
Satin: Simple and Efficient Java-based Grid Programming

Rob van Nieuwpoort, Jason Maassen, Thilo Kielmann, Henri E. Bal
Department of Computer Science, Vrije Universiteit, Amsterdam, The Netherlands

�
rob,jason,kielmann,bal � @cs.vu.nl

http://www.cs.vu.nl/ibis/

Abstract

Grid programming environments need to be both
portable and efficient to exploit the computational power of
dynamically available resources. In previous work, we have
presented the divide-and-conquer based Satin model for
parallel computing on clustered wide-area systems. In this
paper, we present the Satin implementation on top of our
new Ibis platform which combines Java’s write once, run
everywhere with efficient communication between JVMs.
We evaluate Satin/Ibis on the testbed of the EU-funded
GridLab project, showing that Satin’s load-balancing algo-
rithm automatically adapts both to heterogeneous proces-
sor speeds and varying network performance, resulting in
efficient utilization of the computing resources. Our results
show that when the wide-area links suffer from congestion,
Satin’s load-balancing algorithm can still achieve around
80% efficiency, while an algorithm that is not grid aware
drops to 26% or less.

1. Introduction

In computational grids, applications need to simultane-
ously tap the computational power of multiple, dynamically
available sites. The crux of designing grid programming en-
vironments stems exactly from the dynamic availability of
compute cycles: grid programming environments need to
be both portable to run on as many sites as possible, and
they need to be flexible to cope with different network pro-
tocols and dynamically changing groups of heterogeneous
compute nodes.

Existing programming environments are either portable
and flexible (Jini, Java RMI), or they are highly efficient
(MPI). The Global Grid Forum also has investigated pos-
sible grid programming models [19]. Recently, GridRPC
has been proposed as a grid programming model [31].
GridRPC allows writing grid applications based on the
manager/worker paradigm.

Unlike manager/worker programs, divide-and-conquer
algorithms operate by recursively dividing a problem into
smaller subproblems. This recursive subdivision goes on
until the remaining subproblem becomes trivial to solve.
After solving subproblems, their results are recursively re-
combined until the final solution is assembled. By allowing
subproblems to be divided recursively, the class of divide-
and-conquer algorithms subsumes the manager/worker al-
gorithms, thus enlarging the set of possible grid applica-
tions.

Of course, there are many kinds of applications that do
not lend themselves well to a divide-and-conquer algorithm.
However, we (and others) believe the class of divide-and-
conquer algorithms to be sufficiently large to justify its de-
ployment for hierarchical wide-area systems. Computations
that use the divide-and-conquer model include geometry
procedures, sorting methods, search algorithms, data clas-
sification codes, n-body simulations and data-parallel nu-
merical programs [34].

Divide-and-conquer applications may be parallelized by
letting different processors solve different subproblems.
These subproblems are often called jobs in this context.
Generated jobs are transferred between processors to bal-
ance the load in the computation. The divide-and-conquer
model lends itself well to hierarchically-structured systems
because tasks are created by recursive subdivision. This
leads to a task graph that is hierarchically structured, and
which can be executed with excellent communication local-
ity, especially on hierarchical platforms.

In previous work [27], we presented our Satin system for
divide-and-conquer programming on grid platforms. Satin
implements a very efficient load balancing algorithm for
clustered, wide-area platforms. So far, we could only eval-
uate Satin based on simulations in which all jobs have been
executed on one single, homogeneous cluster. In this work,
we evaluate Satin on a real grid testbed [2], consisting of
various heterogeneous systems, connected by the Internet.

In Section 2, we briefly present Satin’s programming
model and some simulator-based results that indicate the
suitability of Satin as a grid programming environment. In

1 i n t e r f a c e F i b I n t e r ex tends s a t i n . Spawnable �
2 p u b l i c long f i b (l ong n) ;
3 �
4

5 c l a s s Fib ex tends s a t i n . S a t i n O b j e c t
6 implements F i b I n t e r �
7 p u b l i c long f i b (l ong n) �
8 i f (n � 2) re turn n ;
9

10 l ong x = f i b (n � 1) ; / / spawned
11 l ong y = f i b (n � 2) ; / / spawned
12 sync () ;
13

14 re turn x + y ;
15 �
16

17 p u b l i c s t a t i c vo id main (S t r i n g [] a r g s) �
18 Fib f = new Fib () ;
19 l ong r e s = f . f i b (1 0) ;
20 f . sync () ;
21 System . o u t . p r i n t l n (” F ib 10 = ” + r e s) ;
22 �
23 �

Figure 1. Fib: an example divide-and-conquer
program in Satin.

Section 3, we present Ibis, our new Java-based grid pro-
gramming platform that combines Java’s “run everywhere”
paradigm with highly efficient yet flexible communication
mechanisms. In Section 4, we evaluate the performance of
Satin on top of Ibis in the GridLab testbed, spanning sev-
eral sites in Europe. Section 5 discusses related work, and
in Section 6 we draw conclusions.

2. Divide-and Conquer in Satin

Satin’s programming model is an extension of the single-
threaded Java model. To achieve parallel execution, Satin
programs do not have to use Java’s threads or Remote
Method Invocations (RMI). Instead, they use much sim-
pler divide-and-conquer primitives. Satin does allow the
combination of its divide-and-conquer primitives with Java
threads and RMIs. Additionally, Satin provides shared ob-
jects via RepMI. In this paper, however, we focus on pure
divide-and-conquer programs.

