is
in accordance with the increasing insight that programmers gain while creating
the different versions. Another benefit is that the hardware descriptions form
a well-defined set of hardware features for different architectures which makes
the trade-off between portability against performance more clear.

76 Chapter 3. Stepwise-refinement for performance

3.6 Implementation
MCL’s compiler is mostly written in Rascal [69] and partly in Java. It consists
of four main parts: the data structures that define the grammars, the Abstract
Syntax Trees (ASTs), symbol table and call graph; several passes where a pass
defines the dependencies between passes; micro-passes which are small passes
that do the actual work; and the plugin that defines the interaction with the
Eclipse plugin introduced in Sec. 3.4.4.

Rascal automatically generates parsers for the grammars that instantiate
detailed ASTs. An MCL pass defines on which other passes it depends, optional
passes on which it depends, and its entrypoint. An entrypoint is a function
that takes as input passdata and returns passdata. Passdata contains the data
for a compilation unit such as the ASTs and the callgraph. Executing a pass is
implemented as building a graph of dependent passes, computing the topological
order of this graph which returns a list of passes, and applying a fold operation
on this list that ultimately calls each entrypoint of the pass.

A pass often makes use of several micro-passes. For example, semantic anal-
ysis performs the micro-passes parsing, building up a ASTs, def-use analysis,
typechecking, and verifying the mapping to hardware.

Besides passes such as generating code or pretty printing, there are passes
that transform the AST, such as translating between abstraction-levels, and
there are passes that output feedback for programmers, such as analyzing mem-
ory behavior. These feedback passes generate messages that can be shown in
the plugin.

The compiler entails about 35000 lines of code including whitespace and
comments. It uses many standard techniques such as data-flow analysis, and
simplification of expressions to provide readable feedback. For the rest of this
section, we focus primarily on the techniques that use both the information from
the hardware description and the program for providing high-quality feedback.
The analysis techniques work directly on the AST to create a strong relation
with the actual code that the programmer wrote.

3.6.1 Translation between Abstraction Levels
The input for the translation pass is an MCPL module with functions and a
string target indicating the target hardware description to translate to. Since
each hardware description defines its parent in the hierarchy of hardware de-
scriptions (Fig. 3.4), the compiler can find the path from target to the root
perfect. Any function in the module with a hardware description that is in this

3.6 Implementation 77

path is iteratively translated to target.
Given hardware descriptions hwdFrom and hwdTo where hwdTo is a child

of hwdFrom in the hierarchy, a function with hardware description hwdFrom is
translated in three phases: First, the compiler finds equivalence between par-
allelism units and memory spaces. With this information it then translates all
memory spaces of declarations and barrier statements to equivalent memory
spaces of hardware description hwdTo. Finally, it translates the foreach state-
ments, splitting them up if required. The following paragraphs give a high-level
overview of the translation pass. The algorithms are provided in full in App B.

Restrictions for hardware descriptions To make the translation possible,
there are several restrictions that apply to the parallelism hierarchy of a child
hardware description. The basic principle is that it is only allowed to add
memory_spaces and par_groups or par_units.

Since hardware description hwdTo may have more layers of units of paral-
lelism than hwdFrom, par_groups may have to be split up. The par_groups
are only allowed to split up using a more specific number of parallelism units.
For example, the par_group threads in hardware description perfect with un-
limited units of parallelism can be split up in 65535 blocks and 1024 threads
in hardware description gpu. In nvidia the 1024 threads can be split up in 32
warps of 32 threads.

The translation of memory spaces is also governed by rules that are necessary
to satisfy the synchronization conditions for barrier statements. To ensure that
the translation pass can always find equivalent memory spaces, the rules for
a par_group pgFrom that splits up in two or more par_groups pgsTo are as
follows: If pgFrom contains memory spaces, then the outermost par_group
in pgsTo must contain equivalent memory spaces. If the par_unit in par_
group pgFrom contains memory spaces, then these memory spaces have to be
represented in the innermost par_unit in pgsTo. These rules guarantee that the
translation phase never has to insert new barrier-statements and that existing
barrier-statements are translated into barrier-statements that use equivalent
memory spaces.

Finding equivalence in units of parallelism Since the compiler may need
to split foreach statements, the output of this phase is a list of mappings from
a par_group to lists of par_groups. First, for hardware descriptions hwdFrom
and hwdTo, the compiler finds the executing par_unit, which is the innermost
par_unit defined in the parallelism hierarchy. It retrieves the par_groups of

78 Chapter 3. Stepwise-refinement for performance

both and compares the number of units of parallelism to decide whether to split
up layers in the parallelism hierarchy or not.

For example, in hardware descriptions perfect (Fig. 3.3) and gpu (Fig. 3.8),
the executing par_units are thread and thread. The surrounding par_groups
are threads and threads. However, the number of units of parallelism of
threads in perfect is larger (unlimited vs. 1024), which means that the com-
piler also needs to incorporate the surrounding par_group of threads in gpu,
which is blocks. The result is that par_group threads in perfect is mapped to
both blocks and threads in gpu. More details are provided in App. B.2.

Translating memory spaces Each declaration and barrier statement in the
function that has a memory space msFrom is translated into a declaration or
barrier statement with an equivalent memory space msTo. To find an equivalent
memory space, the compiler finds the par_group or par_unit pgFrom where
msFrom is defined. Using the output of the previous phase, the compiler finds
the equivalent par_groups pgsTo which will be the starting point for searching
equivalent memory spaces. A memory space can be defined within a par_group
or within a par_unit. If msFrom was defined in a par_unit, the compiler
will look in the innermost par_unit to find an equivalent memory space. If
the memory space was found in a par_group, it will look in the outermost
par_group. The pseudo-code is provided in App. B.3.

Translating foreach statements We illustrate this pass using the transla-
tion from accelerator to gpu, where the code for accelerator is identical to the
code in Fig. 3.2, except for the keyword perfect on line 1. The resulting code
is shown in Fig. 3.9.

As explained above, a par_group can be mapped to multiple par_groups.
The foreach statements can also define multiple dimensions as occurs on lines 5
and 6 in Fig. 3.2. The compiler generates three kinds of statements: dimension
statements that indicate the new dimensions for the foreach statements, the
new foreach statements themselves, and indexing statements that define how
the old indices are computed from the new indices in the foreach statements.

First, the compiler determines the dimension of the inner foreach taking
a standard value from the hardware description for par_group threads (line 1
and 6 in Fig. 3.9, for clarity we assume that m is larger than nrThreadsM). Then
it generates the foreach remembering the old index variable in combination
with the new dimension expression. This leaves the compiler with n threads
in one dimension and m/nrThreadsM in the other. Since the compiler already

3.6 Implementation 79

used the maximum number of threads, it moves on to blocks and generates two
foreach statements with n blocks for one dimension and m/nrThreadsM in the
other. As all dimensions are now clear (nrThreadsM, nrBlocksM, and n), the
compiler generates the indexing statements on lines 7 and 8. The algorithms
are provided in App. B.4.

3.6.2 Operation Statistics
MCL can give users feedback on the number of data accesses, computational
operations, and overhead in the form of indexing and control-flow operations,
and the arithmetic intensity, the ratio between the number of data-access and
computational instructions.

The compiler accomplishes this by determining the output-defining blocks,
which are control-flow graph blocks on which the output that a function gener-
ates depend. In MCL, the compiler statically knows which variables are written,
since expressions can only be written in an assignment or in a function call and
the call-graph is always clear to the compiler.

To determine the output-defining blocks the compiler finds the declarations
in the parameter list that are written and the declarations of the variables that
are used in return expressions. It then uses standard data-flow techniques to
find all blocks on which the output depends. We define the control-flow blocks
as the set of blocks that perform control-flow and all of their dependent blocks
that are not in the output-defining blocks. Finally, we define the indexing blocks
as the blocks that define the indexing expressions, but are neither in the output-
defining blocks or the control-flow blocks.

For all these blocks, the compiler finds the number of iterations they are
executed. This analysis may be imprecise because it may not be clear statically
how many times a loop is executed, and because blocks may be inside if state-
ments that limit the number of executions. In these cases, the compiler tries
to determine the number of iterations and issues a warning that the result is
an approximation. However, often the information is still useful as an upper-
bound. This is a good example of where our compiler analysis is allowed to be
imprecise. If the compiler had to base a transformation on this information,
the compiler would have to be conservative. However, only providing feedback
opens new possibilities for the compiler to be useful.

For all of these three sets, the compiler gathers what kinds of operations
are performed: arithmetic operations, data-accesses with the memory-space,
and which par_unit performs the operation. The call-graph is analyzed from
the leaves up, such that it is clear how many operations call-expressions per-

80 Chapter 3. Stepwise-refinement for performance

1 foreach (int i in h threads) {
2 foreach(int j in w threads) {
3 float sum = 0.0;
4 for (int y = 0; y < fh; y++) {
5 for (int x = 0; x < fw; x++) {
6 sum += f[y, x] * a[i + y, j + x];
7 }
8 }
9 b[i, j] = sum / (fh * fw);

10 }
11 }

Figure 3.16: A convolution program for hardware description perfect.

form. Finally, the compiler summarizes all this data taking into account the
approximation warnings if they occurred, and presents it to the user.

3.6.3 Data Reuse Analysis
To analyze possible data-reuse we limit ourselves to the variables in the output-
defining blocks that perform indexing and are read. The compiler analyzes these
variables in two phases. The first phase performs a simple data-reuse analysis,
but if that analysis fails, it performs a more advanced analysis.

The simple form finds all dependencies of variable v including the dependen-
cies of the indexing variables. If v does not depend on a loop, this is reported
as data-reuse. For example, in Fig. 3.2, the data-reuse analysis reports that
variable a[i,k] on line 9 does not depend on the loop variable j (line 6) and
therefore this data is reused m times. Similarly, it reports that variable b[k,j]
does not depend on loop variable i (line 5) and that the data-reuse is n times.

If an indexing expression depends on all loops, the compiler starts a more
advanced data-reuse analysis that tries to report the data-reuse ratio. A data-
reuse ratio less than or equal to one means no data-reuse, whereas a value higher
than one means there may be data-reuse. Fig. 3.16 shows an example of such a
case. Variable a on line 6 has an indexing expression that depends on all four
loops.

The advanced data-reuse analysis can analyze per dimension or for all di-
mensions. It flattens the indexing expression (for all or one dimension) and it
retrieves all loops surrounding a variable v taking into account where v was
last defined. It then symbolically computes the data reuse ratio by dividing the
number of iterations v is accessed divided by the indexing range of v.

3.6 Implementation 81

For example, the data-reuse ratio for the first dimension of variable a on
line 6 of Fig. 3.16 is (h * fh)/(h + fh). The compiler computes that the number
of accesses to a is h * fh. However, since the indexing range of a is h + fh (i and
y filled in, taking into account the offsets and steps of the loops), a maximum
of h + fh different elements is accessed, leading to the above data-reuse ratio.

The compiler can report this as an expression (h * fh)/(h + fh), but users
can also fill in representative values in the parameter list for h and fh, for
example 2048 and 9 respectively. The compiler will then report back a sharing
ratio of 8.96. This value is correct considering there is no sharing in the borders
of a convolution.

Analyzing per dimension gives programmers an extensive insight in how data
is reused. In the above situation, it makes clear that for a specific combination
of i and x data in a will be loaded more than once. There are two features of
MCL that make this possible: First, MCPL has true multi-dimensional arrays
that make it possible to express the program in this manner. The second fea-
ture is that the compiler uses all the information expressed by the programmer
to do analysis. For example, usually compilers work on an intermediate rep-
resentation, for instance a representation that flattens the array accesses into
one-dimension. However, this would make the data-reuse analysis less precise.
In contrast, our compiler performs analysis using all dimensionality information
available, which makes it possible to provide more precise feedback and to relate
the feedback to the code that the programmer wrote.

Proposing faster memories An extension of the data reuse analysis tries to
propose faster memories. Because the mapping from par_units and memory
spaces to the physical hardware is well-defined in MCL, the compiler can give
very specific feedback. For a variable that has data-reuse, the compiler retrieves
the memory space it is declared in. As above there are two cases: the variable
is independent from specific foreach statements, or the variable depends on all
of them but there is still data-reuse.

In the first case, the compiler retrieves all memory-spaces that are available
in the scope of this foreach. The foreach statement references the par_group
in the parallelism hierarchy which also defines the relations between the memory
spaces and the units of parallelism. It compares these memory spaces with the
memory space of the variable to determine whether there is a memory space
that is faster.

In the second case, the compiler performs the same analysis, but on each
pair of loops for each dimension. The outer foreach loop is used to determine

82 Chapter 3. Stepwise-refinement for performance

the set of available memory spaces for choosing a faster memory space from.
For determining which memory space is faster, the compiler inspects the

memories that hold the memory spaces. For example, in Fig. 3.8 on lines 14
and 15, memory on_chip holds memory space local. To determine whether
a memory a is faster than memory b there are several heuristics: First, the
compiler can inspect the interconnects between the memories and the execution
units and compare the bandwidth and latencies. Second, if these details are
not available, it can determine the proximity to execution units: the closer, the
faster. Finally, it can compare the capacities of the memories, the smaller the
memory, the faster we assume the memory to be.

3.6.4 Cache Analysis

The cache analysis tries to provide information about the cache usage of vari-
ables inside loops in terms of best-case and worst-case scenarios. Given a cache
defined in the hardware description, the analysis retrieves the memory spaces
that the cache holds. The analysis proceeds for every declaration that has one
of these memory spaces.

For each cache the compiler determines the par_units that have access to
the cache. A cache can reside on an execution unit that has a restricted number
of slots for the par_units. This is illustrated in Fig. 3.12 where execution unit
smp has slots for 8 blocks and 1024 threads. This would represent an upper-
bound for the cache misses for a variable if a cache were defined to reside on
this execution unit.

For caches that do not reside on an execution unit but are shared among
execution units, the compiler visits the interconnects in search of execution
units and the slots property to find out which par_units have access to the
cache. The upper-bounds are determined by interpreting the layout of the
execution unit in relation to the cache. If a cache can be reached by multiple
execution units, the upper-bound for cache misses for a variable is defined to
be the number of parallelism units that can reach it. Additionally, the compiler
determines whether a par_group is executed in lock-step for the load and store
instruction, which is the case if a load-store unit resides in a simd_group.

For a variable, the compiler retrieves the surrounding loops taking into ac-
count where the variable was last defined. If the array expressions of the variable
are unpredictable, this is reported to the user. Array expressions are unpre-
dictable if an array expression contains non-loop variables that are written or
originating from arrays.

3.6 Implementation 83

Otherwise, the compiler analyzes each loop separately. For a loop it symbol-
ically fills in the start value of the loop into the array expression and the start
+ the step of the loop into the array expression. It symbolically subtracts these
values to determine the stride that a loop causes in the array expression.

Based on this stride and using the knowledge about the cache-line size from
the hardware description, the compiler gives the programmer feedback about the
best and worst case scenario in terms of cache-line loads. If the stride is zero,
then the best case is 1 cache-line fetch, otherwise the number of accesses per
cache-line is cachelinesize/stride. The worst case is the number of iterations
in a loop, or the upper-bound that was determined above if it is a foreach loop
that has a limited amount of slots for the par_unit under analysis.

By comparing the best-case and worst-case, this analysis provides the user
feedback about whether this variable does, may, or does not benefit from the
cache for this loop. Units of parallelism that execute in lock-step and load fewer
cache-lines than the number of units of parallelism, are reported to benefit from
the cache since multiple threads access the same cache-line.

3.6.5 Performance Feedback Functions
The complex many-core hardware often has complex rules for execution. As
shown in Fig. 3.12 and 3.13, HDL provides an API in Java to encode complex
rules, for example coalesced memory access or how many blocks can run on an
SMP.

A performance feedback function is automatically called by the compiler
when encountered in a hardware description. It takes as input a Kernel data-
structure and returns a string with a message for the user that will be issued by
the compiler. The Kernel data-structure contains a Context, a set of Instruc-
tions, and the variables from the hardware description. From an Instruction we
can request whether it is a memory instruction or not, in which memory-space
it loads or stores, which par_unit is executing the instruction, and we can
obtain a String representation. The Context data-structure contains a special
execution context that can obtain values from the function under investigation.
For example, the Context has a method int getSizeMemorySpace(String).
Hardware description variables can be referenced using an expression such as
Kernel.on_chip.capacity for the capacity of on-chip memory.

The above API is dynamically generated by the compiler since certain func-
tions rely on both the structure of the hardware description and the func-
tion under investigation. An example is the call kernel.context.hierarchy.
threads.getSize() that relies on the structure of the parallelism hierarchy

84 Chapter 3. Stepwise-refinement for performance

and the value of the number of threads that is specified in the program. An
interpreter interprets exactly those statements in the MCPL program that are
needed to compute the size. If a value of variable v is not available, the compiler
issues a warning that it needs a value for v to complete the analysis.

The interpreter interprets for-loops, but not foreach-statements. To iterate
over the units of parallelism in a foreach-statement, the API provides a reset()
and increment() statement. This limits the execution for the interpreter mak-
ing the analysis more scalable. For example in analyzing coalescing, we are only
interested in 32 iterations for threads in a warp, which can be expressed by
issuing kernel.context.hierarchy.blocks.block.threads.increment() 32
times in a for-loop.

This API is powerful enough to analyze the number of blocks per SMP as
illustrated in Fig. 3.13, coalesced memory access for threads and the number of
bank conflicts for threads.

3.7 Evaluation
To evaluate our approach we implemented several computational kernels and
recorded the received feedback and the performance increase for two very dif-
ferent architectures: an NVIDIA GTX480 GPU and the Intel Xeon Phi. The
focus of our framework is to give feedback on individual kernels. Therefore, we
selected a variety of programs (compute-bound, bandwidth-bound, regular, and
irregular) with one kernel. In Tables 3.4 and 3.5 we give an overview of the
results we obtained. To reduce the size of the table, we collapsed the differ-
ent versions in the inner process (v1, v2, v3) into one step (v1) in some of the
applications.

Our compiler generates OpenCL code for the kernels. For each target hard-
ware description, a configuration file describes how the programming abstrac-
tions map to OpenCL code. This ensures that the OpenCL compiler generates
executables based on the same set of parameters for each compared kernel, which
limits a potential performance difference caused by the OpenCL compiler.

