
Track 2 Lightning Talk: Software Development Best

Practices at the Netherlands eScience Center

Jason Maassen Niels Drost Willem van Hage Rob van Nieuwpoort

Netherlands eScience Center, Amsterdam, The Netherlands

Email: j.maassen,n.drost,w.vanhage,r.vannieuwpoort@esciencecenter.nl

Abstract—In this talk we present the software development
best practices that the Netherlands eScience Center has developed
during the 90+ projects it has participated in, in the 5 years of
its existence.

I. INTRODUCTION

The Netherlands eScience Center (NLeSC) [1] is a Dutch

funding agency and scientific software development exper-

tise center that supplies specialized manpower (eScience Re-

search Engineers) along with research funding for innovative

eScience projects to all of research in the Netherlands.

The main goal of the NLeSC is to apply technological

innovation developed in computer and data science research

to enhance other research fields (ranging from climate science

to archeology). Software sustainability plays an important role

in achieving this goal. We are only successful if the software

created in our projects has a lasting impact, and to do so the

software needs to be (at least) reliable, reusable, maintainable

and well documented.

One of the problems faced by the NLeSC is the sheer

diversity of our projects. Project topics range from fields

that are traditionally strong in adapting computer and data

science, such as climate science, astronomy or high-energy

physics, to fields only just discovering the possibilities, such

as archeology, ecology or law. As a result of this diversity,

there is no one-size-fits-all solution to software development

and sustainability.

We do, however, see a set of best-practices which can be

applied to most software development we perform in our

projects. We have gathered these in a guide [2], which we take

as a staring point in all of our projects. This guide is a living

document, created by and for the eScience Research Engineers

working in our center and the project partners we cooperate

with. It slowly changes with our increasing experience and the

insights we gain from our projects, and due to the increasing

number of software development tools available on line. Like

for most of our software, we use GitHub [3] to cooperatively

develop the guide.

In the remainder of this document we will highlight a few

of the best practices described in our guide. Although some

of these may initially appear to be stating the obvious, we

often see that explicitly discussing them helps our project

partners understand why we work in a certain way, and it often

stimulates them to think about software development issues

they originally have not given much thought. We would like

to stress that we do not claim our guide to be a one-size-fits-

all solution. It works well for us, however, and we feel other

institutes may learn from our experiences.

II. BEST PRACTICES

In this section we highlight a few of the software develop-

ment best practices we apply in our projects.

A. Use and create open source software whenever possible.

Open source is important part of reproducible research, next

to open access and open data. Although the latter two receive a

lot of attention from funding agencies and publishers, we feel

open source is just as important, as it is often the scientific

instrument used to produce the results. When creating open

source software, it needs to be findable, accessible and usable.

Claiming anyone may have a copy of your research software

after they send you an email is not enough to make it open

source. It need to be easy to find on-line, anyone should be

able to download it, it needs proper instructions on how to get

it to run, and most importantly, contain a proper open source

license. At the NLeSC, we use GitHub [4] for our projects.

Practically all of our software is in public repositories and

uses the Apache-2 license [5]. There are several alternatives

to both.

B. Use version control from the start.

Although the complexity of version control systems can

be daunting to less experienced developers, they have clear

benefits when developing software in a team. Although it is

possible to host version management systems on the institutes

private servers, it significantly reduces the findability and

accessibility of the code. We prefer to use public services

instead, such as GitHub [4], BitBucket [6], etc.

C. Branching model, coding style, contributor guide, code of

conduct, ...

A branching model is an agreement on how (and how

often) to branch and merge code in a version control system.

Explicitly picking a branching model helps to ensure that

multiple developers can smoothly cooperate on a single piece

of software. We prefer to use the GitHub Flow model [7], as

it is a lightweight approach also suitable for smaller teams.

Picking a coding style improves the readability and main-

tainability of the code, as it ensures all developers use the

same style. A code style can easily be configured via editor

plugins such as EditorConfig [8].



A contributor guide explains how developers can contribute

to the code, while the code of conduct sets the rules on

how developers should behave when communicating with each

other. Although these seem to be minor details, thinking about

them at the start of a project and clearly communicating them

can save a lot of discussion afterwards.

D. Testing, code quality tools, code reviews.

Unit and integration testing and code reviews are well

known ways to improve software quality. If possible, we try

to include code reviews into your version management. For

testing we use several of the cloud based continuous inte-

gration services available. These integrate into version man-

agement, compiling and running test automatically whenever

code is committed. At NLeSC we mainly use Travis CI [9],

AppVeyor [10], and Scrutinizer CI [11]. Each offers different

features, and a single software project often needs to use a

combination of them to fully cover all expected user environ-

ments. For example, we often use a combination of Travis CI

to test in Linux and MacOS environments, and AppVeyor to

test in Windows.