Satin expresses divide-and-conquer parallelism entirely
in the Java language itself, without requiring any new lan-
guage constructs. Satin uses so-called marker interfaces to
indicate that certain method invocations need to be consid-
ered for potentially parallel (so called spawned) execution,
rather than being executed synchronously like normal meth-
ods. Furthermore, a mechanism is needed to synchronize
with (wait for the results of) spawned method invocations.
With Satin, this can be expressed using a special interface,
satin.Spawnable, and the class satin.SatinObject. This

is shown in Fig. 1, using the example of a class Fib for
computing the Fibonacci numbers. First, an interface Fib-
Inter is implemented which extends satin.Spawnable. All
methods defined in this interface (here fib) are marked to
be spawned rather than executed normally. Second, the
class Fib extends satin.SatinObject and implements Fib-
Inter. From satin.SatinObject it inherits the sync method,
from FibInter the spawned fib method. Finally, the invok-
ing method (in this case main) simply calls Fib and uses
sync to wait for the result of the parallel computation.

Satin’s byte code rewriter generates the necessary code.
Conceptually, a new thread is started for running a spawned
method upon invocation. Satin’s implementation, however,
eliminates thread creation altogether. A spawned method
invocation is put into a local work queue. From the queue,
the method might be transferred to a different CPU where
it may run concurrently with the method that executed the
spawned method. The sync method waits until all spawned
calls in the current method invocation are finished; the re-
turn values of spawned method invocations are undefined
until a sync is reached.

Spawned method invocations are distributed across the
processors of a parallel Satin program by work stealing
from the work queues mentioned above. In [27], we
presented a new work stealing algorithm, Cluster-aware
Random Stealing (CRS), specifically designed for cluster-
based, wide-area (grid computing) systems. CRS is based
on the traditional Random Stealing (RS) algorithm that has
been proven to be optimal for homogeneous (single cluster)
systems [8]. We briefly describe both algorithms in turn.

2.1. Random Stealing (RS)

RS attempts to steal a job from a randomly selected peer
when a processor finds its own work queue empty, repeating
steal attempts until it succeeds [8, 34]. This approach mini-
mizes communication overhead at the expense of idle time.
No communication is performed until a node becomes idle,
but then it has to wait for a new job to arrive. On a single-
cluster system, RS is the best performing load-balancing al-
gorithm. On wide-area systems, however, this is not the
case. With � clusters, on average ���
	����������������� of all
steal requests will go to nodes in remote clusters, causing
significant wide-area communication overheads.

2.2. Cluster-aware Random Stealing (CRS)

In CRS, each node can directly steal jobs from nodes in
remote clusters, but at most one job at a time. Whenever a
node becomes idle, it first attempts to steal from a node in
a remote cluster. This wide-area steal request is sent asyn-
chronously: Instead of waiting for the result, the thief sim-
ply sets a flag and performs additional, synchronous steal

requests to randomly selected nodes within its own cluster,
until it finds a new job. As long as the flag is set, only lo-
cal stealing will be performed. The handler routine for the
wide-area reply simply resets the flag and, if the request
was successful, puts the new job into the work queue. CRS
combines the advantages of RS inside a cluster with a very
limited amount of asynchronous wide-area communication.
Below, we will show that CRS performs almost as good as
with a single, large cluster, even in extreme wide-area net-
work settings.

2.3. Simulator-based comparison of RS and CRS

A detailed description of Satin’s wide-area work steal-
ing algorithm can be found in [27]. We have extracted the
comparison of RS and CRS from that work into Table 1.
The run times shown in this table are for parallel runs with
64 CPUs each, either with a single cluster of 64 CPUS, or
with 4 clusters of 16 CPUs each.

The wide-area network between the virtual clusters has
been simulated with our Panda WAN simulator [17]. We
simulated all combinations of 20 ms and 200 ms roundtrip
latency with bandwidth capacities of 100 KByte/s and
1000 KByte/s. The tests had been performed on the prede-
cessor hardware to our current DAS-2 cluster. DAS consists
of 200 MHz Pentium Pro’s with a Myrinet network, running
the Manta parallel Java system [24].

In Table 1 we compare RS and CRS using four paral-
lel applications, with network conditions degrading from
the left (single cluster) to the right (high latency, low band-
width). For each case, we present the parallel run time and
the corresponding efficiency. With ��� being the sequential
run time for the application, with the Satin operations ex-
cluded, (not shown) and ��� the parallel run time as shown
in the table, and � �"!$# being the number of CPUs, we
compute the efficiency as follows:

%�&('*)+%*,-'*. � �/�� �10 �32 �4�5���

Adaptive integration numerically integrates a function
over a given interval. It sends very short messages and
has also very fine grained jobs. This combination makes
RS sensitive to high latency, in which case efficiency drops
to about !�67� . CRS, however, successfully hides the high
round trip times and achieves efficiencies of more than 8:9;�
in all cases.

N Queens solves the problem of placing < queens on a
<=�>< chess board. It sends medium-size messages and has
a very irregular task tree. With efficiency of only 9�#?� , RS
again suffers from high round trip times as it can not quickly
compensate load imbalance due to the irregular task tree.
CRS, however, sustains efficiencies of 8�@7� .

TSP solves the problem of finding the shortest path be-
tween < cities. By passing the distance table as parameter,
is has a somewhat higher parallelization overhead, resulting
in slightly lower efficiencies, even with a single cluster. In
the wide-area cases, these longer parameter messages con-
tribute to higher round trip times when stealing jobs from re-
mote clusters. Consequently, RS suffers more from slower
networks (efficiency AB9$�C�) than CRS which sustains ef-
ficiencies of D56C� .

Ray Tracer renders a modeled scene to a raster image.
It divides a screen down to jobs of single pixels. Due to
the nature of ray tracing, individual pixels have very irregu-
lar rendering times. The application sends long result mes-
sages containing image fractions, making it sensitive to the
available bandwidth. This sensitivity is reflected in the effi-
ciency of RS, going down to 9E!C� , whereas CRS hides most
WAN communication overhead and sustains efficiencies of
8F�G� .