We chose a GPU with the Fermi architecture because the cache is important
on this architecture which makes the analysis more challenging for our compiler.
Additionally, much related work makes use of GTX480 cards which allows us to
compare our results. With the choice for the Xeon Phi, we show that we can
support a very different architecture than a GPU. Since the Xeon Phi is a new
many-core card, we could not find a comparison for all kernels. In Table 3.6 we
compare our results with other existing implementations. We discuss the details

3.7 Evaluation 85

Table 3.4: Feedback and performance from compiler on different abstraction-
levels for several applications for the GTX480.
Application Version Program Change Performance

NVIDIA GTX480 GPU

matmul perfect 89.0 GFLOPS
gpu (v1) use faster memory 100 GFLOPS
gpu (v2) multiple elements 91.6 GFLOPS
gpu (v3) data reuse 205 GFLOPS
nvidia (v1) store-load phases 489 GFLOPS
fermi (v1) cache usage 564 GFLOPS

convolution perfect 129 GFLOPS
gpu (v1) use faster memory 215 GFLOPS

multiple elements
nvidia (v1) scarce memory 241 GFLOPS
fermi (v1) cache usage 302 GFLOPS

histogram perfect 6.94 GB/s
gpu (v1) multiple elements 80.0 GB/s

data reuse
nvidia (v1) scarce memory 80.0 GB/s

gesummv perfect 2.58 GFLOPS
gpu (v1) use faster memory 2.63 GFLOPS
nvidia (v1) scarce memory 3.69 GFLOPS
fermi (v1) cache analysis 80.2 GFLOPS

blackScholes perfect 297 GFLOPS
gpu (v1) multiple elements 432 GFLOPS

sparse matmul perfect 1.01 GFLOPS
gpu (v1) data reuse 1.19 GFLOPS
gpu (v2) multiple elements 1.41 GFLOPS
fermi (v1) cache usage 3.88 GFLOPS

86 Chapter 3. Stepwise-refinement for performance

Table 3.5: Feedback and performance from compiler on different abstraction-
levels for several applications for the Xeon Phi.
Application Version Program Change Performance

Intel Xeon Phi (5110P)

matmul perfect 39.9 GFLOPS
mic (v1) multiple elements 35.7 GFLOPS
mic (v2) data reuse 47.6 GFLOPS
xeon_phi (v1) cache usage 87.8 GFLOPS
xeon_phi (v2) cache usage 115 GFLOPS
xeon_phi (v3) cache usage 488 GFLOPS

convolution perfect 66.4 GFLOPS
mic (v1) multiple elements 84.0 GFLOPS
mic (v2) data reuse 153 GFLOPS
xeon_phi (v1) cache usage 171 GFLOPS

histogram perfect 0.35 GB/s
mic (v1) multiple elements 23.6 GB/s

data reuse
gesummv perfect 0.84 GFLOPS

mic (v1) multiple elements 0.68 GFLOPS
xeon_phi (v1) cache usage 55.4 GFLOPS

blackScholes perfect 66.6 GFLOPS
mic (v1) multiple elements 54.1 GFLOPS
xeon_phi (v1) cache usage 115 GFLOPS

sparse matmul perfect 2.71 GFLOPS
mic (v1) data reuse 2.84 GFLOPS
xeon_phi (v1) cache usage 2.90 GFLOPS

3.7 Evaluation 87

Table 3.6: Performance comparison for the applications compared to known,
fully optimized versions (* measured on a C2050, ** using a different input
than in Tables 3.4 and 3.5).
Application Naive MCL Other

implementations

NVIDIA GTX480 GPU

matmul 89.0 GFLOPS 564 GFLOPS 892 GFLOPS
convolution 129 GFLOPS 302 GFLOPS 380 GFLOPS
histogram 6.94 GB/s 80.0 GB/s 80 GB/s
gesummv* 1.25 GFLOPS 51.9 GFLOPS 2.98 GFLOPS
blackScholes 297 GFLOPS 432 GFLOPS 237 GFLOPS
sparse matmul 1.01 GFLOPS 3.88 GFLOPS 8.9 GFLOPS

Intel Xeon Phi (5110P)

matmul 39.9 GFLOPS 488 GFLOPS 695 GFLOPS
convolution 66.4 GFLOPS 171 GFLOPS n/a
histogram** 0.331 GB/s 11.9 GB/s 0.3 GB/s
gesummv 0.84 GFLOPS 55.4 GFLOPS n/a
blackScholes 66 GFLOPS 115 GFLOPS n/a
sparse matmul** 3.93 GFLOPS 5.28 GFLOPS 13 GFLOPS

below.

matrix multiplication Matrix multiplication is a compute-bound, regular
application. The process for this application has been thoroughly explained in
Sec. 3.5 and resulted in a speedup greater than 6 on a GPU (564 GFLOPS) and
a speedup of over 10 on the Xeon Phi (488 GFLOPS) compared to the naive
implementation when used with 2048×2048 matrices. The CUBLAS 5.5 library
obtains 892 GFLOPS and the Intel MKL library 695 GFLOPS. We consider our
result as very good performance as these libraries are heavily tuned, most likely
written in assembly (a much lower level of abstraction) by experts who have
much more knowledge of the architecture than the programming guides provide
us.

convolution Convolution is a stencil operation computing an element in the
output matrix based on its neighbors. It is somewhat less regular than ma-
trix multiplication and more bandwidth-bound. We used a 4096× 4096 matrix

88 Chapter 3. Stepwise-refinement for performance

with a filter size of 9 × 9. For hardware description gpu, the compiler iden-
tifies data-reuse in the filter and in both dimensions in the input data. This
prompted us to load both data-structures in local memory. On level nvidia, we
received the feedback that we should use more blocks per SMP. However, we as
programmers have application knowledge and understand that this is a delicate
balance between what can be shared and how many blocks can be run in par-
allel. We succeeded in running 2 blocks per SMP. On level fermi we improved
cache behavior by changing the number of threads.

For the Xeon Phi, the compiler advised us to compute multiple elements per
thread on level mic. Based on the data-reuse analyzed by the compiler, we also
decided to load the filter in a temporary variable since it is heavily shared. At
level xeon_phi the compiler identifies that the cache behavior of the output data
has the most severe effect. Allocating private memory for the output resulted
in 171 GFLOPS. We also received the feedback that we have unaligned vector
loads in accessing neighboring elements. This limits the performance on the
Xeon Phi.

For the GPU we obtained a speedup of more than a factor 2.3 and on a
Xeon Phi a factor 2.5 versus our perfect implementation. The implementation
with the highest performance on a GTX480 obtains 580 GFLOPS but uses loop
unrolling and a specialized kernel for each filter size [70]. Our compiler generates
a kernel for any filter size, so a more fair comparison is with the version that does
not do loop unrolling which obtains 380 GFLOPS. The Xeon Phi performance
is limited by unaligned vector loads in accessing neighboring elements.

histogram Histogram is a bandwidth-bound application with irregular data-
access in the output histogram. In effect, it is a reduction, which means that
there should be synchronization overhead. For this application, we computed a
histogram of 256 buckets from an input of 16384× 16384 elements. Since there
is only one integer addition per word that we read, we measure the performance
in GB/s (where a kB is 1024 bytes).

The compiler indicated that there is much data-reuse in the output array,
which we can interpret as synchronization overhead. On level gpu, we first
computed multiple elements and minimized the synchronization overhead by
replicating the histogram in local memory. This led to a performance of 80.0
GB/s. We would expect a performance close to 145 GB/s, but because atomic
operations are expensive on shared memory, we can not obtain better results.
In comparison with the CUDA histogram implementation, we have the same
performance. On level nvidia we received the feedback that shared memory is

3.7 Evaluation 89

scarce, but the improvement did not result in higher performance.
For the Xeon Phi, on level mic the compiler advised to compute multiple

elements and that there is much data-reuse in the histogram. Computing more
elements per thread and replicating histograms led to a dramatic increase in
performance. The cache analysis on level xeon_phi did not give feedback we
could act on. Our version outperforms other work [71] by a factor 40 (5.25 ms
against 200 ms on an input of 224).

gesummv This application from the PolyBench benchmark [72] performs two
matrix-vector multiplications. Implementing several improvements on level gpu
and nvidia did not contribute to much performance gain. However, at level
fermi it became clear that the application has bad cache behavior. After solving
these issues, the performance reached 80.2 GFLOPS. The bandwidth reached
140 GB/s and the compiler reported that there is not much data-reuse in the
matrices. Since the maximum bandwidth on a GTX480 is 145 GB/s and there is
no data-reuse that we can leverage, we know that we are close to the maximum
performance. We compared our results with the results in the paper by Grauer-
Gray et al. [72]. Their auto-tuned version has a run-time of 25.4 ms and their
manually written version is 1.5 times faster than their auto-tuned version on an
input of 4096× 4096 elements on a Fermi C2050 GPU. However, our version is
an order of magnitude faster with a run-time of 1.46 ms on the same hardware.
A possible explanation of this difference is that their version may have missed
the cache optimization that resulted in a significant performance increase in our
version (Table 3.5).

The Xeon Phi initially obtained much lower performance than the GPU.
Unfortunately, the feedback that we received initially made matters worse due
to the overhead of computing multiple elements. However, on level xeon_phi
we received feedback about similar cache issues as on the GPU and we solved
it in a similar way resulting in a dramatic speedup of over 65.

Black-Scholes This application analyzes stock options, in our case 4 ∗ 106

transactions. The compiler reports that this is a very compute intensive ap-
plication and the initial performance of 297 GFLOPS at level perfect on the
GPU confirms this. Following the feedback on level gpu led to a performance
of 432 GFLOPS. The feedback on levels nvidia and fermi did not provide any
opportunity to improve the program. The performance we obtain is good as the
CUDA SDK version obtains 237 GFLOPS.

For the Xeon Phi we are advised to compute multiple elements on level

90 Chapter 3. Stepwise-refinement for performance

mic. Unfortunately, this led to worse performance. On level xeon_phi it be-
comes clear that the application suffered from bad cache behavior for the vector
instructions. Correcting this led to a version that obtains 115 GFLOPS.

sparse matrix multiplication Sparse matrix multiplication is a very irreg-
ular application. We used a 65536× 131072 sparse matrix, randomly filled with
a .001 density in CSR representation.

In the GPU version, the feedback on levels gpu and nvidia did not help
much. On level fermi, the cache feedback initially indicated that the source
vector access is irregular and that the cache effect of the matrix access cannot
be determined due to unknown loop bounds. This prompted us to use another
approach, to at least improve the cache behavior in the index and matrix access,
by using multiple threads to compute output elements. In the end, however,
the performance of this application is dominated by the irregular access to the
source vector. The end result is about 2.3 times slower than the CuSparse 5.5
implementation, which achieves about 8.9 GFLOPS on the same input. We
suspect that the library is using texture memory, which MCL does not support
yet.

The Xeon Phi version initially has good performance and can be slightly
improved by taking the cache feedback of level xeon_phi into account. We
compared our results with the results from [73] using the Mip1 matrix and
observe that we are a factor 2.5 slower. This is comparable to the difference
with CuSparse on a GPU.

The evaluation shows that following the stepwise-refinement for performance
methodology has several benefits: Firstly, we obtain significant speedup in al-
most all cases. Only in sparse matrix multiplication we hardly obtain speedup
using a specific input. However, for a different input (the Mip1 matrix from [73]),
our implementation does show significant speed-up (Table 3.6).

Secondly, we are guided by feedback from the compiler. This steers us in
the right direction and helps us understand the performance bottlenecks. For
example, with convolution for the Xeon Phi, we receive the feedback that we
have unaligned vector accesses. In the gesummv application we understand
that we are close to the maximum performance, since the compiler tells us that
there is no data-reuse and we observe a performance close to the maximum
bandwidth.

Finally, our methodology also shows the trade-offs between abstraction-
levels. A high-level of abstraction increases portability (programs written for

3.8 Discussion 91

level perfect can run on both the GPU and the Xeon Phi), but incorporating
hardware-specific details in the program can increase the performance signifi-
cantly and also helps programmers to understand the performance in relation
to the hardware.

3.8 Discussion
In this chapter we show a methodology with which programmers work in coop-
eration with the compiler to gain both performance and understanding of this
performance. Programmers with application knowledge can judge whether the
compiler gives reasonable feedback. For example, in the convolution application,
the compiler suggests to minimize the use of shared memory to allow for more
blocks per SMP, which is usually good feedback. However, we as programmers
understand that in this application, the speed-up we gain relies on the amount
of data we share.

Our methodology can be combined with auto-tuning. Often, to reach even
higher performance, auto-tuning of parameters such as the number of threads
per block is necessary. Since programmers gain an understanding of the limits
of the program and hardware after receiving feedback from the compiler, they
have the opportunity to choose a good search space for auto-tuners, possibly
making auto-tuning much more efficient.

We chose to design a new programming language besides the hardware de-
scriptions because this makes it easy to 1) define an explicit mapping to hard-
ware and 2), based on the conclusions in Chapter 2, to restrict the language
to enable better analysis. However, if the right restrictions on other languages
such as CUDA or OpenCL are enforced, augmented with annotations, there is
no reason why our techniques could not be applied to other languages. The an-
notations would have to provide data-structure size information, dimensionality
of the data-structures, memory space information, and units of parallelism.

The different versions that the programmer creates could be automatically
documented together with the received feedback for each version. For example a
standard versioning system could maintain the different kernel versions together
with meta-data files that store the feedback. This system then provides a way to
not only automatically document the optimizations that have been applied, but
also the trigger for applying a specific optimization in the form of the received
feedback. In effect, it can document the reasoning of the programmer and it
captures the optimization knowledge.

Another benefit of having multiple versions of compute kernels is that the

92 Chapter 3. Stepwise-refinement for performance

system could verify the optimized versions in an automated way. The system
could run example inputs on kernels on different abstraction-levels reporting
inconsistent results between high-level and low-level versions.

The techniques that our compiler uses are mainly targeted at providing high-
quality feedback. For future work, we would like to investigate more advanced
techniques to make the feedback more powerful. For example, we would like
to investigate whether polyhedral analysis [74, 43] can be combined with our
language and compiler framework such that we can still provide high-quality
feedback that helps the programmer to improve the program.

Another way to improve the analyses is to extend our performance feedback
functions to support advanced performance models. For example, incorporating
the Roofline model [75] might provide more accurate information on when to
stop optimizing. Additionally, we would like to investigate whether we can
incorporate the Xeon Phi’s cache model by Ramos et al. [76] in a performance
feedback function.

Finally, we would like to improve the hardware descriptions. For example,
in the current hardware descriptions it is not determined how instructions are
scheduled, although this may impact the performance. For instance, this may
benefit the Xeon Phi programs because the Xeon Phi has multiple pipelines
with complex rules for how instructions from multiple threads are scheduled
onto those pipelines.

3.9 Conclusion
In this chapter we presented the stepwise-refinement for performance method-
ology, a novel approach to provide programmers control and understanding on
levels of abstraction they can choose themselves. As such, this chapter proposes
solutions for the following sub-questions:

2. How to balance control over hardware with raising the level of abstraction?

3. How can we manage the many different types of many-core hardware that
exist?

4. Can we provide programmers a structured approach with which a pro-
gramming system can assist them to achieve high performance?

In this chapter, we proposed a methodology centers around hardware de-
scriptions that specify many-core hardware with different levels of detail, re-
sulting in multiple levels of abstraction. This provides programmers a trade-off

3.9 Conclusion 93

between high-level programming which is good for portability and code main-
tainability, and low-level programming with a well-defined interface to the hard-
ware.

The stepwise-refinement for performance methodology supports a structured
approach in which programmers are gradually exposed to more hardware details
in an iterative process. During this process, the compiler gives programmers de-
tailed performance feedback about the programs to increase their understanding
of the performance they obtain. This approach leverages the strengths of both
the programmer and compiler: the programmer has application knowledge that
the compiler lacks, and the compiler does not have to be as conservative in
providing feedback as it has to be for automatic transformations. Using our
methodology, the programmer and compiler work together to produce high-
performance code.

To show the process of optimizing many-core programs with this method-
ology, we presented Many-Core Levels, our programming system that supports
our methodology. MCL contains a hardware description language and a pro-
gramming language that are tightly integrated and help the compiler to produce
detailed, hardware-specific performance feedback with a strong relation to the
code that programmers wrote.

Since there are many types of many-core hardware, programmers need to
manage the optimizations for the various devices. By organizing the hardware
descriptions in a hierarchy, programmers can make an informed trade-off for the
optimization process in relation to the devices that they are targeting.

We gave a thorough example of the optimization process to explain how pro-
grammer and compiler work together to produce high-performance code and how
programmers can make a trade-off in targeting multiple devices or continuing
to optimize for specific devices. We explained how MCL automatically trans-
lates between abstraction-levels, how we analyze data-reuse, cache behavior and
how we encode complex architecture-specific rules to give feedback. We eval-
uated our approach with several well-known, widely varying (compute-bound,
bandwidth-bound, regular, and irregular) many-core programs on two different
architectures: a GPU and a Xeon Phi. We demonstrated that our methodol-
ogy provides programmers a well-defined hardware interface that gives them a
trade-off in portability against performance. We showed that it is possible to
obtain substantial speed-ups in almost all cases with the important benefit that
programmers not only gain performance but also understand the performance
they obtain.

94 Chapter 3. Stepwise-refinement for performance

Chapter 4

Cashmere: Heterogeneous
many-core computing

New generations of many-core hardware become available frequently and are
typically attractive extensions for data-centers because of power-consumption
and performance benefits. As a result, supercomputers and clusters are becom-
ing heterogeneous and start to contain a variety of many-core devices. Obtaining
performance from a homogeneous cluster-computer is already challenging, but
achieving it from a heterogeneous cluster is even more demanding. Related work
primarily focuses on homogeneous many-core clusters.

In this chapter we present Cashmere, a programming system for heteroge-
neous many-core clusters. Cashmere is a tight integration of two existing sys-
tems: Satin from Chapter 2 is a programming system that provides a divide-and-
conquer programming model with automatic load-balancing and latency-hiding,
while Many-Core Levels (Chapter 3) is a programming system that provides a
powerful methodology to optimize computational kernels for varying types of
many-core hardware. We evaluate our system with several classes of applica-
tions and show that Cashmere achieves high performance and good scalability.
The efficiency of heterogeneous executions is comparable to the homogeneous
runs and is >90% in three out of four applications.

96 Chapter 4. Cashmere: Heterogeneous many-core computing

4.1 Introduction
Many-core devices offer enormous potential in compute-power and can increase
the performance of supercomputer and data-center applications significantly.
Developments in the many-core field move fast: new generations of many-core
hardware become available frequently and are fitted in data-centers because
of performance and power consumption benefits. However, older-generation
accelerators may still be powerful for some applications. For instance, in our
DAS-4 cluster, we have older-generation Fermi GTX480 GPUs that for some
applications are as fast as the newer generation Kepler GTX680 GPUs [70].

The result is that supercomputers and data-centers will more and more con-
tain multiple types of many-core hardware. As an example, our DAS-4 cluster
[77] has a wide variety of many-core hardware, multiple generations of NVIDIA
GPUs, AMD GPUs, and Intel Xeon Phi’s. As another example, Table 4.1 shows
several TOP500 supercomputers (as of November 2014) that contain more than
one type of many-core device [78].