When we need to test our software against servers running a

specific stack of services, such as a databases, webservers, or

cluster resource managers (i.e., TORQUE [12] or Slurm [13]),

we use Docker [14] to instantiate these services in the con-

tinuous integration environment. This also provides an easy

way to test against different versions or configurations of these

services by simply creating multiple docker containers, one for

each version.

We use services such as Codecov [15] analyze the coverage

of the tests, and code quality tools such as Codacy [16] or

SonarQube [17] to detect well known bugs, vulnerabilities and

code smells.

Many of the tools mentioned above can produce badges

which show their results, e.g., if the software is building

correctly, what the test coverage is, a grade for the code

quality, etc. We publishing these badges on the GitHub pages

of the software to show that we take testing and code quality

seriously.

E. Software releases, package managers, citable software.

Although GitHub makes it very easy to create software

releases, it is not necessarily the best way to reach users. In our

experience, only very few users directly download software

releases (or source for that matter) from GitHub. Instead,

they rely on (often programming language specific) package

managers and repositories such as PyPi [18], conda [19],

npm [20], The Central Repository (Maven) [21], or JCen-

ter [22]. Therefore, we always make our software releases

available in these repositories.

To ensure our software is citable, we create a DOI for

each release using Zenodo [23]. This requires very little effort

due to the integration of Zenodo into GitHub. A DOI is

automatically generated at the moment a release is created,

and a copy of the release is stored at Zenodo. As with the

code quality tools, a badge can be used to publish the DOI of

the latest release on the GitHub page.

REFERENCES

[1] Netherlands eScience Center, “The Netherlands eScience Center
website.” [Online]. Available: https://www.esciencecenter.nl

[2] ——, “Netherlands eScience Center Guide.” [Online]. Available:
https://www.gitbook.com/download/pdf/book/nlesc/guide

[3] ——, “Netherlands eScience Center Guide Repository.” [Online].
Available: https://github.com/nlesc/guide

[4] GitHub, “GitHub Source Code Hosting.” [Online]. Available:
http://github.com

[5] The Apache Software Foundation, “The Apache 2 License.” [Online].
Available: https://www.apache.org/licenses/LICENSE-2.0

[6] Atlassian, “Github Source Code Hosting.” [Online]. Available:
https://bitbucket.org

[7] GitHub, “GitHub Flow branch model.” [Online]. Available:
https://guides.github.com/introduction/flow/

[8] EditorConfig, “The EditorConfig file format and plugin collection.”
[Online]. Available: http://editorconfig.org/

[9] Travis CI, “Travis Continuous Integration Service.” [Online]. Available:
https://travis-ci.org

[10] AppVeyor Systems Inc., “AppVeyor Continuous Integration Service.”
[Online]. Available: https://www.appveyor.com

[11] scrutinizer-ci, “Scrutinizer Continuous Integration Service.” [Online].
Available: https://scrutinizer-ci.com/

[12] Adaptive Computing, “TORQUE Resource Manager.” [Online]. Avail-
able: http://www.adaptivecomputing.com/products/open-source/torque/

[13] SchedMD, “Slurm Workload Manager.” [Online]. Available:
https://slurm.schedmd.com/

[14] Docker Inc., “Docker Software Container Platform.” [Online]. Available:
https://www.docker.com

[15] Codecov, “Code Coverage Reporting Service.” [Online]. Available:
https://codecov.io

[16] Codacy, “Automated Code Reviews and Code Analytics.” [Online].
Available: https://www.codacy.com

[17] SonarQube, “SonarQube Software Quality Management Platform.”
[Online]. Available: https://www.sonarqube.org

[18] The Python Community, “PyPI, the Python Package Index.” [Online].
Available: https://pypi.python.org/pypi

[19] Continuum Analytics., “Conda: Package, dependency and
environment management for any language.” [Online]. Available:
https://conda.io/docs/

[20] npm Inc., “The package manager for JavaScript.” [Online]. Available:
https://www.npmjs.com/

[21] Sonartype Inc., “The Central Repository for Apache Maven packages.”
[Online]. Available: http://search.maven.org

[22] JFrog Bintray, “JCenter repository for Apache Maven packages.”
[Online]. Available: https://bintray.com/bintray/jcenter

[23] OpenAIRE, “Zenodo research data repository.” [Online]. Available:
https://zenodo.org