To summarize, our simulator-based experiments show
the superiority of CRS to RS in case of multiple clusters,
connected by wide-area networks. This superiority is in-
dependent of the properties of the applications, as we have
shown with both regular and irregular task graphs as well
as short and long parameter and result message sizes. In
all investigated cases, the efficiency of CRS never dropped
below D567� .

Although we were able to identify the individual effects
of wide-area latency and bandwidth, these results are lim-
ited to homogeneous Intel/Linux clusters (due to the Manta
compiler). Furthermore, we only tested clusters of identical
size. Finally, the wide area network has been simulated and
thus been without possibly disturbing third-party traffic.

An evaluation on a real grid testbed, with heterogeneous
CPUs, JVMs, and networks, becomes necessary to prove
the suitability of Satin as a grid programming platform.
In the following, we first present Ibis, our new run every-
where Java environment for grid computing. Then we eval-
uate Satin on top of Ibis on the testbed of the EU GridLab
project.

3. Ibis, flexible and efficient Java-based Grid
programming

The Satin runtime system used for this paper is imple-
mented on top of Ibis [32]. In this section we will briefly
explain the Ibis philosophy and design. The global structure
of the Ibis system is shown in Figure 2. A central part of
the system is the Ibis Portability Layer (IPL) which consists
of a number of well-defined interfaces. The IPL can have
different implementations, that can be selected and loaded
into the application at run time. The IPL defines serializa-
tion and communication, but also typical grid services such
as topology discovery and monitoring. Although it is pos-

single 20 ms 20 ms 200 ms 200 ms
cluster 1000 KByte/s 100 KByte/s 1000 KByte/s 100 KByte/s

application time (s) efficiency time (s) efficiency time (s) efficiency time (s) efficiency time (s) efficiency
adaptive integration

RS 71.8 99.6% 78.0 91.8% 79.5 90.1% 109.3 65.5% 112.3 63.7%
CRS 71.8 99.7% 71.6 99.9% 71.7 99.8% 73.4 97.5% 73.2 97.7%

N-queens
RS 157.6 92.5% 160.9 90.6% 168.2 86.6% 184.3 79.1% 197.4 73.8%
CRS 156.3 93.2% 158.1 92.2% 156.1 93.3% 158.4 92.0% 158.1 92.2%

TSP
RS 101.6 90.4% 105.3 87.2% 105.4 87.1% 130.6 70.3% 129.7 70.8%
CRS 100.7 91.2% 103.6 88.7% 101.1 90.8% 105.0 87.5% 107.5 85.4%

ray tracer
RS 147.8 94.2% 152.1 91.5% 171.6 81.1% 175.8 79.2% 182.6 76.2%
CRS 147.2 94.5% 145.0 95.9% 152.6 91.2% 146.5 95.0% 149.3 93.2%

Table 1. Performance of RS and CRS with different simulated wide-area links.

HFHHFHHFHHFHHFHHFHHFHHFHHFHHFH

IFIIFIIFIIFIIFIIFIIFIIFIIFIIFIGMI RepMI SatinRMI

Application

Grid

Monitoring

Ibis Portability Layer (IPL)

Topology

Discovery

NWS, etc. GRAM, etc.TopoMon
etc.

TCP, UDP, MPI
Panda, GM, etc.

Information

Service

GIS, etc.

Resource

ManagementCommunication

Serialization &

Figure 2. Design of Ibis. The various mod-
ules can be loaded dynamically, using run
time class loading.

sible to use the IPL directly from an application, Ibis also
provides more high-level programming models. Currently,
we have implemented four. Ibis RMI [32] provides Re-
mote Method Invocation, using the same interface as Sun
RMI, but with a more efficient wire protocol. GMI [21]
provides MPI-like collective operations, cleanly integrated
into Java’s object model. RepMI [22] extends Java with
replicated objects. In this paper, we focus on the fourth pro-
gramming model that Ibis implements, Satin.

3.1 Ibis Goals

A key problem in making Java suitable for grid program-
ming is how to design a system that obtains high commu-
nication performance while still adhering to Java’s ”write
once, run everywhere” model. Current Java implemen-
tations are heavily biased to either portability or perfor-
mance, and fail in the other aspect. (The recently added
java.nio package will hopefully at leas partially address this
problem). The Ibis strategy to achieve both goals simulta-

neously is to develop reasonably efficient solutions using
standard techniques that work “everywhere”, supplemented
with highly optimized but non-standard solutions for in-
creased performance in special cases. We apply this strategy
to both computation and communication. Ibis is designed to
use any standard JVM, but if a native, optimizing compiler
(e.g., Manta [23]) is available for a target machine, Ibis can
use it instead. Likewise, Ibis can use standard communi-
cation protocols, e.g., TCP/IP or UDP, as provided by the
JVM, but it can also plug in an optimized low-level protocol
for a high-speed interconnect, like GM or MPI, if available.
The challenges for Ibis are:

1. how to make the system flexible enough to run seam-
lessly on a variety of different communication hard-
ware and protocols;

2. how to make the standard, 100% pure Java case effi-
cient enough to be useful for grid computing;

3. study which additional optimizations can be done
to improve performance further in special (high-
performance) cases.

With Ibis, grid applications can run simultaneously on
a variety of different machines, using optimized software
where possible (e.g., a native compiler, the GM Myrinet
protocol, or MPI), and using standard software (e.g., TCP)
when necessary. Interoperability is achieved by using the
TCP protocol between multiple Ibis implementations that
use different protocols (like GM or MPI) locally. This way,
all machines can be used in one single computation. Below,
we discuss the three aforementioned issues in more detail.

3.2 Flexibility

The key characteristic of Ibis is its extreme flexibility,
which is required to support grid applications. A major

design goal is the ability to seamlessly plug in different
communication substrates without changing the user code.
For this purpose, the Ibis design uses the IPL. A software
layer on top of the IPL can negotiate with Ibis instantiations
through the well-defined IPL interface, to select and load
the modules it needs. This flexibility is implemented using
Java’s dynamic class-loading mechanism.