Extracting performance from many-core clusters is difficult in general, but
heterogeneity makes it even more challenging. There is a variety of problems
that need to be solved to obtain high-performance:

1. Since execution times are likely to vary among many-core devices, some
form of load-balancing is needed.

2. Load-balancing is especially challenging for heterogeneous many-core clus-
ters, because it requires communication between nodes. However, because
many-cores are so fast, the network speed is relatively slow compared to
clusters without many-cores, resulting in a skewed computation/commu-
nication ratio.

3. The computational kernels that will run on the many-core devices have to
be identified, written, and optimized for each type of hardware.

4. The run-time system should know the type and number of available many-
core devices in each node and map the right kernels to the devices.

5. The application needs logic to drive the execution on these many-core
devices.

Related work focuses mostly on extracting high-performance from homoge-
neous many-core clusters, an already difficult task. Often, the overall solution is
based on MPI combined with a programming language for many-core devices,

4.1 Introduction 97

Table 4.1: TOP500 Supercomputers with heterogenous many-core devices.
name institute rank configuration

Quartetto Kyushu University 49 K20, K20X,
Xeon Phi 5110P

Lomonosov Moscow State University 58 2070, PowerXCell 8i
HYDRA Max-Planck-Gesellschaft 77 K20X, Xeon Phi
SuperMIC Louisiana State University 88 Xeon Phi 7110P, K20X
Palmetto2 Clemson University 89 K20m, M2075, M2070
Armstrong Navy DSRC 103 Xeon Phi 5120D, K40
Loewe-CSC Universitaet Frankfurt 179 HD5870,

FirePro S10000
Inspur TS10000 Shanghai Jiaotong University 310 K20m, Xeon Phi 5110P
Tsubame 2.5 Tokyo Institute of Technology 392 K20X, S1070, S2070
El Gato University of Arizona 465 K20, K20X,

Xeon Phi 5110P

such as OpenCL [59] or CUDA [58]. However, because execution times vary
among types of many-core hardware, a solution based on MPI with its rigid
communication patterns is not the ideal solution.

In this chapter, we present Cashmere, a programming system that focuses
on obtaining performance from heterogeneous many-core clusters. Cashmere is
a tight integration of two existing systems: Satin (already discussed in Chap-
ter 2), a programming system that provides a divide-and-conquer programming
model with load-balancing and latency-hiding [7] and Many-Core Levels (MCL)
providing the powerful methodology “Stepwise-refinement for performance” to
optimize computational kernels for varying types of many-core hardware (Chap-
ter 3). Satin addresses problems 1) and 2) described above, MCL addresses
problem 3), and Cashmere integrates the two systems provides solutions for
problems 4) and 5), and extends Satin’s load balancing for multiple many-core
devices per node. We named our system Cashmere because it offers parallelism
in the form of fine-grained threads.

Our contributions are the following:

• We seamlessly integrate coarse-grained divide-and-conquer parallelism with
multiple fine-grained many-core parallelism levels for a variety of many-
core devices with minimal changes to the original Satin programming
model (Sec. 4.2).

98 Chapter 4. Cashmere: Heterogeneous many-core computing

• We describe several optimizations that are necessary to obtain high per-
formance (Sec. 4.3).

• We demonstrate that our “stepwise-refinement for performance” method-
ology enables us to develop optimized many-core kernels for various de-
vices. This scalable development is a prerequisite for achieving the het-
erogeneity that Cashmere targets (Sec. 4.4 and 4.5).

• We evaluate Cashmere with several classes of applications and show that
we can achieve good scalability and performance despite the skewed com-
munication and computation ratio (Sec. 4.4 and 4.5). Our heterogeneous
runs are comparable to homogeneous runs and in three of four applications
we achieve >90% efficiency with optimized kernels.

• We answer research questions 5 and 6 of this thesis.

After an overview of related work (Sec. 4.6) we present our conclusions (Sec. 4.7).

4.2 Cashmere Programming Model
Cashmere is a system for programming high-performance applications for clus-
ters with many-core accelerators and forms a tight integration of two existing
programming systems: Satin [7] and MCL (Chapter 3). Section 4.2.1 gives a
brief overview of Satin and its programming model, Sec. 4.2.2 describes MCL,
and Sec. 4.2.3 discusses how Satin and MCL interact and form the Cashmere
programming model.

4.2.1 Satin
Satin [7] is a programming system that targets grids or clouds of clusters. It is
inspired by Cilk [9] that targets multi-core processors. Similar to Cilk, Satin has
a divide-and-conquer programming model that allows programmers to express
computation in a hierarchical manner. Satin achieves very good scalability by
mapping this computation to the hierarchical structure of grids or clouds of
clusters.

The key features of Satin that we use are:

• load-balancing Satin uses random work-stealing to achieve load-balancing.

• latency hiding Overlap slow communication with computation.

4.2 Cashmere Programming Model 99

1 spawnable f(a) {
2 if (small_enough_for_leaf(a)) {
3 return do_leaf_computation(a)
4 }
5
6 r1 = f(make_smaller(a)) // asynchronous
7 r2 = f(make_smaller(a)) // asynchronous
8 sync
9

10 return combine(r1, r2)
11 }

Figure 4.1: Skeleton of a Satin program.

• fault tolerance Satin recovers from nodes that are no longer responding.

• shared objects Shared objects make the divide-and-conquer program-
ming model less restrictive by allowing programmers to use a custom con-
sistency model.

Other than in Chapter 2, we will show Satin and Cashmere code in pseudo-
code as Java-specific code is irrelevant for the discussion and Cashmere could
equally well be written in another language. Figure 4.1 shows a basic skeleton
of a Satin program in pseudo-code. Line 1 shows a recursive function f()
that is declared to be spawnable, which means that a function call will execute
asynchronously. Lines 6 and 7 show recursive calls to f(). The Satin system
creates a child job for each call that will be asynchronously computed on a
compute node that Satin has available. This may be the same node, another
node in the cluster, or a node on another cluster. The results of the two calls are
stored temporarily in r1 and r2 but are not available until the sync statement
has finished. The function blocks on the sync statement until all previous child
jobs have finished. After the sync statement, the function can return the result
based on r1 and r2.

The above mechanism creates (possibly) recursive jobs that are spread among
the compute nodes of clusters. Satin achieves good scalability since all nodes
steal from each other using random work-stealing. At some point, the jobs are
small enough to perform the actual computation. Lines 2 to 4 show the stop-
condition based on an application defined parameter that decides to perform
the leaf computation. Section 4.2.3 will show how we extend this model with
MCL.

100 Chapter 4. Cashmere: Heterogeneous many-core computing

perfect

mic gpu

nvidia amd

fermi

xeon phi

kepler

accelerator

k20 gtx680titanc2050

hd7970

gtx480

Figure 4.2: Hierarchy of hardware descriptions.

4.2.2 MCL
As discussed in Chapter 3, Many-Core Levels is a programming system that
allows programmers to write computational kernels for many-core hardware.
The programming system is designed such that programmers can choose their
own abstraction-level for their program to trade-off performance, portability
and ease of programming. MCL offers abstraction levels by providing a library
of hardware descriptions that are organized in a hierarchy. Figure 4.2 shows the
hierarchy of hardware descriptions used for evaluating Cashmere.

4.2.3 Cashmere programming model
Cashmere is targeted at leveraging the fine-grained parallelism that many-core
hardware offers on a large scale, typically clusters with compute nodes that
contain a variety of many-core hardware such as GPUs or Intel’s Xeon Phi.

Adding many-cores to the original Satin programming model provides addi-
tional levels of parallelism:

1. parallelism on a many-core device A many-core device itself exposes many
levels of parallelism: instruction-level parallelism, task parallelism, and
SIMD parallelism.

2. multiple many-core devices per node A compute node in a cluster can
contain multiple (heterogeneous) many-core devices.

3. overlap in communication and computation Typically, many-cores are con-
nected through a PCI Express bus. Many-core devices can overlap com-
munication between host and device with computation.

4.2 Cashmere Programming Model 101

1 leaf(a, b)
2 try {
3 Kernel kernel = Cashmere.getKernel()
4 KernelLaunch kl = kernel.createLaunch()
5 MCL.launch(kl, a, b)
6 catch (exception) {
7 leafCPU(a, b)
8 } }

Figure 4.3: Calling an MCL kernel in Cashmere.

Cashmere aims to exploit these levels of parallelism with minimal changes
to the original Satin programming model and leveraging MCL for writing the
computational kernels.

parallelism on a many-core device

Expressing the parallelism on the device is completely handled by MCL. Pro-
grammers write a kernel in MCL’s programming language MCPL targeting a
hardware description from the library. The MCL compiler will generate code
for each of the leaf hardware descriptions and glue-code for Cashmere. This
results in a minimal and convenient way to call MCL code from within Cash-
mere while maintaining Satin’s fault-tolerance. Figure 4.3 shows a possible leaf
computation. In this figure, the MCL kernel needs parameters a and b (lines 1
and 5). On line 3 in the try/catch clause, we retrieve the MCL kernel from
Cashmere. From the kernel we create a launch kl on line 4 that we launch with
the MCL front-end with parameters a and b. The MCL front-end makes sure
that all necessary data is copied to the many-core device, it selects the appro-
priate kernel(s) for the devices available on the node, executes the kernel, and
copies the data back. In case something goes wrong with the kernel execution,
the system raises an exception which will then start the leaf computation on
the CPU (line 7).

Figure 4.3 shows the basic scheme, but more advanced schemes are possible:

• multiple kernels The above scheme works for an application with only
one kernel. Cashmere will automatically find this kernel and load it. If
there are more kernels, the Cashmere.getKernel() function should have
a string parameter that identifies the kernel to be loaded.

• multiple kernel-launches It is possible to launch the kernel multiple

102 Chapter 4. Cashmere: Heterogeneous many-core computing

times in succession. For example, it is possible to put a loop around
lines 4 and 5.

• device copies If there are multiple kernel launches, it may be unnecessary
to transfer all the parameters to the many-core device each time. Cash-
mere offers the functions Kernel.getDevice() and Device.copy() to
copy data to and from the many-core device for multiple kernel launches.

multiple many-core devices per node

If there are multiple many-core devices on a node, the standard Satin program-
ming model and calling MCL as explained in the above paragraph will not
lead to parallel execution of MCL kernels on both devices, because a call to
MCL.launch() is blocking. We solved this problem with a minimal change to
the divide-and-conquer programming model. Since the spawnable functions al-
ready express parallelism, we reuse this to express parallelism for the many-core
devices. Figure 4.4 shows a skeleton of a typical Cashmere program. Compared
to the Satin skeleton in Fig. 4.1, lines 5 to 7 have been added. If on line 5 the
job is small enough, then the function Cashmere.enableManyCore() disables
generating jobs for the compute nodes in the cluster. Instead, it continues to
create jobs using the same mechanism of spawnable functions and sync, only
now for the many-core devices on a node. If in turn the jobs generated for
the many-core devices are small enough to execute the leaf computation, gov-
erned by the stop-condition on line 2, then the leaf computation running the
MCL kernels will be started. In conclusion, by adding one library function, the
divide-and-conquer model of Cashmere expresses parallelism among nodes and
among many-core devices on a node.

overlap in communication and computation

The above mechanism also overlaps computation and communication to the
many-core device over the PCI Express bus. If a node has multiple jobs available,
Cashmere can launch kernels for one job and copy data for another. Cashmere
automatically manages the available memory on a device.

In summary, the Cashmere programming model is similar to the original
Satin programming model. It is extended with a library call to express paral-
lelism between many-core jobs and it provides a simple front-end to call MCL
kernels. MCL is used to write the kernel code and is extended to generate glue
code for Cashmere.

4.3 Implementation 103

1 spawnable f(a) {
2 if (small_enough_for_leaf(a)) {
3 return do_leaf_computation(a)
4 }
5 else if (small_enough_for_many_core(a)) {
6 Cashmere.enableManyCore()
7 }
8
9 r1 = f(make_smaller(a)) //asynchronous

10 r2 = f(make_smaller(a)) //asynchronous
11 sync
12
13 return combine(r1, r2)
14 }

Figure 4.4: Skeleton of a Cashmere program.

4.3 Implementation
This section describes the Cashmere implementation. Section 4.3.1 explains the
role of MCL in Cashmere while Sec. 4.3.2 describes how the MCL kernels fit in
the divide-and-conquer system.

4.3.1 MCL
To write kernels for multiple many-core devices, Cashmere makes use of several
capabilities of MCL:

translation between abstraction-levels Hardware descriptions consist of
definitions for the physical device and for the programming abstractions that
define how code is mapped to the physical device. MCL can automatically
translate kernels written for the programming abstractions of hardware descrip-
tion x to the programming abstractions of a child level y. Since each lower-level
hardware description contains more detailed information, the mapping between
programming abstraction and physical device becomes more precise. During
this translation process the compiler does not apply optimizations.

generating OpenCL code For each leaf node in the hierarchy, there is a
configuration file that tells the compiler how the programming abstractions
from the hardware description map onto the OpenCL constructs. This means,

104 Chapter 4. Cashmere: Heterogeneous many-core computing

together with translation between abstraction levels, that MCL can generate
code from each abstraction level.

Generating Cashmere code Applying the stepwise-refinement methodol-
ogy leads to multiple files with different versions of the same kernel. For in-
stance, given a kernel written on level perfect, suppose programmers know the
AMD HD7970 GPU well and choose to apply optimizations on level gpu, amd,
and hd7970. This leads to four different files: a file with a kernel on level perfect
and files on levels gpu, amd, and hd7970. The programmers can select these
files and generate Cashmere code for these devices.

MCL will generate OpenCL code for each of the seven leaf nodes in Fig. 4.2
and automatically chooses the most specific kernel version for a device. This
means that in the above situation, the Xeon Phi has a kernel on level perfect,
all NVIDIA GPUs have kernels on level gpu and the HD7970 GPU has a kernel
on level hd7970.

Together with the OpenCL code, MCL automatically generates glue code
that calls the kernels with the right configuration for OpenCL’s work-groups and
work-items (parameters that determine the available parallelism) for inclusion
in the divide-and-conquer framework of Cashmere.

This is important because the different devices have different granularity
needs. For example, the Xeon Phi needs more coarse-grained parallelism than
a GPU. MCL determines the work-group and work-item configuration based on
the kernel parameters and its hardware-descriptions.

4.3.2 Cashmere
The Cashmere runtime was built with the Satin runtime as basis and extended
it with a module that enables many-core functionality. This module has three
tasks:

• managing and discovering many-core devices,

• launching kernels and sending data between the devices and host,

• and keep detailed statistics and timing information about the kernel exe-
cution.

Since MCL generates OpenCL code, the Cashmere runtime uses OpenCL to
discover devices and it makes heavy use of the OpenCL event system to schedule
kernels and data transfers. Cashmere also extends this event system to provide

4.3 Implementation 105

detailed timing information and synchronize the timing between nodes in the
cluster.

Finally, Satin was built on the Ibis library [8] that provides primitives for
communication between nodes in a cluster. We have modified Ibis to use RDMA
over Infiniband instead of IP over Infiniband to increase the network bandwidth.
The Cashmere code adds about 3100 lines of code to Satin including comments
and whitespace. The rest of this section explains the specifics about how Cash-
mere runs an application.

On initialization In the initialization phase of an application, Cashmere as-
signs one node to be the master; the others become slaves. The kernels for the
many-core devices may depend on run-time information that only the master
node has. Therefore, the master broadcasts this run-time information to each
slave. On each node, Cashmere retrieves which devices are available and after
receiving the run-time information, compiles the most specific kernels for its
compute devices. If there is a device on a compute node that is not available in
the hierarchy of hardware descriptions, Cashmere suggests to add a hardware
description for this device, so that it can compile a kernel for this device.

spawning jobs to other nodes If the application encounters a spawnable
function, Cashmere generates jobs that can be stolen by other nodes. The mas-
ter is the first that generates jobs that other nodes can steal. As soon as a
node has jobs, each node in the cluster can randomly steal from other nodes
which contributes to scalability and load-balancing. Stealing a job encompasses
transferring the input data to the requesting node, execution of the job on the
requesting node (possibly generating new jobs that can be stolen) and transfer-
ring back the output data. This all happens automatically.

spawning jobs to the many-core devices If the application encounters
Cashmere.enableManyCore() Cashmere switches to a new mode. On encounter
of a spawnable function, Cashmere no longer generates jobs that other compute
nodes can steal, but instead it creates a thread that executes the spawnable func-
tion. The main thread will continue executing, possibly creating new threads
for spawnable functions and will block on the sync statement until all threads
have finished.

These threads can either generate more threads or encounter a call to an
MCL kernel. In the last case, the input data for the kernel is scheduled to
be copied to the device, the kernel is scheduled to run after the copies have

106 Chapter 4. Cashmere: Heterogeneous many-core computing

completed, and the data transfer back to the device is scheduled to be run after
the kernel execution. Because multiple threads are scheduling transfers and
kernels, the data transfers can be completely overlapped with kernel executions
except for the first and last data transfers.

Cashmere automatically load-balances the jobs scheduled to run on the
many-core devices of a compute node. Initially, Cashmere uses a heuristic based
on a static table of relative many-core device speeds to schedule the first jobs.
For example, the table states that a K20 GPU has speed 40 and a GTX480
speed 20. When these jobs have completed, we know the execution time for
each kernel for a specific device. Based on this time Cashmere submits the jobs
to the different queues for each device trying to minimize the overall execution
time for all jobs. For example, if the queue for a K20 has 3 jobs with an execu-
tion time of 100ms and the queue for the GTX480 has a queue with one job of
125ms, then Cashmere submits the job to the GTX480 queue because the execu-
tion time of this scenario is less: min(scenario1, scenario2) where scenario1 =
max(4 ∗ 100ms, 1 ∗ 125ms) and scenario2 = max(3 ∗ 100ms, 2 ∗ 125ms). This
is possible because leaf jobs in a divide-and-conquer application typically have
the same size.

4.4 Methodology
In this section we describe our methodology to show that Cashmere obtains
high performance on heterogeneous many-core clusters. Our test-bed is the VU
DAS-4 cluster [77], consisting of 74 dual Xeon E-5620 quad-core nodes that
communicate with a QDR Infiniband interconnect. We evaluated Cashmere
with the seven many-core devices available on this cluster:

• 22 NVIDIA GTX480 GPUs

• 8 NVIDIA K20 GPUs

• 2 Intel Xeon Phi (each fitted in a K20 node)

• 2 NVIDIA C2050 GPUs

• 1 NVIDIA Titan GPU

• 1 NVIDIA GTX680 GPU

• 1 AMD HD7970 GPU

4.4 Methodology 107

Table 4.2: The classes of applications that we use to evaluate Cashmere.
application type computation communication

raytracer irregular heavy light
matmul regular heavy heavy
k-means iterative moderate light
n-body iterative heavy moderate

We use 4 applications to evaluate Cashmere. Each application has its
own characteristics and represents a class of applications. Table 4.2 shows an
overview of how we classify each application to evaluate Cashmere.