Many message passing libraries such as MPI and GM
guarantee reliable message delivery and FIFO message or-
dering. When applications do not require these properties,
a different message passing library might be used to avoid
the overhead that comes with reliability and message order-
ing. The IPL supports both reliable and unreliable com-
munication, ordered and unordered messages, implicit and
explicit receipt, using a single, simple interface. Using user-
definable properties (key-value pairs), applications can cre-
ate exactly the communication channels they need, without
unnecessary overhead.

3.3 Optimizing the Common Case

To obtain acceptable communication performance, Ibis
implements several optimizations. Most importantly, the
overhead of serialization and reflection is avoided by
compile-time generation of special methods (in byte code)
for each object type. These methods can be used to con-
vert objects to bytes (and vice versa), and to create new ob-
jects on the receiving side, without using expensive reflec-
tion mechanisms. This way, the overhead of serialization is
reduced dramatically.

Furthermore, our communication implementations use
an optimized wire protocol. The Sun RMI protocol, for
example, resends type information for each RMI. Our im-
plementation caches this type information per connection.
Using this optimization, our protocol sends less data over
the wire, but more importantly, saves processing time for
encoding and decoding the type information.

3.4 Optimizing Special Cases

In many cases, the target machine may have additional
facilities that allow faster computation or communication,
which are difficult to achieve with standard Java techniques.
One example we investigated in previous work [23] is us-
ing a native, optimizing compiler instead of a JVM. This
compiler (Manta), or any other high performance Java im-
plementation, can simply be used by Ibis. The most im-
portant special case for communication is the presence of
a high-speed local interconnect. Usually, specialized user-
level network software is required for such interconnects,
instead of standard protocols (TCP, UDP) that use the OS
kernel. Ibis therefore was designed to allow other proto-
cols to be plugged in. So, lower-level communication may

be based, for example, on a locally-optimized MPI library.
The IPL is designed in such a way that it is possible to ex-
ploit efficient hardware multicast, when available.

Another important feature of the IPL is that it allows
a zero-copy implementation. Implementing zero-copy (or
single-copy) communication in Java is a non-trivial task,
but it is essential to make Java competitive with systems
like MPI for which zero-copy implementations already ex-
ist. The zero-copy Ibis implementation is described in more
detail in [32]. On fast networks like Myrinet, the through-
put of Ibis RMI can be as much as 9 times higher than
previous, already optimized RMI implementations such as
KaRMI [29].

4. Satin on the GridLab testbed

In this section, we will present a case study to analyze
the performance that Satin/Ibis achieves in a real grid en-
vironment. We ran the ray tracer application introduced in
Section 2.3 on the European GridLab [2] testbed. More pre-
cisely, we were using a characteristic subset of the machines
on this testbed that was available for our measurements at
the time the study was performed. Because simultaneously
starting and running a parallel application on multiple clus-
ters still is a tedious and time-consuming task, we had to
restrict ourselves to a single test application. We have cho-
sen the ray tracer for our tests as it is sending the most data
of all our applications, making it very sensitive to network
issues. The ray tracer is written in pure Java and generates
a high resolution image (#5�58�!>�=#���8�! , with 24-bit color).
It takes approximately 10 minutes to solve this problem on
our testbed.

This is an interesting experiment for several reasons.
Firstly, we use the Ibis implementation on top of TCP for
the measurements in this section. This means that the num-
bers shown below were measured using a 100% Java im-
plementation. Therefore, they are interesting, giving a clear
indication of the performance level that can be achieved in
Java with a “run everywhere” implementation, without us-
ing any native code.

Secondly, the testbed contains machines with several dif-
ferent architectures; Intel, SPARC, MIPS, and Alpha pro-
cessors are used. Some machines are 32 bit, while others
are 64 bit. Also, different operating systems and JVMs are
in use. Therefore, this experiment is a good method to in-
vestigate whether Java’s “write once, run everywhere” fea-
ture really works in practice. The assumption that this fea-
ture successfully hides the complexity of the different un-
derlying architectures and operating systems, was the most
important reason for investigating the Java-centric solutions
presented in this paper. It is thus important to verify the
validity of this claim.

Thirdly, the machines are connected by the Internet. The

-10

-10

-5

-5

0

0

5

5

10

10

15

15

20

20

25

25

35 35

40 40

45 45

50 50

55 55

60 60

0 200 400

km

Amsterdam
Berlin

Lecce

Cardiff

Brno

Figure 3. Locations of the GridLab testbed
sites used for the experiments.

links show typical wide-area behavior, as the physical dis-
tance between the sites is large. For instance, the dis-
tance from Amsterdam to Lecce is roughly 2000 kilometers
(about 1250 miles). Figure 3 shows a map of Europe, anno-
tated with the machine locations. This gives an idea of the
distances between the sites. We use this experiment to ver-
ify Satin’s load-balancing algorithms in practice, with real
non-dedicated wide-area links. We have run the ray tracer
both with the standard random stealing algorithm (RS) and
with the new cluster-aware algorithm (CRS) as introduced
above. For practical reasons, we had to use relatively small
clusters for the measurements in this section. The simu-
lation results in Section 2.3 show that the performance of
CRS increases when larger clusters are used, because there
is more opportunity to balance the load inside a cluster dur-
ing wide-area communication.

Some information about the machines we used is shown
in Table 2. To run the application, we used whichever Java
JIT (Just-In-Time compiler) that was pre-installed on each
particular system whenever possible, because this is what
most users would probably do in practice.

Because the sites are connected via the Internet, we have
no influence on the amount of traffic that flows over the
links. To reduce the influence of Internet traffic on the mea-
surements, we also performed measurements after midnight

problem solution
firewalls bind all sockets to ports in the open range
buggy JITs upgrade to Java 1.4 JITs
multi-homes machines use a single, externally valid IP address

Table 4. Problems encountered in a real grid
environment, and their solutions.

(CET). However, in practice there still is some variability
in the link speeds. We measured the latency of the wide-
area links by running ping 50 times, while the achievable
bandwidth is measured with netperf [26], using 32 KByte
packets. The measured latencies and bandwidths are shown
in Table 3. All sites had difficulties from time to time while
sending traffic to Lecce, Italy. For instance, from Amster-
dam to Lecce, we measured latencies from 44 milliseconds
up to 3.5 seconds. Also, we experienced packet loss with
this link: up to 23% of the packets were dropped along the
way. We also performed the same measurement during day-
time, to investigate how regular Internet traffic influences
the application performance. The measurements show that
there can be more than a factor of two difference in link
speeds during daytime and nighttime, especially the links
from and to Lecce show a large variability. It is also inter-
esting to see that the link performance from Lecce to the
two sites in Amsterdam is different. We verified this with
traceroute, and found that the traffic is indeed routed dif-
ferently as the two machines use different network numbers
despite being located within the same building.

Ibis, Satin and the ray tracer application were all com-
piled with the standard Java compiler javac on the DAS-2
machine in Amsterdam, and then just copied to the other
GridLab sites, without recompiling or reconfiguring any-
thing. On most sites, this works flawlessly. However, we
did run into several practical problems. A summary is given
in Table 4. Some of the GridLab sites have firewalls in-
stalled, which block Satin’s traffic when no special mea-
sures are taken. Most sites in our testbed have some open
port range, which means that traffic to ports within this
range can pass through. The solution we use to avoid being
blocked by firewalls is straightforward: all sockets used for
communication in Ibis are bound to a port within the (site-
specific) open port range. We are working on a more gen-
eral solution that multiplexes all traffic over a single port.
Another solution is to multiplex all traffic over a (Globus)
ssh connection, as is done by Kaneda et al. [16], or using a
mechanism like SOCKS [20].

Another problem we encountered was that the JITs in-
stalled on some sites contained bugs. Especially the combi-
nation of threads and sockets presented some difficulties.
There seems to be a bug in Sun’s 1.3 JIT (HotSpot) re-
lated to threads and socket communication. In some cir-

Operating CPUs / total
location architecture System JIT nodes node CPUs
Vrije Universiteit Intel Red Hat
Amsterdam Pentium-III Linux IBM
The Netherlands 1 GHz kernel 2.4.18 1.4.0 8 1 8
Vrije Universiteit Sun Fire 280R SUN
Amsterdam UltraSPARC-III Sun HotSpot
The Netherlands 750 MHz 64 bit Solaris 8 1.4.2 1 2 2
ISUFI/High Perf. Compaq Compaq HP 1.4.0
Computing Center Alpha Tru64 UNIX based on
Lecce, Italy 667 MHz 64 bit V5.1A HotSpot 1 4 4
Cardiff Intel Red Hat SUN
University Pentium-III Linux 7.1 HotSpot
Cardiff, Wales, UK 1 GHz kernel 2.4.2 1.4.1 1 2 2
Masaryk University, Intel Xeon Debian Linux IBM
Brno, Czech Republic 2.4 GHz kernel 2.4.20 1.4.0 4 2 8
Konrad-Zuse-Zentrum SGI SGI
für Origin 3000 1.4.1-EA
Informationstechnik MIPS R14000 based on
Berlin, Germany 500 MHz IRIX 6.5 HotSpot 1 16 16

Table 2. Machines on the GridLab testbed.

cumstances, a blocking operation on a socket would block
the whole application instead of just the thread that does the
operation. The solution for this problem was to upgrade to
a Java 1.4 JIT, where the problem is solved.

Finally, some machines in the testbed are multi-homed:
they have multiple IP addresses. The original Ibis imple-
mentation on TCP got confused by this, because the In-
etAddress.getLocalHost method can return an IP address in
a private range, or an address for an interface that is not ac-
cessible from the outside. Our current solution is to manu-
ally specify which IP address has to be used when multiple
choices are available. All machines in the testbed have a
Globus [10] installation, so we used GSI-SSH (Globus Se-
curity Infrastructure Secure Shell) [11] to login to the Grid-
Lab sites. We had to start the application by hand, as not
all sites have a job manager installed. When a job manager
is present, Globus can be used to start the application auto-
matically.

As shown in Table 2, we used 40 processors in total, us-
ing 6 machines located at 5 sites all over Europe, with 4
different processor architectures. After solving the afore-
mentioned practical problems, Satin on the TCP Ibis imple-
mentation ran on all sites, in pure Java, without having to
recompile anything.

As a benchmark, we first ran the parallel version of the
ray tracer with a smaller problem size (6F��@J�K6F��@ , with 24
bit color) on a single machine on all clusters. This way, we
can compute the relative speeds of the different machines
and JVMs. The results are presented in Table 5. To calcu-
late the relative speed of each machine/JVM combination,
we normalized the run times relative to the run time of the
ray tracer on a node of the DAS-2 cluster in Amsterdam.
It is interesting to note that the quality of the JIT compiler

can have a large impact on the performance at the applica-
tion level. A node in the DAS-2 cluster and the machine
in Cardiff are both 1 GHz Intel Pentium-IIIs, but there is
more than a factor of three difference in application perfor-
mance. This is caused by the different JIT compilers that
were used. On the DAS-2, we used the more efficient IBM
1.4 JIT, while the SUN 1.4 JIT (HotSpot) was installed on
the machine in Cardiff.