Raytracer This application is based on smallpt [79], and its GPU port Small-
ptGPU [80]. It is a path tracing raytracer that leads to very realistic images
given that each pixel is computed with many random samples from each object
in the scene. This is an interesting application for Cashmere because of two
reasons: First, the application is highly compute intensive. The amount of data
that is processed is O(no) where n is the number of pixels and o the number
of objects in a scene. The computation is O(nods) where d is the depth (the
number of times a ray is bounced off an object) and s is the number of random
samples. The number of samples determines the quality of the picture. Ray-
tracer is also interesting because, although the application is compute-intensive,
the application is highly irregular because of the random samples. The applica-
tion has much control-flow based on randomness, making it difficult to optimize.
Raytracer represents the class of highly parallel and compute-intensive irregular
applications.

Matrix Multiplication Matrix multiplication multiplies two dense matrices
of single-precision floating-point numbers. For multiplying two n × n square
matrices, the amount of data that is processed is 3n2. The amount of computa-
tion is about 2n3, which means that we have a factor n more computation than
communication.

This application is interesting for evaluating Cashmere because although it
is a compute-intensive application, the application is highly regular, making it
relatively easy to optimize. However, this then results in relatively high com-
munication costs making this application difficult to scale. This application
represents the class of regular, compute- and communication-intensive applica-

108 Chapter 4. Cashmere: Heterogeneous many-core computing

tions.

K-means K-means clusters a set of n d-dimensional data-points in k clusters.
Given an initial set of d-dimensional centroids that represent the k clusters,
k-means assigns the n data-points based on the distance to the centroid of the
cluster. Based on the set of data-points belonging to one of the centroids, a new
value for the centroid is computed. This process is repeated until there are no
changes.

This application is interesting for evaluating Cashmere because it is an iter-
ative algorithm that needs to update k values after each iteration and distribute
these back to the compute nodes. A single iteration is compute-intensive and
spawns the jobs over the nodes. For one iteration, communication is O(k) and
computation is O(kn+ k).

This application represents the class of iterative applications with minimal
(constant) communication between the iterations.

N-body simulation This application simulates the forces between n bodies
over time. As K-means, it is an iterative application but has a different com-
plexity for computation and communication. Each iteration, the effect of each
body on each other body has to be computed, which makes the computation
O(n2). After each iteration, the positions and accelerations have to be updated
for each body, making the communication O(n).

N-body represents the class of iterative applications with intensive communi-
cation and is interesting for evaluating Cashmere because of its communication
pattern (all-to-all for each compute node).

We use MCL to write kernels for each application. First, we write a kernel
on level perfect and generate code for each of the 7 leaf hardware descriptions
in Fig. 4.2. This is a kernel written on a high level and we consider this the
unoptimized kernel. For each application we also optimize for each device. We
consider this the optimized version. In Chapter 3 we compared the performance
of MCL applications against that of hand-optimized applications from the lit-
erature, showing that MCL performance overall is in line with other published
results.

We then perform the following scalability studies on one type of hardware:

• Satin These measurements show the original performance of Satin and
how well it scales. The results from these measurements help to put in
perspective the performance that we obtain with many-core hardware and
the scalability that we achieve.

4.5 Evaluation 109

• Cashmere with non-optimized kernels These measurements show the
scalability and performance difference between Satin and Cashmere with
minimal effort because the kernels are written on a high level.

• Cashmere with optimized kernels These measurements show the per-
formance of Cashmere when the computational time is reduced several
factors.

Finally, we evaluate heterogeneous runs using various types of hardware
and compute the efficiency by dividing the measured performance by the max-
imum attainable performance. We determine this by summing the measured
performance for one node for each node in the configuration. We compare the
efficiency to the efficiency of the homogeneous execution. We use the optimized
kernels to evaluate the heterogeneous runs. Each of these studies provides strong
scalability.

4.5 Evaluation
The following subsection discusses the kernel performance differences between
the optimized and non-optimized versions. Section 4.5.2 shows the scalabil-
ity studies and the absolute performance difference between the applications.
Finally, Sec. 4.5.3 presents our findings on heterogeneous runs.

4.5.1 Kernel performance
This section shows the effect of the stepwise-refinement for performance method-
ology applied to the computational kernels. Since the hardware descriptions are
organized in a hierarchy, optimizing the kernels becomes scalable. For example,
optimizations that have been applied on level gpu are used for both NVIDIA
and AMD GPUs, so these optimizations are used for four different devices.

Fig. 4.5 shows the kernel performance. The performance numbers are based
on the timings of kernel execution alone without any overhead such as copying
data to the device. It is clear that optimizing has a drastic effect on the kernel
performance for most devices except for Raytracer. This can be explained by
the irregularity of the kernel. Raytracer has much control-flow overhead and
since the control-flow is based on randomness, threads often diverge, which has
severe performance penalties. To obtain better performance from the raytracer
would mean a different algorithm, something MCL cannot suggest. Raytracing

110 Chapter 4. Cashmere: Heterogeneous many-core computing

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

titan
hd7970

gtx480

c2050

xeon_phi

k20
gtx680

titan
hd7970

gtx480

c2050

xeon_phi

k20
gtx680

titan
hd7970

gtx480

c2050

xeon_phi

k20
gtx680

titan
hd7970

gtx480

c2050

xeon_phi

k20
gtx680

P
e
rf

o
rm

a
n
ce

 i
n
 G

FL
O

P
S

non-optimized
optimized

n-bodyk-meansmmultraytracer

Figure 4.5: The performance of the kernels for the applications for the unopti-
mized version and the optimized version.

is known to be challenging on many-cores and Xiang et al. discuss hardware
solutions for this kind of kernels [81].

4.5.2 Scalability
This section evaluates whether Cashmere is able to obtain similar scalability
results as Satin, which is our aim. We also compare the absolute performance
difference between Satin and Cashmere. To our surprise, Satin scales worse
than Cashmere in most of the cases. We found that there are two factors that
contribute to this reduced scalability. Firstly, Satin has more overhead in job
creation because it needs to create 8 times more jobs to keep one node busy.
This can be explained by the difference in programming models: In the Satin
programming model, a leaf computation is single-threaded, whereas one node
has two quad-core processors, which means that to keep one node busy, Satin
has to run 8 jobs in parallel. In contrast, a leaf computation in Cashmere
already exposes parallelism for the many-core device. Hence, Cashmere does
not have to create as many jobs as Satin. The second factor that contributes

4.5 Evaluation 111

to worse scaling is that since all cores on the CPUs are fully occupied with
computation, communication and load-balancing tasks suffer from the lack of
available compute-power.

Raytracer

Figure 4.6 shows that Raytracer scales better with Cashmere than with Satin.
This is a good achievement as the absolute performance of Cashmere is an
order of magnitude higher as shown in Fig. 4.7. Since the optimized and non-
optimized kernels are similar in performance, the two Cashmere versions overlap.
We performed our measurements on the Cornell scene [79, 80] with a resolution
of 16384× 8192 with 500 random samples.

Matrix Multiplication

Figure 4.8 shows the performance results of multiplying 2 32768× 32768 single-
precision floating point matrices. We can see that Matrix Multiplication does
not scale very well, also for Satin. The graph makes clear that the scalability
suffers from the relatively slower networking speed when the kernel is optimized.
However, Fig. 4.9 shows that there is still a factor four absolute performance
difference between optimized and non-optimized versions.

K-means

Figure 4.10 shows that K-means scales well, even for the optimized version and
better than Satin. Figure 4.11 shows the absolute performance of the three
versions. We computed 4096 clusters out of 268 million points with 4 features
in three iterations.

N-body

Figure 4.12 and 4.13 show that N-body has similar results as K-means despite
higher communication costs. We simulated two iterations of 2 million bodies.

4.5.3 Heterogeneity
In Table 4.3 we show the performance of the four applications with 2 configu-
rations dependent on the availability of nodes on the cluster. For the K-means
and N-body experiments all 7 types of hardware were available simultaneously.

112 Chapter 4. Cashmere: Heterogeneous many-core computing

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 2 4 8 16

sp
e
e
d
u
p

nodes

Ideal
Satin

Cashmere unoptimized
Cashmere optimized

Figure 4.6: Scalability of Raytracer up to 16 GTX480 GPUs.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

1 2 4 8 16

G
FL

O
P
S

nodes

Satin
Cashmere unoptimized

Cashmere optimized

Figure 4.7: Absolute performance of Raytracer up to 16 GTX480 GPUs.

4.5 Evaluation 113

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 2 4 8 16

sp
e
e
d
u
p

nodes

Ideal
Satin

Cashmere unoptimized
Cashmere optimized

Figure 4.8: Scalability of Matrix Multiplication up to 16 GTX480 GPUs.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

1 2 4 8 16

G
FL

O
P
S

nodes

Satin
Cashmere unoptimized

Cashmere optimized

Figure 4.9: Absolute performance of Matrix Multiplication up to 16 GTX480
GPUs.

114 Chapter 4. Cashmere: Heterogeneous many-core computing

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 2 4 8 16

sp
e
e
d
u
p

nodes

Ideal
Satin

Cashmere unoptimized
Cashmere optimized

Figure 4.10: Scalability of K-means up to 16 GTX480 GPUs.

 0

 1000

 2000

 3000

 4000

 5000

 6000

1 2 4 8 16

G
FL

O
P
S

nodes

Satin
Cashmere unoptimized

Cashmere optimized

Figure 4.11: Absolute performance of K-means up to 16 GTX480 GPUs.

4.5 Evaluation 115

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 2 4 8 16

sp
e
e
d
u
p

nodes

Ideal
Satin

Cashmere unoptimized
Cashmere optimized

Figure 4.12: Scalability of N-body up to 16 GTX480 GPUs.

 0

 1000

 2000

 3000

 4000

 5000

 6000

1 2 4 8 16

G
FL

O
P
S

nodes

Satin
Cashmere unoptimized

Cashmere optimized

Figure 4.13: Absolute performance of N-body up to 16 GTX480 GPUs.

116 Chapter 4. Cashmere: Heterogeneous many-core computing

Table 4.3: Performance of the heterogeneous executions.
application performance (GFLOPS) configuration

raytracer 1883 10 gtx480, 2 c2050, 1 gtx680, 1 titan,
1 hd7970

matmul 3927 10 gtx480, 2 c2050, 1 gtx680, 1 titan,
1 hd7970

k-means 10644 10 gtx480, 2 c2050, 1 gtx680, 1 titan,
1 hd7970, 7 k20, 1 xeon_phi

n-body 13517 10 gtx480, 2 c2050, 1 gtx680, 1 titan,
1 hd7970, 7 k20, 2 xeon_phi

We used the optimized kernels for our measurements. Fig. 4.14 shows the effi-
ciency of the applications compared to the combined performance of one-node
execution for each type hardware (i.e., the sum of 10× #GFLOPS of a one-
node execution on the GTX480, 2× #GFLOPS of the one-node execution on
the C2050, etc.). We compared this to the efficiency of the homogeneous exe-
cutions for 16 GTX480 nodes from Sec. 4.5.2. We conclude that the efficiency
for heterogeneous runs is similar to the homogeneous runs.

These results are especially impressive considering that in Matrix Multipli-
cation the performance between the kernel versions varies widely (Fig. 4.5), thus
showing that Cashmere prevents load-imbalance very well. The results for K-
means and N-body are noteworthy as well because the efficiency is about the
same as the homogeneous execution while using one third more nodes, achiev-
ing twice the performance with the heterogeneous runs, and after each iteration
communication between all nodes is necessary.

Finally, to gain insight in these excellent results, we show a Gantt chart of
the K-means run. Since there is so much parallelism, it is difficult to show all
details. We therefore show a zoomed-in version of the Gantt chart (Fig. 4.15)
where we can see two nodes, one with a GTX480 GPU and one with a Xeon
Phi and a K20 GPU. The y-axis shows different queues denoted with ‘qn’. Each
queue contains activities that can be overlapped with activities in other queues.
The narrow bars are for CPU tasks, sending data from and to the device and
to other nodes. The wider bars in q4 are kernel executions. The chart shows
parallel execution of a Xeon Phi kernel, overlapped with (faster) K20 kernels
and GTX480 kernels on node 3.

Figure 4.15 also shows our load balancing algorithm at work as explained in
Sec. 4.3.2. Node 16 executes sets of 8 jobs and after each set synchronization

4.6 Related Work 117

 0

 20

 40

 60

 80

 100

raytracer mmult k-means n-body

efficiency homogeneous (%)
efficiency heterogeneous (%)

Figure 4.14: Efficiency of heterogeneous executions.

is required. Our load balancing algorithm schedules 1 job on the Xeon Phi and
7 on the K20 which is the fastest configuration. Since the Xeon Phi is about 4
times slower than the K20 (see Fig. 4.5), one job more on the Xeon Phi would
lead to a longer overall execution time and not scheduling a job on the Xeon
Phi would also be longer.

Figure 4.16 shows the zoomed-out version of the Gantt chart in which we left
out all activities except kernel executions. It shows that this kind of execution
can be maintained each iteration, thus showing Cashmere’s effectiveness.

4.6 Related Work
In this section we focus on programming systems that – similar to Cashmere –
aim to simplify many-core computing on clusters and supercomputers.

MapReduce is a framework that allows programmers to express computa-
tions in terms of map and reduce functions [82]. Several frameworks target
many-core clusters. GPMR is a Map-Reduce framework for GPU clusters [83].
It fully relies on CUDA which makes the framework homogeneous. Their scal-

118 Chapter 4. Cashmere: Heterogeneous many-core computing

node 3 gtx480 q5

node 3 gtx480 q4

node 3 gtx480 q3

node 3 cpu q2

node 3 cpu q1

node 16 xeon_phi q5

node 16 k20 q5

node 16 xeon_phi q4

node 16 k20 q4

node 16 xeon_phi q3

node 16 k20 q3

 1200 1250 1300 1350 1400 1450 1500 1550 1600 1650 1700 1750

time (ms)

receive input
send output

CPU part
writeBuffer

execute
readBuffer
send input

receive output
overall

Figure 4.15: Zoomed-in view of the Gantt chart of heterogeneous K-means
execution.

node 0 hd7970 q5
node 5 c2050 q4

node 1 titan q4
node 7 gtx680 q4

node 13 gtx480 q4
node 6 c2050 q4

node 9 k20 q4
node 20 gtx480 q4

node 12 k20 q4
node 21 gtx480 q4

node 10 k20 q4
node 4 gtx480 q4

node 14 k20 q4
node 8 gtx480 q4

node 15 k20 q4
node 11 gtx480 q4

node 17 k20 q4
node 3 gtx480 q4

node 16 xeon_phi q4
node 16 k20 q4

node 18 gtx480 q4
node 19 gtx480 q4

node 2 gtx480 q4

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

time (ms)

execute

Figure 4.16: Gantt chart of heterogeneous K-means execution.

4.6 Related Work 119

ability study does not take into account copying data back and forth between
compute-nodes which is essential in practice.

HadoopCL [84] extends Hadoop [85] with OpenCL to make the computa-
tional power of many-cores available to Hadoop jobs. It uses APARAPI [86] to
translate limited Java code to OpenCL. Cashmere offers similar functionality
in a library to make use of MCL. HadoopCL performance is only compared to
original Hadoop and obtains a speedup of 5 on 10 nodes with GPUs against 2
nodes of Hadoop without GPUs on the K-means application. Cashmere is an
order of magnitude faster when compared to original Satin (a speedup of 186
on 8 GPU nodes compared to 2 Satin nodes).

Glasswing [87] is a MapReduce framework fully written in OpenCL and C++
and has a significant performance benefit over the previous two frameworks.
Glasswing is set up on top of the Hadoop filesystem and gains performance by
overlapping computation with I/O in several deep pipelines. Glasswing supports
multiple architectures but was not evaluated with multiple different architec-
tures at the same time. Glasswing also performs a 32k×32k Matrix Multiplica-
tion on the DAS-4 and obtains a performance of 2082 GFLOPS on 16 GTX480
GPUs while we obtain 3716 GFLOPS with the optimized version. However,
Glasswing supports out-of-core data, data that is larger than the memory of a
node, which Cashmere does not support yet.

OmpSs [88] combines OpenMP pragmas with StarSs [89] pragmas to pro-
gram clusters of GPUs. It offers a sequential programming model in which
programmers can annotate parallel regions with directives to indicate the data-
dependencies with in, out, and inout statements between tasks and on what
kind of device a task should run.

Planas et al. [90] extended the system with an adaptive scheduler that can
choose multiple versions of compute-kernels and learns to choose the better
performing version. In contrast to our system, the various versions are not
organized in a hierarchy and our system does not have to learn which version to
choose, but automatically chooses the most specific version for the many-core
device.

Bueno et al. [88] report slightly higher performance on 8 GTX480 nodes for
Matrix Multiplication (just above 3 TFLOPS compared 2.8 TFLOPS for the
optimized kernel for Cashmere). However, they use a CUBLAS kernel that has
higher initial performance than our optimized kernel.

StarPU [91] provides an execution model based on tasks. Programmers
implement tasks in the native many-core programming system, for example
CUDA or a BLAS routine and they annotate them with the tasks on which
they depend. The run-time system handles data-dependencies, scheduling of

120 Chapter 4. Cashmere: Heterogeneous many-core computing

tasks, and load balancing. Experiments in [91] have been performed on much
older GPUs making a comparison difficult.

SkePU [45] is built on top of StarPU and provides a skeleton framework that
allows programmers to express a program in terms of frequently used patterns
that are encoded in generic constructs. The program remains sequential while
the implementation of the patterns is parallel. Since the paper only reports
relative speedups, comparing performance is difficult. However, SkePU does
not appear to scale as well as Cashmere: for the best configuration of N-body,
SkePU obtains a speedup of about 2.6 on 3 GPU nodes.

Ernsting and Kuchen do show absolute performance numbers for their skele-
ton framework Muesli [92] that supports GPU clusters for NVIDIA cards. They
report the highest performance number for one node containing four NVIDIA
GTX480 GPUs with an 8192×8192 matrix, which is 48.3 GFLOPS. This is low
performance compared to Cashmere: With four nodes each having one GTX480
GPU (which requires communication over the network instead of within a node)
Cashmere obtains 299 GFLOPS for an unoptimized kernel and 1102 GFLOPS
for an optimized kernel for an 8192× 8192 matrix.

PaRSEC [93, 94] is a framework with a task-based run-time to overcome the
problem that MPI does not scale well for more dynamic applications. Program-
mers have to manually annotate data-flow dependencies between tasks with their
granularity and PaRSEC does not have an integrated solution for programming
kernels as Cashmere has. However, PaRSEC provides a more general program-
ming model than divide-and-conquer. PaRSEC only has a CUDA back-end and
was not evaluated with heterogeneous many-core devices.

4.7 Conclusion
Many-core programming is challenging because many-core hardware exposes
complicated hardware interfaces that vary widely among devices. However,
many-cores are becoming the norm in clusters and data-centers as a result of
performance and power-consumption benefits. This chapter focused on the fol-
lowing two sub-questions:

5. How to achieve good scalability when programming clusters of many-
cores?

6. How to program heterogeneous many-core clusters?

Sub-question 5 is a difficult problem because the high performance of many-cores
makes the communication overhead between nodes in the cluster an even bigger

4.7 Conclusion 121

problem than with traditional processors. Sub-question 6 focuses on how to
optimize for the various devices in a cluster and how to achieve high performance
with possibly large relative performance differences among the various devices.

Our solution, Cashmere, seamlessly integrates the many levels of parallelism
that arise as a result of using many-cores in a cluster setting that are needed
to achieve high performance. MCL allows programmers to write and optimize
kernels for different many-core devices in which common optimizations can be
shared thanks to the support for multiple abstraction levels. Our approach
delivers high performance and automatic load balancing even when the many-
core devices differ widely. Cashmere achieves high efficiency (>90% in three out
of four applications) in heterogeneous executions by exploiting multiple levels
of parallelism.

122 Chapter 4. Cashmere: Heterogeneous many-core computing

Chapter 5

Conclusions

In the mid 2000s, hardware manufacturers met the “energy wall”: although they
could still increase the number of transistors, the increase of clock frequency
came to a halt. This hardware limitation had severe consequences for software:
to gain a similar performance increase, software had to be parallel.

In the coming years, it is very likely that we encounter more and more hard-
ware limitations, resulting in hardware that exposes an increasingly complex
interface to programmers, such as multiple levels of parallelism and complicated
memory hierarchies.

We consider many-core processors as a first manifestation of this trend: its
hardware trades logic targeted at optimizing sequential instruction streams,
for logic that mostly performs computations in order to achieve as much as
possible performance for the same energy footprint. These processors are solely
targeting high performance and make no compromises in the hardware interface
exposed to programmers. Because of this, there will be many different types of
hardware, each with its own unique characteristics to achieve high performance.
This makes many-core hardware very challenging to program.

5.1 Summary
In this thesis, we propose solutions for this programming problem. In Chap-
ter 2 we presented an analysis to relieve programmers from the burden to place
synchronization statements. Our understanding of the limitations of the com-
piler in relation to Satin’s programming model guided the design of Many-Core

124 Chapter 5. Conclusions

Levels and helped us to answer the first sub-question:

1. What are important design considerations for parallel programming mod-
els and their compiler analyses?

We learned that aliasing is difficult to analyze, but that certain restrictions may
have a positive effect. We also learned that the compiler may become part of
the platform programmers are targeting, leading to programmers adapting their
program for the compiler instead of adapting their program to real hardware
which may be preferable for many-core hardware. Finally, it showed that com-
piler analysis can be imprecise because of the lack of application knowledge that
programmers have.

This understanding guided the design of Many-Core Levels (Chapter 3), a
programming system that provides solutions for the following sub-questions:

2. How to balance control over hardware with raising the level of abstraction?

3. How can we manage the many different types of many-core hardware that
exist?

4. Can we provide programmers a structured approach with which a pro-
gramming system can assist them to achieve high performance?

Our main answer to these questions is the stepwise-refinement for performance
methodology that MCL supports. Inspired by the observation in Chapter 2 that
a compiler can become part of the platform, MCL tries to target real many-core
hardware. We do this by describing hardware formally and incorporate these
hardware descriptions in the programming model. The hardware descriptions
are organized in a hierarchy where each child hardware description exposes more
hardware details to the programmer than its parent. As such, MCL provides
a solution for sub-question 2 allowing programmers to start on a high-level of
abstraction and optimize the program for each level guided by the compiler. The
compiler can give performance feedback because the mapping between algorithm
and hardware is made clear in MCL while programmers remain in control over
the applied optimizations.

The hierarchy of hardware descriptions also provides a solution for sub-
question 3. Because of the hierarchy of hardware descriptions, optimizations on
a certain level impact all programs written for child hardware descriptions. In

5.1 Summary 125

essence, programmers are offered a trade-off in the level of abstraction. A high
level of abstraction provides code maintainability and portability, while lower
levels provide programmers more detailed performance feedback and control
over the hardware.

We provide a solution for sub-question 4 in the form of the methodology
stepwise-refinement for performance and our programming system MCL. The
compiler has much knowledge about the hardware, much knowledge about the
programs, and about how the program is mapped to the hardware. With this
information, the compiler can give programmers feedback on a level of detail
that matches the level of abstraction the programmers are working on.

Chapter 4 combines Satin from Chapter 2 and MCL described in Chapter 3
to result in Cashmere, a programming system for programming heterogeneous
many-core clusters. Cashmere succeeds in making the computational power
accessible to clusters with minimal changes in the Satin programming model.

Chapter 4 provides solutions for the following sub-questions:

5. How to achieve good scalability when programming clusters of many-
cores?

6. How to program heterogeneous many-core clusters?

Achieving good scalability on a cluster in a many-core context is very difficult
because the computational power is much higher than for traditional clusters
while the bandwidth of the network remains the same. However, Cashmere
still achieves good scalability, even with a heterogeneous configuration (multiple
different many-core devices) because the use of these devices relieves the CPU
to use its resources to perform load-balancing and networking. Additionally,
we reuse Satin’s divide-and-conquer programming model to express parallelism
for overlapping data transfers to and from the many-core device, and to use
multiple devices per node.

Cashmere provides an integrated solution for sub-question 6: MCL is used to
write and optimize kernels for multiple many-core devices. The MCL compiler
generates Cashmere code which makes it very simple to include MCL kernels into
Cashmere. At run-time, Cashmere automatically loads the most-specific kernels
for the hardware devices that are available on the compute nodes of the clus-
ter and automatically load-balances Cashmere’s divide-and-conquer programs.
Finally, Cashmere shows a detailed Gantt-chart to monitor the performance of
the system.

126 Chapter 5. Conclusions

5.2 Future Directions
Although MCL and Cashmere provide solutions for the programming problems
at hand, there are still many opportunities to improve our work. This section
shows a number of future directions for MCL and Cashmere.

Versioning One of the limitations of MCL is that programmers potentially
have to maintain multiple versions of a kernel, which is more difficult than
maintaining only one version. However, this problem can be mitigated by a
system that provides versioning for the different kernels.

We envision a system that keeps track of the kernels and the feedback gen-
erated by the compiler and combines this information to provide provenance of
optimizations. The system then allows programmers to retrieve what optimiza-
tions had been applied and which feedback they were based on, thus capturing
the optimization knowledge. An additional possibility is to add this functional-
ity to our Eclipse plugin such that editors can automatically hide or show the
different versions of the kernels.

Finally, this system could provide functionality to automatically run and
compare lower-level kernels against higher-level kernels. This can help pro-
grammers to assure that the kernels remain correct over optimizations.

Auto-tuning An often used technique in the context of many-cores is auto-
tuning. Auto-tuning is the process of finding an optimal kernel by defining a set
of parameters and generating a multitude of kernels based on those parameters.
MCL could help in two ways: By providing feedback, programmers may be able
to limit the number of parameters that have to be checked, thus limiting the
search space for the kernels. Another direction is to enhance MCL with lan-
guage constructs to automatically generate parameterized kernels. A concrete
example could be an assignment with optional values nrThreads={64,128};
nrBlocks={512,256}; which compiles to four kernels with Cartesian product
of the provided options.

Performance models Since the hardware descriptions form a model of the
hardware, a logical direction is to extend MCL with existing performance mod-
els in the hardware descriptions. Another option is to define an extra language
tightly integrated with the hardware description language with which custom
performance models can be defined to provide custom feedback to the program-
mer.

5.2 Future Directions 127

Kernel fusion A limitation of MCL is that the unit on which feedback is
provided and on which optimizations are applied is a kernel function. However,
on a high level of abstraction, one would want to write small kernels that are easy
to compose and reuse, whereas on a lower levels one would want to compose
those kernels into a larger one to apply optimizations over the boundaries of
kernels. Currently, this is not well supported in MCL and it would be an
interesting and challenging direction to investigate how composition of lower-
level kernels or kernel fusion techniques can be applied in the context of MCL.

Polyhedral transformations Polyhedral techniques are usually applied to
expose parallelism or transform programs for improved cache behavior. Since
polyhedral analysis techniques can find precise dependencies over loop itera-
tions, they may be a good starting point to provide more detailed feedback to
programmers than is currently possible.

Visualization of data access Often, it is difficult to understand memory-
access patterns of kernels in relation to how the memory hierarchy is organized
on a many-core device. Especially for many-core devices, memory access pat-
terns can have a large impact on the performance of the kernel. Additionally,
understanding the memory access patterns of an algorithm can give program-
mers insight in how to reorganize the kernel for better performance. Because
MCL contains hardware descriptions and knows the mapping from data to the
hardware, it is particularly suited to provide programmers insight of the access
patterns in the form of a visualization. Ideally, programmers could follow the
memory access pattern per thread to discover communication patterns and data
reuse.

FPGAs The current approach of MCL is to map an algorithm to hardware.
However, FPGAs (Field-Programmable Gate Arrays) allow one to define the
hardware circuits for a specific algorithm. A direction for future work would
be to automatically generate a hardware specification for FPGAs from an MCL
kernel. The restrictions on MCL kernels may provide an opportunity to translate
them to CλaSH [95], a domain-specific language for specifying hardware designs
that are subsequently mapped to FPGAs.

Fine-grained synchronization Section 2.6 explained a generalization on the
divide-and-conquer model for Satin. In Sec. 4.5 we have seen that matrix mul-
tiplication scales worse than the other applications in Cashmere. One of the

128 Chapter 5. Conclusions

causes is the fact that divide-and-conquer matrix-multiplication synchronizes
more than strictly necessary as explained in Sec. 2.6. A direction for future
work is to investigate whether more fine-grained synchronization can improve
Cashmere’s scalability for applications such as matrix multiplication.

Wide-area distributed systems Finally, Cashmere is currently targeted
at cluster computers, whereas original Satin also targets wide-area distributed
systems. An interesting direction is to investigate whether Cashmere can obtain
good results when deployed in a wide-area context where inter-cluster latencies
are typically much higher than intra-cluster.

5.2.1 Conclusions
Although there are many directions for further improvements, we conclude that
MCL and Cashmere form a promising solution to the main research question of
this thesis:

• How can we support programmers in their responsibility to achieve high
performance from many-core hardware?

MCL addresses the tension between control over hardware to reach high
performance and providing high-level abstractions. It help programmers to
achieve high performance by supporting the stepwise-refinement for performance
methodology. Not only gives the methodology programmers control over the
hardware, but it also gives them insight in the compiler and the performance of
their applications in relation to the used hardware.

Cashmere helps programmers to achieve high performance on heterogeneous
many-core clusters. MCL, as a part of Cashmere, helps in writing many differ-
ent optimized kernels. The Cashmere system provides automatic load-balancing,
hides communication to achieve high performance, and provides detailed feed-
back in the form of Gantt-charts to monitor the performance. Finally, we show
that heterogeneous executions do not differ in efficiency from homogeneous runs.

All in all, With the MCL and Cashmere systems, we hope to provide so-
lutions for the “Programming Wall” at hand and we hope to inspire other re-
searchers to continue working on this very interesting problem.

Appendix A

Many-Core Levels
Language Descriptions

This is an extension of Chapter 3 and discusses more details of the syntax
and semantics of the two languages of Many-Core Levels (MCL). Section A.1
discusses the hardware description language and is an extension of Sec. 3.4.2.
Section A.2 extends Sec. 3.4.3 and provides the syntax of the programming
language.

In the syntax descriptions we use EBNF in a slightly modified form for
readability. A capitalized identifier is a non-terminal, = defines a rule of the
syntax, | an option and concatenation is implied using whitespace. A string
enclosed in "" is a literal in the syntax and we will use three suffixes for terms:
? means zero or one ([] in EBNF), * means zero or more ({ } in EBNF), and
+ means one or more. We will use () for grouping, and { } for interspersing
terms: for example, to allow a term A interspersed with B zero or more times,
allowing A, A B A or A B A B A, etc., we can use {A B}*, which is equivalent
to λ|A(BA)∗ where λ is the empty string.

A.1 Hardware Description Language HDL

A hardware description is defined in a .hdl file, separate from .mcl files which
contain programming modules. The top-level structure of HDL is very simple:

130 Appendix A. Many-Core Levels Language Descriptions

HWDescription = "hardware_description" Identifier
Specializes?
Block*

Specializes = "specializes" Identifier ";"

The start symbol of HDL is HWDescription. The hardware_description key-
word indicates that this file is a hardware description. In HDL each keyword
is reserved. The Identifier indicates which hardware description it represents.
Following this declaration, a hardware description has an optional Specializes
clause which specifies on which hardware description the current hardware de-
scription specializes. Finally, a hardware description has zero or more Blocks.

The Block is the main construct in HDL. Its semantics are determined by
the specific BlockKeyword with which a Block is declared. The syntax is listed
below:

Block = BlockKeyword Identifier "{" Statement* "}"
BlockKeyword = "parallelism" | "memory_space"

| "par_unit" | "par_group" | "device"
| "memory" | "interconnect"
| "device_group" | "device_unit"
| "execution_group" | "execution_unit"
| "instructions" | "cache"
| "simd_group" | "simd_unit"
| "load_store_group" | "load_store_unit"

A Statement can have several forms, listed below:

Statement = Block
| PropertyStatement

PropertyStatement = PropertyKeyword "=" Expression PrefixUnit?
";"

| Expression ";"
| ArgPropKeyword "(" {Expression ","}+ ")"

";"
| StatementKeyword ";"

The first production rule shows that Blocks can be either a nested Block or a
PropertyStatement. A PropertyStatement has the following forms: some prop-
erty that can be assigned expressions with optionally a PrefixUnit, expressions

A.1 Hardware Description Language HDL 131

can be used as statements, there are properties that take expressions as argu-
ments, and finally, there are statements that are just keywords. The keywords
that can be used in statements are listed below:

PropertyKeyword = "nr_units" | "max_nr_units"
| "capacity" | "latency"
| "bandwidth" | "nr_banks"
| "clock_frequency" | "addressable"
| "cache_line_size" | "width"

ArgPropKeyword = "slots" | "connects" | "space"
| "op" | "performance_feedback"

StatementKeyword = "default" | "read_only"

A property can be assigned an expression having an optional PrefixUnit. This
allows us to define units for some expressions, for example GB/s:

PrefixUnit = Prefix? Unit
Prefix = "G" | "M" | "k"
Unit = BasicUnit "/" BasicUnit

| BasicUnit
BasicUnit = "B" | "bit" | "bits" | "cycle" | "cycles" | "s" | "Hz"

The grammar for an expression is:

Expression = IntExp
| QualIdentifier "[*]"?
| QualIdentifier "(" {Expression ","}+ ")"
| Operation
| ExpressionKeyword

An Expression can be an integer expression IntExp (not further shown in this
grammar) with the usual operations +, -, etc. defined on them. An Expression
can also be a qualified Identifier with optionally a "[*]" suffix, or with Ex-
pressions as arguments (line 3). A QualIdentifier uses dot notation to indicate
identify properties that are nested:

QualIdentifier = Identifier
| QualIdentifier "." Identifier

132 Appendix A. Many-Core Levels Language Descriptions

Finally, an expression can be an operation or an expression keyword:

Operation = "(+)" | "(-)" | "(/)" | "(%)"
| "(*)" | StringExpression

ExpressionKeyword = "unlimited" | "true" | "false"

The syntax of an operation allows us to define some properties about the op-
erations +, -, etc. in the programming language. An operation can also be a
string (not further explained in this grammar), for example to indicate some-
thing about special hardware functionality such as special units that support
transcendental functions.

Hardware descriptions define their parents using the specializes declara-
tion which results in a hierarchy (examples are shown in Fig. 3.4 in Chapter 3
and Fig. 4.2 in Chapter 4). The edges of the hierarchy do not mean that a hard-
ware description on a lower level inherits features of its parent. It means that
a program written for hardware description x can be translated to a program
adhering to the rules of hardware description y where y is a child of x. For
example, it is possible to translate a program written for hardware description
perfect to a program for hardware description fermi in Fig. 3.4 in Chapter 3. It is
possible to reuse parts of other hardware descriptions by using direct references
to the blocks in other hardware descriptions.

A valid hardware description with the name name has at least two blocks, a
parallelism block and a device block. The parallelism block defines a hier-
archy of programming abstractions to which programmers map their algorithm,
and the device block describes the physical device and should have name as
Identifier.

The nesting of Blocks is governed by rules which are summarized in Ta-
ble A.1. The blocks in the second column are allowed to be nested inside the
blocks in the first column. The third column specifies whether such a block is
required and the fourth column specifies whether more than one of these blocks
are allowed.

The first section “Common” shows the rule for grouping blocks. A block
ending with _group specifies that a certain number of _unit blocks are grouped
together. The _unit blocks are nested in the _group blocks and must have
the same prefix. The second and third section show the rules for the blocks for
programming abstractions and the physical device respectively.

Inside the blocks, several properties can be specified. Table A.2 shows which
properties can be used where and what kinds of expressions and units are al-

A.1 Hardware Description Language HDL 133

Table A.1: Allowed nestings of Blocks
Block Block required multiple

Common

x_group x_unit yes no

Programming abstractions

parallelism par_group yes no
memory_space yes yes

par_unit memory_space no yes
par_group no no

Physical device

device memory no yes
cache no yes
interconnect no yes
execution_group no yes
device_group no yes

execution_unit memory no yes
cache no yes
execution_group no yes
load_store_group no yes
simd_group no yes
instructions no no

device_unit memory no yes
cache no yes
interconnect no yes
execution_group no yes
device_group no yes

load_store_unit instructions yes no
simd_unit instructions yes no

134 Appendix A. Many-Core Levels Language Descriptions

lowed. The second column specifies the property that can be specified in the
block in the first column. The third and fourth column indicate which expres-
sions and units are allowed. The last column indicates whether the property is
required inside the block.

A _group block always needs to have a max_nr_units or nr_units with an
integer expression or the keyword unlimited, which means that it may be a very
large integer number. The sections in this table are the same as in Table A.1.
In section “Physical Device” the expression (inherited) means that the rules for
the properties are inherited from the device parent. The relation between device
blocks has been specified in Fig. 3.5 in Chapter 3.

A.2 Programming Language
Since many syntactic forms are similar to C, we will only discuss what is different
from C. Please note that below, we define a different grammar than the grammar
in Sec. A.1 that is used in different files. We can therefore safely reuse the names
for non-terminals, such as Statement and Block denoting different syntactic
forms.