Furthermore, the results show that, although the clock
frequency of the machine at Brno is 2.4 times as high as
the frequency of a DAS-2 node, the speed improvement is
only 53%. Both machines use Intel processors, but the Xeon
machine in Brno is based on Pentium-4 processors, which
do less work per cycle than the Pentium-III CPUs that are
used by the DAS-2. We have to conclude that it is in general
not possible to simply use the clock frequencies to compare
processor speeds.

Finally, it is obvious that the Origin machine in Berlin is
slow compared to the other machines. This is partly caused
by the inefficient JIT, which is based on the SUN HotSpot
JVM. Because of the combination of slow processors and
the inefficient JIT, the 16 nodes of the Origin we used are
about as fast as a single 1 GHz Pentium-III with the IBM
JIT. The Origin thus hardly contributes anything to the com-
putation. The table shows that, although we used 40 CPUs
in total for the grid run, the relative speed of these pro-
cessors together adds up to 24.668 DAS-2 nodes (1 GHz
Pentium-IIIs). The percentage of the total compute power
that each individual cluster delivers is shown in the right-
most column of Table 5.

We also ran the ray tracer on a single DAS-2 machine,
with the large problem size that we will use for the grid
runs. This took 13746 seconds (almost four hours). The se-

daytime nighttime
to to to to

A’dam A’dam to to to to A’dam A’dam to to to to
source DAS-2 Sun Lecce Cardiff Brno Berlin DAS-2 Sun Lecce Cardiff Brno Berlin
latency from
A’dam DAS-2 — 1 204 16 20 42 — 1 65 15 20 18
A’dam Sun 1 — 204 15 19 43 1 — 62 14 19 17
Lecce 198 195 — 210 204 178 63 66 — 60 66 64
Cardiff 9 9 198 — 28 26 9 9 51 — 27 21
Brno 20 20 188 33 — 22 20 19 64 33 — 22
Berlin 18 17 185 31 22 — 18 17 59 30 22 —
bandwidth from
A’dam DAS-2 — 11338 42 750 3923 2578 — 11442 40 747 4115 2578
A’dam Sun 11511 — 22 696 2745 2611 11548 — 46 701 3040 2626
Lecce 73 425 — 44 43 75 77 803 — 94 110 82
Cardiff 842 791 29 — 767 825 861 818 37 — 817 851
Brno 3186 2709 26 588 — 2023 3167 2705 37 612 — 2025
Berlin 2555 2633 9 533 2097 — 2611 2659 9 562 2111 —

Table 3. Round-trip wide-area latency (in milliseconds) and achievable bandwidth (in KByte/s) be-
tween the GridLab sites.

run relative relative total % of total
site architecture time (s) node speed speed of cluster system
A’dam DAS-2 1 GHz Intel Pentium-III 233.1 1.000 8.000 32.4
A’dam Sun 750 MHz UltraSPARC-III 445.2 0.523 1.046 4.2
Lecce 667 MHZ Compaq Alpha 512.7 0.454 1.816 7.4
Cardiff 1 GHz Intel Pentium-III 758.9 0.307 0.614 2.5
Brno 2.4 GHz Intel Xeon 152.8 1.525 12.200 49.5
Berlin 500 MHz MIPS R14000 3701.4 0.062 0.992 4.0
total 24.668 100.0

Table 5. Relative speeds of the machine and JVM combinations in the testbed.

quential program without the Satin constructs takes 13564
seconds, the overhead of the parallel version thus is about
1%. With perfect speedup, the run time of the parallel pro-
gram on the GridLab testbed would be 13564 divided by
24.668, which is 549.8 seconds (about nine minutes). We
consider this run time the upper bound on the performance
that can be achieved on the testbed, �/L�MONQP�MSR�T . We can use
this number to calculate the efficiency that is achieved by
the real parallel runs. We call the actual run time of the
application on the testbed ��U NSVXW . In analogy to Section 2.3,
efficiency can be defined as follows:

%�&('*)+%Y,Z'Y. � � L�MONQP�MSR�T�/U NOV[W\2 �������

We have also measured the time that is spent in commu-
nication (� RS]/^;^). This includes idle time, because all idle
time in the system is caused by waiting for communication
to finish. We calculate the relative communication overhead
with this formula:

'`_$abadce,f)+'`gEhO)+_E,
_EiE%Yj�kf%`g�l � � RS]/^;^� L4MSNmPnMORnTC2 �4���:�

Finally, the time that is lost due to parallelization overhead
(��L�o/N) is calculated as shown below:

� L4o/N �p�/U NSVXW 	q� RS]/^;^ 	q� L4MSNQP�MSR�T

rfgEj�g$s[sm%Yst)mu4g$h�)+_$,v_EiE%Yj�kf%`g�l � � L4o/N��L4MONQP�MSRnT?2 �4���:�

The results of the grid runs are shown in Table 6. For
reference, we also provide measurements on a single clus-
ter, using 25 nodes of the DAS-2 system. The results pre-
sented here are the fastest runs out of three experiments.
During daytime, the performance of the ray tracer with RS
showed a large variability, some runs took longer than an
hour to complete, while the fastest run took about half an
hour. Therefore, in this particular case, we took the best re-
sult of six runs. This approach thus is in favor of RS. With
CRS, this effect does not occur: the difference between the
fastest and the slowest run during daytime was less than 20
seconds. During night, when there is little Internet traffic,
the application with CRS is already more than 200 seconds

run communication parallelization
algorithm time (s) time (s) overhead time (s) overhead efficiency
nighttime

RS 877.6 198.5 36.1% 121.9 23.5% 62.6%
CRS 676.5 35.4 6.4% 83.9 16.6% 81.3%

daytime
RS 2083.5 1414.5 257.3% 111.8 21.7% 26.4%
CRS 693.0 40.1 7.3% 95.7 18.8% 79.3%

single cluster 25
RS 579.6 11.3 2.0% 11.0 1.9% 96.1%

Table 6. Performance of the ray tracer application on the GridLab testbed.

intra cluster inter cluster
alg. messages MByte messages MByte
nighttime

RS 3218 41.8 11473 137.3
CRS 1353295 131.7 12153 86.0

daytime
RS 56686 18.9 149634 154.1
CRS 2148348 130.7 10115 82.1

single cluster 25
RS 45458 155.6 n.a. n.a.