An MCPL module consists of a "module" keyword with an Identifier declar-
ing which module it is, a list of Imports and a list of Functions. An import
declares which hardware descriptions should be imported into the module.

Module = "module" Identifier
Import*
Function*

Import = "import" Identifier ";"

A Function starts with an Identifier that indicates which hardware description
this function targets. This means that we can specify per function which hard-
ware we target. It then specifies the return type, an Identifier that indicates
the name of the function, and then a list of Declarations for parameter list and
a Block:

Function = Identifier Type Identifier "(" {Declaration ","}* ")"
Block

A Type is a primitive type or a Type with an ArrayExpression. This results in
a multi-dimensional tiled array type. The syntax is listed below.

A.2 Programming Language 135

Table A.2: Allowed properties of Blocks
Block property expression unit required

Common

x_group (max_)nr_units IntExp or
unlimited

yes

Programming abstractions

memory_space default no
read_only no

Physical device

memory capacity IntExp or
unlimited

B, bit,
bits

no

space Identifier yes
nr_banks IntExp no
addressable false no

cache (inherited)
cache_line_size IntExp B, bit,

bits
yes

interconnect connects Identifier yes
latency IntExp cycle(s) yes
bandwidth IntExp {B, bit,

bits}/s
no

width IntExp bit, bits no
clock_frequency IntExp Hz no

execution_group slots Identifier,
IntExp

yes

execution_unit slots Identifier,
IntExp

yes

performance_feedback String no
simd_unit (inherited)
load_store_unit (inherited)

136 Appendix A. Many-Core Levels Language Descriptions

Type = "int" | "float" | "bool" | "void"
| Type ArrayExpression

ArrayExpression = "[" {Expression ","}+ "]"

Having tiled multi-dimensional arrays means that we can have the following
forms: The type int[2][3] has 2 tiles of 3 elements. The type int[2,3] is a
two-dimensional array with 2 rows and 3 columns. The type int[2,2][3,3] is
a two-dimensional array with 2× 2 tiles of 3× 3 elements each.

A Declaration has two forms. It can have BasicDeclarations interspersed
with an as keyword or it can be an assignment Declaration.

Declaration = Modifier* {BasicDeclaration "as"}+
| Modifier* BasicDeclaration "=" Expression

BasicDeclaration = Type Identifier
Modifier = "const"

| Identifier

With the as keyword one can declare variables with more than one form, for
example: int[2,3]aasint[6]b. A Modifier indicates whether the variable is
constant or it can be an Identifier that has to refer to a memory space in the
hardware description of the function.

A Block contains a list of Statements:

Block = "{" Statement* "}"
Statement = Block | Declaration ";" | Assignment ";"

| Increment ";" | Call ";" | Return ";" | If
| For | As ";" | Barrier ";" | ForEach

A Statement can be a Block and the Declaration that was defined above. The
subsequent syntactic forms are not discussed, since they are very similar to any
C-like language, except for the last three: As, Barrier, and ForEach.

An As statement is equivalent to a Declaration with keyword as. It declares
new forms of a declaration, only not at the declaration itself but at a later point.
The syntactic form is:

As = Variable "as" {BasicDeclaration "as"}+
Variable = BasicVariable ("." Variable)?
BasicVariable = Identifier ArrayExpression*

A.2 Programming Language 137

A Variable can be interspersed with dots and a BasicVariable has zero or more
array expressions.

A Barrier statement creates a synchronization point for units of parallelism
for a specific memory space. The syntax is:

Barrier = "barrier" "(" Identifier ")"

The Identifier has to refer to a memory space in the hardware description.
In MCPL, the ForEach statement expresses parallelism with an Identifier

that indicates the specific parallelism_group that is targeted. The syntax is:

ForEach = "foreach" "(" BasicDeclaration "in" Expression Identi-
fier ")" Statement

Considering the ForEach as a loop, then the BasicDeclaration declares a variable
that will hold a unique value from 0 to Expression for each loop iteration. The
Identifier has to refer to a par_group in the hardware description.

138 Appendix A. Many-Core Levels Language Descriptions

Appendix B

Translating an MCPL
program to a lower level of
abstraction

This appendix describes how an MCPL module, represented by a list of func-
tions is translated to hardware description target, given a hierarchy of hardware
descriptions. We have added type annotations to the pseudo code below to make
the code more readable. The type list[T] is a list of type T, a list expression
is [1, 2, 3]. A tuple[T, S] is a tuple with types T and S, a tuple expression is
< 1, 2 >. The first and second field of a tuple can be reached with t.first and
t.second where t is a tuple.

Throughout the following algorithms the type ParGroupMapping is an im-
portant type which is a list of tuples, where each tuple contains two fields
with the first field being a ParGroup and the second field a list of ParGroups:
list[tuple[ParGroup, list[ParGroup]]]. The type ParGroupMapping will be used
as an alias for this type.

A ParGroup contains a ParUnit, and a ParUnit may contain a ParGroup.
We consider the outer scope of a parallelism hierarchy a ParGroup as well,
the top ParGroup parallelism. All ParGroups and ParUnits can contain Mem-
orySpaces.

140 Appendix B. Translating to a lower level of abstraction

B.1 The top-level functions

The top-level function takes as input a list of functions and a string representing
the hardware description to which we want to translate. Since a hardware
description always knows its parent in the hierarchy, the function construct a
path from hardware description perfect to target.
Require: each hardware description in hwds (except for "perfect") has

defined its parent in the hierarchy
Ensure: each function that has a path to target is translated to target

1: function translateFunctions(list[Function] fs, str target,
list[HWDesc] hwds)

2: list[HWDesc] path ← findPath("perfect", target, hwds)
3: for all Function f in fs do
4: translateFunction(f , target, path)
5: end for
6: end function

The following function translates one function iteratively to target:
Ensure: if function is on the path from "perfect" to target, then it is

translated to target
1: function translateFunction(Function f , str target, list[HWDesc]

path)
2: for int i← 0; i < path.size− 1; i← i+ 1 do
3: if f.hwdesc = path[i] then
4: translate(f , path[i+ 1])
5: end if
6: end for
7: end function

The following function translates a function, but only one step in the hierarchy.
An executing ParUnit is the innermost ParUnit in a parallelism hierarchy, the
unit that executes the instructions. In MCPL other ParUnits are not allowed to
execute code. An executing ParGroup is a ParGroup that contains the executing
ParUnit.
Require: hwdescTo has as direct parent f.hwdesc

1: function translate(Function f , HWDesc hwdescTo)
2: HWDesc hwdescFrom← f.hwdesc
3: ParUnit executingParUnitFrom←

B.2 Finding equivalent ParGroups 141

getExecutingParUnit(hwdescFrom)
4: ParUnit executingParUnitTo← getExecutingParUnit(hwdescTo)
5: ParGroup parGroupTo← getParGroup(executingParUnitTo)
6: ParGroup parGroupFrom←

getParGroup(executingParUnitFrom)

7: ParGroupMapping m← [< parGroupFrom, [parGroupTo] >]
8: m←findEquivalentParGroups(m)

. Sec. B.2

9: translateDeclarations(f , m)
10: translateBarriers(f , m)

. Sec. B.3

11: translateForEachStats(f , m)
. Sec. B.4

12: end function

B.2 Finding equivalent ParGroups
The following function finds equivalence between ParGroups. For each Par-
Group the compiler needs to know how to translate it to potential more Par-
Groups. Therefore the function needs a mapping from a ParGroup to lists of
ParGroups. As this may occur at different levels in the parallelism hierarchy,
the compiler maintains a list of those mappings, for each level an element in the
list. A mapping is represented by a tuple with the first element denoting the
“from” ParGroup and the second element the list of ParGroups “to”. Below we
explain the algorithm in more detail.
Require: m contains at least a mapping from executing ParGroups

1: function findEquivalentParGroups(ParGroupMapping m)
2: ParGroup from← m[0].first
3: list[ParGroup] to← m[0].second
4: if from = parallelism ∧ to[0] = parallelism then
5: return m
6: else if from = parallelism ∨ to[0] = parallelism then
7: error("not equivalent")
8: end if

142 Appendix B. Translating to a lower level of abstraction

9: ParGroup parentFrom← getParentParGroup(from)
10: ParGroup parentTo← getParentParGroup(to[0])
11: if nrUnits(from) = nrUnits(to) then
12: return findEquivalentParGroups([<

parentFrom, [parentTo] >] +m)
13: else if nrUnits(from) < nrUnits(to) then
14: error("from less than to")
15: else if nrUnits(from) > nrUnits(to) then
16: if parentTo = parallelism then
17: m← [< parentFrom, [parentTo] >] +m
18: else
19: m[0].second← [parentTo] + to
20: end if
21: return findEquivalentParGroups(m)
22: end if
23: end function
Line 4 is the stop condition that states that the function stop if it has reached
the top of the parallelism hierarchy. Both from and to must have reached the
parallelism to be a valid hardware description. In the conditions in lines 11-22
the flow of control is based on the number of units in from and to. As to is a
list, the number of units is the product of the ParGroup sizes contained in the
list. Everything is less than unlimited except unlimited itself which is equal to
unlimited.

If the number of units in from and to are equal, the function prepends the
parents to the mapping and continues recursively. In HDL it is not allowed to
have less units of parallelism in from than in to (line 13 and 14). If the number
of parallelism units in from is greater than in to, the compiler has to add
the parent of to[0] to the mapping. However, if the parent is parallelism, the
function can assume that the parent of from is also parallelism. If this is not
true, then the stop-condition will detect the error and the hardware description
is not valid.

B.3 Translating memory spaces
Both declarations and barrier statements contain memory-space expressions.
For simplicity we do not handle declarations that use the default memory-
space. Primitive constant declarations do not have memory spaces and are not
considered. The functions translateDeclarations and translateBarri-

B.3 Translating memory spaces 143

ers are now shown. They visit the function and call translateDecl and
translateBarrier for each declaration and barrier in the function respec-
tively.

1: function translateDecl(Decl d, ParGroupMapping m)
2: if d is not primitive and constant then
3: MemorySpace from← getMemorySpace(d)
4: MemorySpace to← findEquivalentMemorySpace(from, m)
5: d← setMemorySpace(d, to)
6: end if
7: end function

1: function translateBarrier(Barrier b, ParGroupMapping m)
2: MemorySpace from← getMemorySpace(b)
3: MemorySpace to← findEquivalentMemorySpace(from, m)
4: b← setMemorySpace(b, to)
5: end function

The function below requires that memory spaces do not disappear in moving
from a higher level of abstraction to a lower level of abstraction. Therefore, this
function defines the limitation on designing parallelism hierarchies. It is also
required that memory spaces that are defined in ParUnits have a representative
memory-space in a lowest-level ParUnit, and memory spaces in ParGroups in
the highest-level ParGroup. We explain the algorithm below.
Require: In the mapping there should be a representative memory space for

ms.
1: function findEquivalentMemorySpace(MemorySpace ms,

ParGroupMapping m)
2: < level, inUnit >← findMemorySpace(ms, m)

. ms is in m[level].first

. inUnit denotes whether ms was found in a ParUnit or not
3: list[ParGroup] pgsTo← m[level].second
4: if inUnit then
5: ParGroup pg ← last(pgsTo)
6: ParUnit pu← getParUnit(pg)
7: return findEquivalentMemorySpace(ms, pu.memorySpaces)
8: else
9: ParGroup pg ← pgsTo[0]

10: return findEquivalentMemorySpace(ms, pg.memorySpaces)

144 Appendix B. Translating to a lower level of abstraction

11: end if
12: error("no matching memory-space")
13: end function

On line 2, the level in the mapping for the memory space is found. It is also
detected whether the memory-space is in a ParUnit or a ParGroup. The function
then looks up the equivalent memory-space in the mapping, taking into account
whether ms was found in a ParUnit or ParGroup. In the first case, the function
retrieves the memory from the last, the lowest-level ParGroup. If ms was found
in the ParGroup, then the function retrieves it from the first ParGroup.

The following function finds the right memory-space with a preference to
match whether a memory space is read-only or not. If there is no match, then
it returns a memory-space that is not read-only. It is an error if ms is not
read-only and there are only read-only memory-spaces in mss.
function findEquivalentMemorySpace(MemorySpace ms,

list[MemorySpace] mss)
for all MemorySpace msTo in mss do

if (ms.readonly ∧msTo.readonly) ∨ (¬ms.readonly ∧
¬msTo.readonly) then
return msTo

end if
end for
for all MemorySpace msTo in mss do

if ms.readonly then
return msTo

end if
end for
error("no equivalent memory space")

end function

B.4 Translating ForEach statements
This section discusses how ForEach statements are translated into ForEach
statements of a lower-level abstraction. The following function translates a list
of statements in a list of statements where each ForEach has been translated to
the lower-level abstraction. Other supporting statements will also be generated.
Ensure: Each ForEach in stats has been translated, including the nested

ForEach statements.

B.4 Translating ForEach statements 145

1: function translateForEachStats(list[Stat] stats, ParGroupMapping
m)

2: list[Stat] newStats← []
3: for all Stat s in stats do
4: if s is ForEach then
5: newStats← newStats+ translateForEachStat(s, m)
6: else
7: newStats← newStats+ [s]
8: end if
9: end for

10: return newStats
11: end function

The following function is called for ForEach statements. If the ForEach is not
split into multiple ForEach statements, then it is a simple translation.
Require: s is a statement with a ForEach
Ensure: s and all its inner ForEach statements are translated into a list of

Stats with ForEach, dimension, and indexing Stats.
1: function translateForEachStat(Stat s, ParGroupMapping m)
2: int currentLevel← getLevel(s.foreach.parGroup, m)

. m[currentLevel].first = s.foreach.parGroup
3: if m[currentLevel].second.size = 1 then
4: return translateForEachSimple(s, m)
5: else
6: return translateForEachAdvanced(s, m)
7: end if
8: end function

A simple translation of ForEach statements just modifies the ParGroup of the
ForEach statement. It continues by calling translateForEachStats on each
inner ForEach statement.
Require: The list of ParGroups m[currentLevel].second has only one

element.
Ensure: A list of statements is returned.

1: function translateForEachSimple(Stat s, ParGroupMapping m)
2: int currentLevel← getLevel(s.foreach.parGroup, m)
3: s.foreach.parGroup← m[currentLevel].second[0]
4: s.foreach.stats← translateForEachStats(s.foreach.stats, m)

146 Appendix B. Translating to a lower level of abstraction

5: return [s]
6: end function

The above function automatically handles multiple dimensions within the same
ParGroup. This is not the case for the function below. First, the function has to
find out how many dimensions the ForEach has. It then collect the innerStats
for the last dimension with which it will continue.

The function generates three kinds of statements. The dimensionStats com-
pute the dimensions of each ForEach statement, the foreachStats contain the
translated ForEach Statements, and the indexingStats contain statements that
translate the index of the old ForEach into indices for the new ForEeach state-
ments. The for-loop on line 9 collects all three statements for each dimension,
starting with the innermost. Variable pgsTo will be updated to reflect which
ParGroups still need to be handled.

On line 16, the inner foreach-statements are translated that do not have
s.foreach.parGroup. The statement on line 17 adds the indexing statements
to the inner statements. On lines 18-21 the nesting of statements is organized.
Ensure: A list of statements is returned.

1: function translateForEachAdvanced(Stat s, ParGroupMapping m)
2: int nrDimension← getNrDimensions(s.foreach,

s.foreach.parGroup)
. # dimensions in the same ParGroup

3: list[Stat] innerStats← getStatsDimension(nrDimension− 1,
s.foreach)

4: list[Stat] dimensionStats← []
5: list[Stat] foreachStats← []
6: list[Stat] indexingStats← []
7: int currentLevel← getLevel(s.foreach.parGroup, m)
8: list[ParGroup] pgsTo← m[currentLevel].second
9: for int dim← nrDimension− 1; dim ≥ 0; dim← dim− 1 do

10: Stat feDim← getForEachDimension(dim)
11: < ds, fes, is, pgsTo >← createForEach(feDim, pgsTo, m)
12: dimensionStats← dimensionStats+ ds
13: foreachStats← foreachStats+ fes
14: indexingStats← indexingStats+ is
15: end for

16: innerStats← translateForEachStats(innerStats, m)

B.4 Translating ForEach statements 147

17: innerStats← indexingStats+ innerStats

18: for all Stat s in foreachStats do
19: s.foreach.stats← innerStats
20: innerStats← [s]
21: end for
22: return dimensionStats+ innerStats
23: end function

The createForEach function creates all three kinds of statements for the
ForEach statements that have to be created for the ParGroups in pgsTo. Line 5
shows the simple case. If there is only one ParGroup in pgsTo, the existing
ForEach in s obtains the new ParGroup. Otherwise, the function keeps track
of dimensionV ars and indexingV ars of which the former list contains the
variables that will be used in the ForEach statements to indicate the size and the
latter the variables that are used to create indices for the ForEach statements.

The loop on line 13 treats the ParGroups in reversed order and creates
dimension, indexing, and foreach statements. The indexing statement that ex-
presses the old indexing variable in terms of the new dimensions and indices
can only be computed when all indexing variables and dimension variables are
known (line 23).

1: function createForEach(Stat s, list[ParGroup] pgsTo,
ParGroupMapping m)

2: list[Stat] dimensionStats← []
3: list[Stat] foreachStats← []
4: list[Stat] indexingStats← []

5: if pgsTo.size = 1 then
6: s.foreach.parGroup← pgsTo[0]
7: foreachStats← [s]
8: return < dimensionStats, foreachStats, indexingStats, pgsTo >
9: else

10: list[Var] dimensionV ars← []
11: list[Var] indexingV ars← []
12: list[ParGroup] pgsReversed← reverse(pgsTo)

13: for all ParGroup pg in pgsReversed do

148 Appendix B. Translating to a lower level of abstraction

14: Exp dimensionExp←
createDimensionExp(dimensionV ars, pg,

s.foreach.nrIterations)
15: Var dimensionV ar ← createVar
16: Var indexingV ar ← createVar

17: Stat dimensionStat← createAssignStat(dimensionV ar,
dimensionExp)

18: Stat foreachStat← createForEachStat(indexingV ar,
dimensionV ar, pg)

19: dimensionV ars← dimensionV ar + dimensionV ars
20: indexingV ars← dimensionV ar + dimensionV ars
21: dimensionStats← dimensionStats+ dimensionStat
22: foreachStats← foreachStats+ foreachStat

23: if pg = pgsReversed.last then
24: Stat indexingStat←

createIndexingStat(s.foreach.indexingV ar,
indexingV ars, dimensionV ars)

25: indexingStats← indexingStats+ indexingStat
26: pgsTo← [pg]
27: end if
28: end for
29: return < dimensionStats, foreachStats, indexingStats, pgsTo >
30: end if
31: end function

Function createDimensionExp creates an expression for the number of par-
allelism units of a ForEach loop. The function uses the value from the hardware
description on line 3, if there are no dimension variables or if the number of
units of the ParGroup is definite. This means that a ParGroup has as prop-
erty nr_units (denoting the exact number of units there has to be) instead of
max_nr_units.

1: function createDimensionExp(list[Var] dimensionV ars, ParGroup pg,
Exp nrIterations)

2: if dimensionV ars.size = 0 ∨ pg.nrUnitsDefinite then
3: return createNrUnitsExp(pg)

B.4 Translating ForEach statements 149

4: else
5: Exp productV ars← mulVars(dimensionV ars)

. productV ars is 1 if dimensionV ars.size = 0
6: return div(nrIterations, productV ars)
7: end if
8: end function

The function below creates a statement that defines how the old index is com-
puted from the newly generated index and dimension variables. The first di-
mension variable is not part of the computation.

1: function createIndexingStat(Var oldIndexingV ar, list[Var]
indexingV ars, list[Var] dimensionV ars)

2: dimensionV ars←tail(dimensionV ars)
3: Exp e←createIndexingExp(indexingV ars, dimensionV ars)
4: return createAssignStat(oldIndexingV ar, e)
5: end function

This function recursively creates an indexing expression from the existing di-
mension and indexing variables. The size expression is computed by multiplying
all dimension variables.

1: function createIndexingExp(list[Var] indexingV ars, list[Var]
dimensionV ars)

2: if indexingV ars.size = 1 then
3: return exp(indexingV ars[0])
4: end if
5: Exp size←mulVars(dimensionV ars)
6: Exp indexingV ar ← indexingV ars[0]
7: indexingV ars←tail(indexingV ars)
8: dimensionV ars←tail(dimensionV ars)
9: Exp lowerDim←createIndexingExp(indexingV ars,

dimensionV ars)
10: return add(mul(indexingV ar, size), lowerDim)
11: end function

150 Appendix B. Translating to a lower level of abstraction

References

[1] S. Huang, S. Xiao, and W. Feng. On the Energy Efficiency of
Graphics Processing Units for Scientific Computing. In IEEE In-
ternational Parallel and Distributed Processing Symposium, 2009. IPDPS
2009., pages 1–8, May 2009.

[2] Jeremy Enos, Craig Steffen, Joshi Fullop, Michael Showerman,
Guochun Shi, Kenneth Esler, Volodymyr Kindratenko, John E.
Stone, and James C. Phillips. Quantifying the Impact of GPUs on
Performance and Energy Efficiency in HPC Clusters. International
Conference on Green Computing, 0:317–324, 2010.

[3] Wu-chun Feng and Kirk Cameron. The Green500 List: Encour-
aging Sustainable Supercomputing. Computer, 40(12):50–55, Decem-
ber 2007.

[4] Ian Sommerville. Software Engineering. Addison Wesley Longman Pub-
lishing Co. Inc., Redwood City, CA, USA, 9th edition, 2010. ISBN: 978-
0137035151.

[5] B. Randell. Software Engineering in 1968. In Proceedings of the 4th
International Conference on Software Engineering, ICSE ’79, pages 1–10,
Piscataway, NJ, USA, 1979. IEEE Press.

[6] E.A. Lee. The Problem with Threads. Computer, 39(5):33 – 42, May
2006.

[7] Rob V. van Nieuwpoort, Gosia Wrzesińska, Ceriel J. H. Jacobs,
and Henri E. Bal. Satin: A High-Level and Efficient Grid Pro-
gramming Model. ACM Trans. Program. Lang. Syst., 32(3):1–39, 2010.

152 References

[8] Henri E. Bal, Jason Maassen, Rob V. van Nieuwpoort, Niels
Drost, Roelof Kemp, Nick Palmer, Gosia Wrzesińska, Thilo
Kielmann, Frank Seinstra, and Ceriel J. H. Jacobs. Real-World
Distributed Computing with Ibis. Computer, 43:54–62, August 2010.

[9] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kusz-
maul, Charles E. Leiserson, Keith H. Randall, and Yuli Zhou.
Cilk: An Efficient Multithreaded Runtime System. SIGPLAN Not.,
30(8):207–216, 1995.

[10] Byte Code Engineering Library, 2006. http://jakarta.apache.org/bcel.

[11] Michael Hind. Pointer Analysis: Haven’t We Solved This Prob-
lem Yet? In Proceedings of the 2001 ACM SIGPLAN-SIGSOFT Work-
shop on Program Analysis for Software Tools and Engineering, PASTE ’01,
pages 54–61, New York, NY, USA, 2001. ACM.

[12] Kees van Reeuwijk, Rob V. van Niewpoort, and Henri E. Bal.
Developing Java Grid Applications with Ibis. In Proc. of the
11th International Euro-Par Conference, pages 411–420, Lisbon, Portugal,
September 2005.

[13] Aske Plaat, Jonathan Schaeffer, Wim Pijls, and Arie de Bruin.
Best-First Fixed-Depth Minimax Algorithms. Artificial Intelligence,
87(1–2):255–293, November 1996.

[14] Rob V. van Nieuwpoort, Jason Maassen, Andrei Agapi, Ana
Oprescu, and Thilo Kielmann. Experiences Deploying Parallel
Applications on a Large-scale Grid. In EXPGRID - Experimental
Grid testbeds for the assessment of large-scale distributed applications and
tools, workshop in conjunction with HPDC-15, june 2006.

[15] J. Rose. LocusRoute: A Parallel Global Router for Standard
Cells. Design Automation Conference, pages 189–195, 1988.

[16] Gosia Wrzesińska, Jason Maassen, Kees Verstoep, and Henri E.
Bal. Satin++: Divide-and-Share on the Grid. In 2nd IEEE Inter-
national Conference on e-Science and Grid Computing, Amsterdam, The
Netherlands, 2007.

http://jakarta.apache.org/bcel

References 153

[17] Henry C. Baker, Jr. and Carl Hewitt. The Incremental Garbage
Collection of Processes. In Proceedings of the 1977 Symposium on Ar-
tificial Intelligence and Programming Languages, pages 55–59, New York,
NY, USA, 1977. ACM.

[18] Rob V. van Nieuwpoort, Thilo Kielmann, and Henri E. Bal. Ef-
ficient Load Balancing for Wide-Area Divide-and-Conquer Ap-
plications. In Proceedings of the eighth ACM SIGPLAN symposium on
Principles and Practices of Parallel Programming, PPoPP ’01, pages 34–43,
New York, NY, USA, 2001. ACM.

[19] Frej Drejhammar, Christian Schulte, Per Brand, and Seif
Haridi. Flow Java: Declarative Concurrency for Java. In Catus-
cia Palamidessi, editor, Logic Programming, 2916 of Lecture Notes in
Computer Science, pages 346–360. Springer Berlin / Heidelberg, 2003.

[20] Ondr̆ej Lhoták and Laurie Hendren. Scaling Java Points-to Anal-
ysis Using Spark. In G. Hedin, editor, Compiler Construction, 2622
of Lecture Notes in Computer Science, pages 153–169. Springer Berlin /
Heidelberg, 2003.

[21] Amer Diwan, Kathryn S. McKinley, and J. Eliot B. Moss. Type-
based Alias Analysis. SIGPLAN Not., 33(5):106–117, May 1998.

[22] Michael Hind, Michael Burke, Paul Carini, and Jong-Deok
Choi. Interprocedural Pointer Alias Analysis. ACM Trans. Pro-
gram. Lang. Syst., 21(4):848–894, July 1999.

[23] John Whaley and Martin Rinard. Compositional Pointer and Es-
cape Analysis for Java Programs. In Proceedings of the 14th ACM SIG-
PLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA ’99, pages 187–206, New York, NY, USA, 1999.
ACM.

[24] Bruno Blanchet. Escape Analysis for Object-Oriented Lan-
guages: Application to Java. In Proceedings of the 14th ACM SIG-
PLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA ’99, pages 20–34, New York, NY, USA, 1999.
ACM.

[25] P. Hijma. Available from: https://github.com/pieterhijma/mcl.

https://github.com/pieterhijma/mcl

154 References

[26] Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon
Fatahalian, Mike Houston, and Pat Hanrahan. Brook for GPUs:
Stream Computing on Graphics Hardware. ACM Trans. Graph.,
23(3):777–786, August 2004.

[27] Christophe Dubach, Perry Cheng, Rodric Rabbah, David F. Ba-
con, and Stephen J. Fink. Compiling a High-Level Language for
GPUs. In Proceedings of the 33rd ACM SIGPLAN conference on Pro-
gramming Language Design and Implementation, PLDI ’12, pages 1–12,
New York, NY, USA, 2012. ACM.

[28] Leslie G. Valiant. A Bridging Model for Parallel Computation.
Commun. ACM, 33(8):103–111, August 1990.

[29] Qiming Hou, Kun Zhou, and Baining Guo. BSGP: Bulk-
Synchronous GPU Programming. ACM Trans. Graph., 27:19:1–19:12,
August 2008.

[30] Guy E. Blelloch. Programming Parallel Algorithms. Commun.
ACM, 39(3):85–97, 1996.

[31] Lars Bergstrom and John Reppy. Nested Data-Parallelism on the
GPU. In Proceedings of the 17th ACM SIGPLAN International Conference
on Functional Programming, ICFP ’12, pages 247–258, New York, NY,
USA, 2012. ACM.

[32] Bryan Catanzaro, Michael Garland, and Kurt Keutzer. Cop-
perhead: Compiling an Embedded Data Parallel Language. In
Proceedings of the 16th ACM symposium on Principles and Practice of
Parallel Programming, PPoPP ’11, pages 47–56, 2011.

[33] Chris J. Newburn, Byoungro So, Zhenying Liu, Michael Mc-
Cool, Anwar Ghuloum, Stefanus Du Toit, Zhi Gang Wang,
Zhao Hui Du, Yongjian Chen, Gansha Wu, Peng Guo, Zhanglin
Liu, and Dan Zhang. Intel’s Array Building Blocks: A Retar-
getable, Dynamic Compiler and Embedded Language. In Proceed-
ings of the 9th Annual IEEE/ACM International Symposium on Code Gen-
eration and Optimization, CGO ’11, pages 224–235, 2011.

[34] James Jeffers and James Reinders. Intel Xeon Phi Coprocessor High
Performance Programming. Newnes, 2013. ISBN: 9780124104143.

References 155

[35] Dave Cunningham, Rajesh Bordawekar, and Vijay Saraswat.
GPU Programming in a High Level Language: Compiling X10
to CUDA. In Proceedings of the 2011 ACM SIGPLAN X10 Workshop,
X10 ’11, pages 8:1–8:10, New York, NY, USA, 2011. ACM.

[36] Jing Guo, Jeyarajan Thiyagalingam, and Sven-Bodo Scholz.
Breaking the GPU Programming Barrier with the Auto-
Parallelising SAC Compiler. In Proceedings of the sixth workshop on
Declarative Aspects of Multicore Programming, DAMP ’11, pages 15–24,
New York, NY, USA, 2011. ACM.

[37] Bradford Larsen. Simple Optimizations for an Applicative Ar-
ray Language for Graphics Processors. In Proceedings of the sixth
workshop on Declarative Aspects of Multicore Programming, DAMP ’11,
pages 25–34, New York, NY, USA, 2011. ACM.

[38] Sean Lee, Vinod Grover, Gabriele Keller, and Manuel M.T.
Chakravarty. GPU Kernels as Data-Parallel Array Computa-
tions in Haskell. In Workshop on Exploiting Parallelism using GPUs and
other Hardware-Assisted Methods (EPHAM 2009), 2009.

[39] Manuel M.T. Chakravarty, Gabriele Keller, Sean Lee,
Trevor L. McDonell, and Vinod Grover. Accelerating Haskell
Array Codes with Multicore GPUs. In Proceedings of the sixth work-
shop on Declarative Aspects of Multicore Programming, DAMP ’11, pages
3–14, 2011.

[40] Koen Claessen, Mary Sheeran, and Bo Joel Svensson. Expres-
sive Array Constructs in an Embedded GPU Kernel Program-
ming Language. In Proceedings of the 7th workshop on Declarative As-
pects and Applications of Multicore Programming, DAMP ’12, pages 21–30,
New York, NY, USA, 2012. ACM.

[41] Geoffrey Mainland and Greg Morrisett. Nikola: Embedding
Compiled GPU Functions in Haskell. SIGPLAN Not., 45(11):67–78,
September 2010.

[42] Yi Yang, Ping Xiang, Jingfei Kong, and Huiyang Zhou. A
GPGPU Compiler for Memory Optimization and Parallelism
Management. In Proceedings of the 2010 ACM SIGPLAN conference
on Programming Language Design and Implementation, PLDI ’10, pages
86–97, 2010.

156 References

[43] Chenxi Wang, Kang Kang, Maohua Zhu, and Yangdong Deng.
A Polyhedral Modeling Based Source-to-Source Code Optimiza-
tion Framework for GPGPU. In 2012 IEEE 26th Intl. Parallel and
Distributed Processing Symp. Workshops & PhD Forum, pages 1964–1970,
2012.

[44] D. Buono, M. Danelutto, S. Lametti, and M. Torquati. Parallel
Patterns for General Purpose Many-Core. In 21st Euromicro Int.
Conf. on Parallel, Distributed and Network-Based Processing (PDP), pages
131–139, Feb 2013.

[45] Mudassar Majeed, Usman Dastgeer, and Christoph Kessler.
Cluster-SkePU: A Multi-Backend Skeleton Programming Library
for GPU Clusters. In Proc. of the Int. Conf. on Par. and Dist. Proc.
Techn. and Appl. (PDPTA), Las Vegas, USA, July 2013.

[46] Cedric Nugteren and Henk Corporaal. Introducing ‘Bones’:
A Parallelizing Source-to-source Compiler Based on Algorithmic
Skeletons. In Proceedings of the 5th Annual Workshop on General Pur-
pose Processing with Graphics Processing Units, GPGPU-5, pages 1–10,
New York, NY, USA, 2012. ACM.

[47] Kiminori Matsuzaki, Kazuhiko Kakehi, Hideya Iwasaki, Zhen-
jiang Hu, and Yoshiki Akashi. A Fusion-Embedded Skeleton Li-
brary. In Marco Danelutto, Marco Vanneschi, and Domenico
Laforenza, editors, Euro-Par 2004 Parallel Processing, 3149 of Lecture
Notes in Computer Science, pages 644–653. Springer Berlin Heidelberg,
2004.

[48] M. Aldinucci, S. Gorlatch, C. Lengauer, and S. Pelagatti. To-
wards Parallel Programming by Transformation: The FAN Skele-
ton Framework. Parallel Algorithms and Applications, 16(2):87–121,
2001.

[49] Shigeyuki Sato and Hideya Iwasaki. A Skeletal Parallel Frame-
work with Fusion Optimizer for GPGPU Programming. In Zhen-
jiang Hu, editor, Programming Languages and Systems, 5904 of Lecture
Notes in Computer Science, pages 79–94. Springer Berlin Heidelberg, 2009.

[50] Hassan Chafi, Arvind K. Sujeeth, Kevin J. Brown, HyoukJoong
Lee, Anand R. Atreya, and Kunle Olukotun. A Domain-Specific

References 157

Approach to Heterogeneous Parallelism. In Proceedings of the 16th
ACM symposium on Principles and Practice of Parallel Programming,
PPoPP ’11, pages 35–46, 2011.

[51] Luke Cartey, Rune Lyngsø, and Oege de Moor. Synthesising
Graphics Card Programs from DSLs. In Proceedings of the 33rd ACM
SIGPLAN conference on Programming Language Design and Implementa-
tion, PLDI ’12, pages 121–132, 2012.

[52] Sandra Wienke, Paul Springer, Christian Terboven, and Dieter
an Mey. OpenACC - First Experiences with Real-World Appli-
cations. In Christos Kaklamanis, Theodore Papatheodorou, and
Paul Spirakis, editors, Euro-Par 2012 Parallel Processing, 7484 of Lec-
ture Notes in Computer Science, pages 859–870. Springer Berlin / Heidel-
berg, 2012.

[53] Seyong Lee and Jeffrey S. Vetter. OpenARC: Open Accelerator
Research Compiler for Directive-based, Efficient Heterogeneous
Computing. In Proceedings of the 23rd International Symposium on High-
performance Parallel and Distributed Computing, HPDC ’14, pages 115–
120, New York, NY, USA, 2014. ACM.

[54] Tianyi David Han and Tarek S. Abdelrahman. hiCUDA: High-
Level GPGPU Programming. IEEE Transactions on Parallel and Dis-
tributed Systems, 22(1):78–90, January 2011.

[55] Seyong Lee and Rudolf Eigenmann. OpenMPC: Extended
OpenMP Programming and Tuning for GPUs. In Proceedings of
the 2010 ACM/IEEE International Conference for High Performance Com-
puting, Networking, Storage and Analysis, SC ’10, pages 1–11, Washington,
DC, USA, 2010. IEEE Computer Society.

[56] Seyong Lee, Seung-Jai Min, and Rudolf Eigenmann. OpenMP to
GPGPU: a Compiler Framework for Automatic Translation and
Optimization. In Proceedings of the 14th ACM SIGPLAN symposium on
Principles and Practice of Parallel Programming, PPoPP ’09, pages 101–
110, New York, NY, USA, 2009. ACM.

[57] Seyong Lee and Jeffrey S. Vetter. Early Evaluation of
Directive-Based GPU Programming Models for Productive Ex-
ascale Computing. In Proceedings of the International Conference on

158 References

High Performance Computing, Networking, Storage and Analysis, SC ’12,
pages 23:1–23:11, Los Alamitos, CA, USA, 2012. IEEE Computer Society
Press.

[58] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron.
Scalable Parallel Programming with CUDA. Queue, 6(2):40–53,
2008.

[59] J.E. Stone, D. Gohara, and G. Shi. OpenCL: A Parallel Program-
ming Standard for Heterogeneous Computing Systems. Comp. in
Science & Eng., 12(3):66–73, 2010.

[60] U. Lopez-Novoa, A. Mendiburu, and J. Miguel-Alonso. A Sur-
vey of Performance Modeling and Simulation Techniques for
Accelerator-Based Computing. IEEE Transactions on Parallel and
Distributed Systems, 26(1):272–281, Jan 2015.

[61] Martin Burtscher, Byoung-Do Kim, Jeff Diamond, John Mc-
Calpin, Lars Koesterke, and James Browne. PerfExpert: An
Easy-to-Use Performance Diagnosis Tool for HPC Applications.
In Proceedings of the 2010 ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis, SC ’10, pages
1–11, Washington, DC, USA, 2010. IEEE Computer Society.