Table 7. Communication statistics for the ray
tracer application on the GridLab testbed.

faster (about 23%) than with the RS algorithm. During day-
time, when the Internet links are heavily used, CRS outper-
forms RS by a factor of three. Regardless of the time of the
day, the efficiency of a parallel run with CRS is about 80%.

The numbers in Table 6 show that the parallelization
overhead on the testbed is significantly higher compared to
a single cluster. Sources of this overhead are thread creation
and switching caused by incoming steal requests, and the
locking of the work queues. The overhead is higher on the
testbed, because five of the six machines we use are SMPs
(i.e. they have a shared memory architecture). In general,
this means that the CPUs in such a system have to share
resources, making memory access and especially synchro-
nization potentially more expensive. The latter has a neg-
ative effect on the performance of the work queues. Also,
multiple CPUs share a single network interface, making ac-
cess to the communication device more expensive. The cur-
rent implementation of Satin treats SMPs as clusters (i.e.,
on a N-way SMP, we start N JVMs). Therefore, Satin pays
the price of the SMP overhead, but does not exploit the ben-
efits of SMP systems, such as the available shared memory.
An implementation that does utilize shared memory when
available is planned for the future.

Communication statistics of the grid runs are shown in
Table 7. The numbers in the table totals for the whole run,
summed over all CPUs. Again, statistics for a single clus-
ter run are included for reference. The numbers show that

almost all of the overhead of RS is in excessive wide-area
communication. During daytime, for instance, it tries to
send 154 MByte over the busy Internet links. During the
time-consuming wide-area transfers, the sending machine
is idle, because the algorithm is synchronous. CRS sends
only about 82 MBytes over the wide-area links (about half
the amount of RS), but more importantly, the transfers are
asynchronous. With CRS, the machine that initiates the
wide-area traffic concurrently tries to steal work in the lo-
cal cluster, and also concurrently executes the work that is
found.

CRS effectively trades less wide-area traffic for more lo-
cal communication. As shown in Table 7, the run during the
night sends about 1.4 million local-area messages. During
daytime, the CRS algorithm has to do more effort to keep
the load balanced: during the wide-area steals, about 2.1
million local messages are sent while trying to find work
within the local clusters. This is about 60% more than dur-
ing the night. Still, only 40.1 seconds are spent communi-
cating. With CRS, the run during daytime only takes 16.5
seconds (about 2.4%) longer than the run at night. The to-
tal communication overhead of CRS is at most 7.3%, while
with RS, this can be as much as two thirds of the run time
(i.e. the algorithm spends more time on communicating
than on calculating useful work).

Because all idle time is caused by communication, the
time that is spent on the actual computation can be calcu-
lated by subtracting the communication time from the actual
run time (�/U NSVXW). Because we have gathered the communi-
cation statistics per machine (not shown), we can calculate
the total time a whole cluster spends computing the actual
problem. Given the amount of time a cluster performs use-
ful work and the relative speed of the cluster, we can cal-
culate what fraction of the total work is calculated by each
individual cluster. We can compare this workload distribu-
tion with the ideal distribution which is represented by the
rightmost column of Table 5. The ideal distribution and the
results for the four grid runs are shown in Figure 4. The
difference between the perfect distribution and the actual
distributions of the four grid runs is hardly visible. From
the figure, we can conclude that, although the workload dis-

0%

20%

40%

60%

80%

100%

perfect RS night CRS night RS day CRS day

%
o

f
w

o
r
k

c
a

lc
u

la
te

d

Berlin

Brno

Cardiff

Lecce

A'dam Sun

A'dam DAS-2

Figure 4. Distribution of work over the differ-
ent sites.

tribution of both RS and CRS is virtually perfect, the RS
algorithm itself spends a large amount of time on achieving
this distribution. CRS does not suffer from this problem,
because wide-area traffic is asynchronous and is overlapped
with useful work that was found locally. Still, it achieves an
almost optimal distribution.

To summarize, the experiment described in this section
shows that the Java-centric approach to grid computing, and
the Satin/Ibis system in particular, works extremely well in
practice in a real grid environment. It took hardly any effort
to run Ibis and Satin on a heterogeneous system. Further-
more, the performance results clearly show that CRS out-
performs RS in a real grid environment, especially when
the wide-area links are also used for other (Internet) traffic.
With CRS, the system is idle (waiting for communication)
during only a small fraction of the total run time. We expect
even better performance when larger clusters are used, as
indicated by our simulator results from Section 2.3.

5. Related work

We have discussed a Java-centric approach to writing
wide-area parallel (grid computing) applications. Most
other grid computing systems (e.g., Globus [10] and Le-
gion [13]) support a variety of languages. GridLab [2]
is building a toolkit of grid services that can be accessed
from various programming languages. Converse [15] is a
framework for multi-lingual interoperability. The Super-
Web [1], and Bayanihan [30] are examples of global com-
puting infrastructures that support Java. A language-centric
approach makes it easier to deal with heterogeneous sys-
tems, since the data types that are transferred over the net-
works are limited to the ones supported in the language
(thus obviating the need for a separate interface definition

language) [33].
The AppLeS (short for application-level scheduling)

project provides a framework for adaptively scheduling ap-
plications on the grid [5]. AppLeS focuses on selecting the
best set of resources for the application out of the resource
pool of the grid. Satin addresses the more low-level prob-
lem of load balancing the parallel computation itself, given
some set of grid resources. AppLeS provides (amongst
others) a template for master-worker applications, whereas
Satin provides load balancing for the more general class of
divide-and-conquer algorithms.