[62] Ashay Rane, Saurabh Sardeshpande, and James Browne. Poster:
Determining Code Segments That Can Benefit from Execution
on GPUs. In Proceedings of the 2011 Companion on High Performance
Computing Networking, Storage and Analysis Companion, SC ’11 Compan-
ion, pages 55–56, New York, NY, USA, 2011. ACM.

[63] A Rane, J Browne, and L Koesterke. PerfExpert and MACPO:
Which code segments should (not) be ported to MIC. In TACC-
Intel Highly Parallel Computing Symposium, 2012.

[64] Leonardo Fialho and James Browne. Framework and Modular
Infrastructure for Automation of Architectural Adaptation and
Performance Optimization for HPC Systems. In Julian Martin
Kunkel, Thomas Ludwig, and Hans Werner Meuer, editors, Super-
computing, 8488 of Lecture Notes in Computer Science, pages 261–277.
Springer International Publishing, 2014.

References 159

[65] N. Bell and J. Hoberock. Thrust: A Productivity-Oriented Li-
brary for CUDA. In GPU Computing Gems, pages 359–371. Morgan
Kaufmann Publishers, 2011.

[66] Kayvon Fatahalian, Timothy J. Knight, Mike Houston, Mat-
tan Erez, Daniel Reiter Horn, Larkhoon Leem, Ji Young Park,
Manman Ren, Alex Aiken, William J. Dally, and Pat Hanrahan.
Sequoia: Programming the Memory Hierarchy. In Proceedings of
the ACM/IEEE SC 2006 Conference, nov. 2006.

[67] Kyle L. Spafford and Jeffrey S. Vetter. Aspen: A Domain
Specific Language for Performance Modeling. In Proceedings of the
International Conference on High Performance Computing, Networking,
Storage and Analysis, SC ’12, pages 84:1–84:11, 2012.

[68] Reda A. Ammar. Hierarchical Performance Modeling and Anal-
ysis of Distributed Software Systems. In Sanguthevar Ra-
jasekaran and John Reif, editors, Handbook of Parallel Computing:
Models, Algorithms and Applications, chapter 12. Chapman & Hall, 1 edi-
tion, 2007. ISBN: 9781584886235.

[69] Paul Klint, Tijs van der Storm, and Jurgen Vinju. EASY Meta-
programming with Rascal. In Fernandes, João and Lämmel, Ralf
and Visser, Joost and Saraiva, João, editor, Generative and Trans-
formational Techniques in Software Engineering III, 6491 of Lecture Notes
in Computer Science, pages 222–289. Springer Berlin / Heidelberg, 2011.

[70] Ben van Werkhoven, Jason Maassen, Henri E. Bal, and Frank J.
Seinstra. Optimizing convolution operations on GPUs using
adaptive tiling. Fut. Gen. Comp. Systems, 30:14 – 26, 2014.

[71] Jianbin Fang, Ana Lucia Varbanescu, and Henk Sips. Identifying
the Key Features of Intel Xeon Phi: A Comparative Approach.
Technical report, Delft University of Technology, 2013.

[72] S. Grauer-Gray, Lifan Xu, R. Searles, S. Ayalasomayajula, and
J. Cavazos. Auto-tuning a high-level language targeted to GPU
codes. In Innovative Parallel Computing (InPar), 2012, pages 1–10, 2012.

[73] Xing Liu, Mikhail Smelyanskiy, Edmond Chow, and Pradeep
Dubey. Efficient Sparse Matrix-vector Multiplication on x86-
based Many-core Processors. In Proceedings of the 27th International

160 References

ACM Conference on International Conference on Supercomputing, ICS ’13,
pages 273–282, 2013.

[74] Corinne Ancourt and François Irigoin. Scanning Polyhedra with
DO Loops. In Proceedings of the Third ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPOPP ’91, pages 39–50,
New York, NY, USA, 1991. ACM.

[75] Samuel Williams, Andrew Waterman, and David Patterson.
Roofline: An Insightful Visual Performance Model for Multicore
Architectures. Commun. ACM, 52:65–76, April 2009.

[76] Sabela Ramos and Torsten Hoefler. Modeling Communication
in Cache-Coherent SMP Systems: A Case-study with Xeon Phi.
In Proceedings of the 22nd International Symposium on High-performance
Parallel and Distributed Computing, HPDC ’13, pages 97–108, New York,
NY, USA, 2013. ACM.

[77] DAS-4: Distributed ASCI Supercomputer 4 [online]. Available from:
http://www.cs.vu.nl/das4.

[78] TOP500 Supercomputer Sites [online]. Available from: http://www.
top500.org.

[79] Kevin Beason. smallpt: Global illumination in 99 lines of C++
[online]. 2008. Available from: http://www.kevinbeason.com/smallpt.

[80] David Bucciarelli. SmallptGPU [online]. 2009. Available from: http:
//davibu.interfree.it/opencl/smallptgpu/smallptGPU.html.

[81] Ping Xiang, Yi Yang, and Huiyang Zhou. Warp-Level Divergence
in GPUs: Characterization, Impact, and Mitigation. In Int. Symp.
on High Perf. Comp. Arch. (HPCA), pages 284–295, 2014.

[82] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified
Data Processing on Large Clusters. Commun. ACM, 51(1):107–113,
January 2008.

[83] Jeff A. Stuart and John D. Owens. Multi-GPU MapReduce on
GPU Clusters. In Int. Par. and Dist. Proc. Sym. (IPDPS), pages 1068–
1079, Los Alamitos, CA, USA, 2011. IEEE Comp. Society.

http://www.cs.vu.nl/das4
http://www.top500.org
http://www.top500.org
http://www.kevinbeason.com/smallpt
http://davibu.interfree.it/opencl/smallptgpu/smallptGPU.html
http://davibu.interfree.it/opencl/smallptgpu/smallptGPU.html

References 161

[84] Max Grossman, Mauricio Breternitz, and Vivek Sarkar.
HadoopCL: MapReduce on Distributed Heterogeneous Platforms
Through Seamless Integration of Hadoop and OpenCL. In
IPDPSW ’13, pages 1918–1927, Washington, DC, USA, 2013. IEEE Com-
puter Society.

[85] Tom White. Hadoop: The Definitive Guide. O’Reilly Media, Inc., 1st
edition, 2009.

[86] G. Frost. APARAPI: API for data parallel Java [online]. 2011.
Available from: https://code.google.com/p/aparapi.

[87] Ismail El-Helw, Rutger Hofman, and Henri E. Bal. Scaling
MapReduce Vertically and Horizontally. In SC ’14: Proc. of the
2014 ACM/IEEE conf. on Supercomputing. ACM, 2014.

[88] Javier Bueno, Judit Planas, Alejandro Duran, Rosa M. Badia,
Xavier Martorell, Eduard Ayguade, and Jesus Labarta. Pro-
ductive Programming of GPU Clusters with OmpSs. In Int. Par.
and Dist. Proc. Sym. (IPDPS), pages 557–568, Los Alamitos, CA, USA,
2012. IEEE Comp. Society.

[89] J.M. Perez, R.M. Badia, and J. Labarta. A Dependency-Aware
Task-Based Programming Environment for Multi-Core Architec-
tures. In IEEE Int. Conf. on Cluster Computing, pages 142 –151, Sep.
2008.

[90] Judit Planas, Rosa M. Badia, Eduard Ayguadé, and Jesús
Labarta. Self-Adaptive OmpSs Tasks in Heterogeneous Envi-
ronments. In Int. Par and Dist. Proc. Sym. (IPDPS), pages 138–149,
Washington, DC, USA, 2013. IEEE Computer Society.

[91] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and
Pierre-André Wacrenier. StarPU: a unified platform for task
scheduling on heterogeneous multicore architectures. Concurrency
and Computation: Practice and Experience, 23(2):187–198, 2011.

[92] Steffen Ernsting and Herbert Kuchen. Algorithmic skeletons
for multi-core, multi-GPU systems and clusters. International Jour-
nal of High Performance Computing and Networking, 7(2):129–138, 2012.

https://code.google.com/p/aparapi

162 References

[93] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, T. Herault,
and J.J. Dongarra. PaRSEC: Exploiting Heterogeneity to En-
hance Scalability. Computing in Science Engineering, 15(6):36–45, Nov
2013.

[94] George Bosilca, Aurelien Bouteiller, Anthony Danalis,
Thomas Herault, Piotr Luszczek, and Jack J. Dongarra. Dense
Linear Algebra on Distributed Heterogeneous Hardware with a
Symbolic DAG Approach. In Samee U. Khan, Lizhe Wang, and
Albert Y. Zomaya, editors, Scalable Computing and Communications:
Theory and Practice, pages 699–733. John Wiley & Sons, Jan 2013.

[95] R. Wester, C. Baaij, and J. Kuper. A two step hardware design
method using CλaSH. In Field Programmable Logic and Applications
(FPL), 2012 22nd International Conference on, pages 181–188, Aug 2012.

List of Publications

Cashmere: Heterogeneous Many-Core Computing. Pieter Hijma, Ceriel J.H.
Jacobs, Rob V. van Nieuwpoort, and Henri E. Bal. In 29th IEEE International
Parallel & Distributed Processing Symposium (IPDPS 2015), 25-29 May 2015,
Hyderabad, India., 2015.

Stepwise-refinement for performance: a methodology for many-core program-
ming. Pieter Hijma, Rob V. van Nieuwpoort, Ceriel J.H. Jacobs, and Henri E.
Bal. Concurrency and Computation: Practice and Experience, 2015. http:
//dx.doi.org/10.1002/cpe.3416.

Programming Many-Cores on Multiple Levels of Abstraction. Pieter Hijma,
Rob V. van Nieuwpoort, and Henri E. Bal. In Proceedings of the 5th USENIX
Conference on Hot Topics in Parallelism (Poster presentation), HotPar ’13,
pages 1–7, Berkeley, CA, USA, 2013. USENIX Association.

Generating synchronization statements in divide-and-conquer programs. Pieter
Hijma, Rob V. van Nieuwpoort, Ceriel J.H. Jacobs, and Henri E. Bal. Parallel
Computing, 38(1-2):75 – 89, January–February 2012.

Automatically Inserting Synchronization Statements in Divide-and-Conquer Pro-
grams. Pieter Hijma, Rob V. van Nieuwpoort, Ceriel J.H. Jacobs, and Henri E.
Bal. In 2011 IEEE International Symposium on Parallel and Distributed Pro-
cessing Workshops and Phd Forum (IPDPSW), pages 1233–1241, May 2011.

Towards an Effective Unified Programming Model for Many-Cores. Ana L.
Varbanescu, Pieter Hijma, Rob V. van Nieuwpoort, and Henri E. Bal. In
2011 IEEE International Symposium on Parallel and Distributed Processing
Workshops and Phd Forum (IPDPSW), pages 681–692, May 2011.

http://dx.doi.org/10.1002/cpe.3416
http://dx.doi.org/10.1002/cpe.3416

164 List of Publications

Samenvatting

Het programmeren van many-cores op
meerdere abstractieniveaus

De afgelopen decennia hebben we een exponentiële groei van het aantal transis-
tors op een computerchip meegemaakt. Dit ging gepaard met een exponentiële
groei van de kloksnelheid van processors. Dit zorgde ervoor dat we automa-
tisch een hogere performance kregen zonder dat de software aangepast hoefde
te worden.

Echter, rond 2005 bleek dat de kloksnelheid niet verder omhoog kon, terwijl
het aantal transistors door kon blijven groeien. Dit betekende het einde van het
“single-core” tijdperk waarin processors een enkele rekenkern of “compute-core”
bevatte. Dit type processor was sterk geoptimaliseerd om een stroom van se-
quentiële instructies, instructies die na elkaar worden uitgevoerd, te verwerken.

Omdat het aantal transistors op een chip door kon blijven groeien, maar dit
niet gebruikt kon worden om de kloksnelheid op te voeren, kregen we “multi-
core” processoren met meerdere rekenkernen. Echter, dit betekende een funda-
mentele verandering van hoe men een processor programmeert: Om een proces-
sor optimaal te benutten, is het nodig een parallel programma aan te leveren,
met meerdere stromen van instructies die mogelijkerwijs met elkaar moeten
synchroniseren.

Deze multi-core processors bevatten nog steeds veel optimalisaties om se-
quentiële instructiestromen te optimaliseren wat veel ruimte op de chip kost,
ruimte die ook gebruikt zou kunnen worden om rekenkernen toe te voegen. Dit
proefschrift gaat over many-core processoren, waarbij zoveel mogelijk ruimte
wordt benut om te rekenen. Dit betekent dat deze processors volledig toege-
spitst zijn op snel rekenen, maar alleen voor programma’s die veel parallellisme

166 Samenvatting

uitdrukken.
Parallel programmeren is moeilijk, vooral als het gaat om many-core proces-

soren omdat deze processoren veel specifieke hardware eigenschappen bevatten
om nog meer performance te verkrijgen. Dit resulteert in een ingewikkelde
hardware interface naar de programmeur toe, maar zorgt er ook voor dat een
programma factors sneller kan draaien, mits men goed rekening houdt met alle
hardware-specifieke eigenschappen.

In dit proefschrift nemen wij het volgende standpunt in: Wij beschouwen
het single-core tijdperk als een fortuinlijke situatie waarin we automatisch snel-
lere programma’s kregen met nieuwere generaties processors. Het multi-core
tijdperk beschouwen wij vervolgens als een overgangsperiode naar een tijdperk
waarin we te maken krijgen met allerlei limieten van de hardware, zoals een
limiet op de kloksnelheid of een limiet op de snelheid van het geheugen. Om
toch performance te krijgen, is het vervolgens nodig om met allerlei hardware-
specifieke details rekening te houden om de processor optimaal te benutten.
Wij zien many-core processors als een eerste manifestatie van deze trend. In dit
proefschrift beschouwen wij deze limieten en problemen als een programmeer-
probleem: Uiteindelijk zullen we allerlei hardwarelimieten tegenkomen wat zal
leiden tot een ingewikkelde hardwareinterface waardoor de processoren steeds
moeilijker te programmeren zijn. De hoofdvraag van dit proefschrift is hoe we
effectief many-core hardware kunnen programmeren terwijl we nog steeds goede
performance halen.

In dit proefschrift presenteren wij twee programmeersystemen, Many-Core
Levels (MCL) en Cashmere, die een bijdrage leveren aan het programmeerpro-
bleem dat hierboven beschreven is. Cashmere bouwt voort op een al bestaand
systeem genaamd Satin, maar integreert hierbij MCL. Hoofdstuk 2 gaat nog
niet over many-cores, maar presenteert een analyse op Satin programma’s. Deze
analyse leidde tot een aantal belanrijke conclusies die het ontwerp van MCL en
Cashmere beïnvloed hebben.

Hoofdstuk 3 presenteert Many-Core Levels. MCL is een programmeersys-
teem voor many-core processors dat het mogelijk maakt om deze processors op
meerdere abstractieniveaus te programmeren.

Programmeren, zodanig dat je rekening houdt met allerlei hardware-specifieke
details noemen wij programmeren op een laag niveau. Aan de andere kant,
programmeren op een hoog niveau geeft een programmeur de mogelijkheid te
abstraheren van allerlei details en het programma op te schrijven zonder re-
kening te houden met de onderliggende hardware. Dit heeft allerlei voordelen,
zoals bijvoorbeeld portabiliteit. Het programma is algemeen genoeg om vertaald
te worden naar verschillende soorten hardware. Daarnaast is het programma

167

vaak eenvoudiger uit te drukken en daardoor beter te onderhouden. Echter, de
programmeur verliest ook controle over de hardware. Nu is dit vaak niet een
probleem, maar many-core processoren zijn enkel en alleen bedoeld om perfor-
mance te behalen en in dat geval doen de hardware details er wel toe. Voor
het gebied van many-cores vormt dit dan ook een interessante afweging. Hoofd-
stuk 3 presenteert oplossingen voor deze afweging.

Een andere belangrijke bijdrage van dit hoofdstuk is dat MCL de program-
meur een gestructureerde methodologie biedt om many-core processors te pro-
grammeren. Wij noemen deze methodologie “stapsgewijs verfijnen voor perfor-
mance”.

Hoofdstuk 4 presenteert het programmeersysteem Cashmere. Cashmere in-
tegreert Satin en MCL om een systeem te verkrijgen voor heterogene cluster-
computers van many-cores. Hieronder verstaan wij een computer die bestaat uit
een groep processors met verschillende types many-cores die aaneengeschakeld
zijn met een snel netwerk. Dit soort computers is bedoeld om grote rekenpro-
blemen op te lossen. Een clustercomputer is al moeilijk te programmeren, een
clustercomputer met many-cores is nog moeilijker te programmeren, maar een
clustercomputer met verschillende typen many-cores nóg veel moeilijker. In dit
hoofdstuk laten wij zien dat Cashmere zeer goed schaalt en zeer goede perfor-
mance behaalt met een elegant programmeermodel dat nauwelijks aangepast is
ten opzichte van Satin.

In hoofdstuk 5 concluderen wij dat MCL en Cashmere een belangrijke bij-
drage leveren aan de programmeerproblemen die many-core hardware met zich
meebrengt, hardware waarbij men rekening moet houden met allerlei hardware-
specifieke details om hoge performance te behalen.

	Acknowledgements
	Contents
	Introduction
	Background
	Scope
	Problem Statement and Research Questions
	Outline of this thesis

	Generating Synchronization Statements
	Introduction
	The Satin programming model
	Problem description
	Implementation
	Basic algorithm
	Analysis phase

	Evaluation
	Evaluation per application

	Discussion
	Precision of the Alias-Analysis
	Improving Sync Generation with Programmer Support
	Cilk
	Futures

	Programming model design considerations
	Related Work
	Conclusion

	Stepwise-refinement for performance
	Introduction
	Related work
	Programming Many-cores
	Other related Work

	Stepwise-refinement for Performance
	Philosophy
	Methodology

	Design of MCL
	Overview
	Hardware Description Language HDL
	Programming Language MCPL
	Compiler

	Example: Matrix Multiplication
	GTX480
	Xeon Phi
	Summary

	Implementation
	Translation between Abstraction Levels
	Operation Statistics
	Data Reuse Analysis
	Cache Analysis
	Performance Feedback Functions

	Evaluation
	Discussion
	Conclusion

	Cashmere: Heterogeneous many-core computing
	Introduction
	Cashmere Programming Model
	Satin
	MCL
	Cashmere programming model

	Implementation
	MCL
	Cashmere

	Methodology
	Evaluation
	Kernel performance
	Scalability
	Heterogeneity

	Related Work
	Conclusion

	Conclusions
	Summary
	Future Directions
	Conclusions

	Many-Core Levels Language Descriptions
	Hardware Description Language HDL
	Programming Language

	Translating to a lower level of abstraction
	The top-level functions
	Finding equivalent ParGroups
	Translating memory spaces
	Translating ForEach statements

	References
	List of Publications
	Samenvatting