Many divide-and-conquer systems are based on the C
language. Among them, Cilk [7] only supports shared-
memory machines, CilkNOW [9] and DCPAR [12] run on
local-area, distributed-memory systems. SilkRoad [28] is a
version of Cilk for distributed memory systems that uses a
software DSM to provide shared memory to the program-
mer, targeting at small-scale, local-area systems.

The Java classes presented by Lea [18] can be used to
write divide-and-conquer programs for shared-memory sys-
tems. Satin is a divide-and-conquer extension of Java that
was designed for wide-area systems, without shared mem-
ory. Like Satin, Javar [6] is compiler-based. With Javar,
the programmer uses annotations to indicate divide-and-
conquer and other forms of parallelism. The compiler then
generates multithreaded Java code, that runs on any JVM.
Therefore, Javar programs run only on shared-memory ma-
chines and DSM systems.

Herrmann et al. [14] describe a compiler-based approach
to divide-and-conquer programming that uses skeletons.
Their DHC compiler supports a purely functional subset of
Haskell, and translates source programs into C and MPI.
Alt et al. [3] developed a Java-based system, in which skele-
tons are used to express parallel programs, one of which for
expressing divide-and-conquer parallelism. Although the
programming system targets grid platforms, it is not clear
how scalable the approach is: in [3], measurements are pro-
vided only for a local cluster of 8 machines.

Most systems described above use some form of ran-
dom stealing (RS). It has been proven [8] that RS is op-
timal in space, time and communication, at least for rela-
tively tightly coupled systems like SMPs and clusters that
have homogeneous communication performance. In pre-
vious work [27], we have shown that this property can-
not be extended to wide-area systems. We extended RS
to perform asynchronous wide-area communication inter-
leaved with synchronous local communication. The result-
ing randomized algorithm, called CRS, does perform well
in loosely-coupled systems.

Another Java-based divide-and-conquer system is At-
las [4]. Atlas is a set of Java classes that can be used to write
divide-and-conquer programs. Javelin 3 [25] provides a set
of Java classes that allow programmers to express branch-

and-bound computations, such as the traveling salesperson
problem. Like Satin, Atlas and Javelin 3 are designed for
wide-area systems. Both Atlas and Javelin 3 use tree-based
hierarchical scheduling algorithms. We found that such al-
gorithms are inefficient for fine-grained applications and
that CRS performs better [27].

6. Conclusions

Grid programming environments need to be both
portable and efficient to exploit the computational power
of dynamically available resources. Satin makes it possible
to write divide-and-conquer applications in Java, and is tar-
geted at clustered wide-area systems. The Satin implemen-
tation on top of our new Ibis platform combines Java’s run
everywhere with efficient communication between JVMs.
The resulting system is easy to use in a grid environment. To
achieve high performance, Satin uses a special grid-aware
load-balancing algorithm. Previous simulation results sug-
gested that this algorithm is more efficient than traditional
algorithms that are used on tightly-coupled systems. In this
paper, we verified these simulation results in a real grid en-
vironment.

We evaluated Satin/Ibis on the highly heterogeneous
testbed of the EU-funded GridLab project, showing that
Satin’s load-balancing algorithm automatically adapts both
to heterogeneous processor speeds and varying network per-
formance, resulting in efficient utilization of the computing
resources. Measurements show that Satin’s CRS algorithm
indeed outperforms the widely used RS algorithm by a wide
margin. With CRS, Satin achieves around 80% efficiency,
even during daytime when the links between the sites are
heavily loaded. In contrast, with the traditional RS algo-
rithm, the efficiency drops to about 26% when the wide-area
links are congested.

Acknowledgments

Part of this work has been supported by the European
Commission, grant IST-2001-32133 (GridLab). We would
also like to thank Olivier Aumage, Rutger Hofman, Ceriel
Jacobs, Maik Nijhuis and Gosia Wrzesińska for their contri-
butions to the Ibis code. Kees Verstoep is doing a marvelous
job maintaining the DAS clusters. Aske Plaat suggested
performing an evaluation of Satin on a real grid testbed.
John Romein, Matthew Shields and Massimo Cafaro gave
valuable feedback on this manuscript.

References

[1] A. D. Alexandrov, M. Ibel, K. E. Schauser, and C. J.
Scheiman. SuperWeb: Research Issues in Java-Based

Global Computing. Concurrency: Practice and Experience,
9(6):535–553, June 1997.

[2] G. Allen, K. Davis, K. N. Dolkas, N. D. Doulamis,
T. Goodale, T. Kielmann, A. Merzky, J. Nabrzyski,
J. Pukacki, T. Radke, M. Russell, E. Seidel, J. Shalf, and
I. Taylor. Enabling Applications on the Grid - A GridLab
Overview. nternational Journal of High Performance Com-
puting Applications, 2003. accepted for publication.

[3] M. Alt, H. Bischof, and S. Gorlatch. Program Develop-
ment for Computational Grids using Skeletons and Perfor-
mance Prediction. Parallel Processing Letters, 12(2):157–
174, 2002. World Scientific Publishing Company.

[4] E. J. Baldeschwieler, R. Blumofe, and E. Brewer. ATLAS:
An Infrastructure for Global Computing. In Proceedings of
the Seventh ACM SIGOPS European Workshop on System
Support for Worldwide Applications, pages 165–172, Con-
nemara, Ireland, September 1996.

[5] F. Berman, R. Wolski, S. Figueira, J. Schopf, and G. Shao.
Application-level Scheduling on Distributed Heterogeneous
Networks. In Proceedings of the ACM/IEEE Conference on
Supercomputing (SC’96), Pittsburgh, PA, November 1996.
Online at http://www.supercomp.org.

[6] A. Bik, J. Villacis, and D. Gannon. Javar: A Prototype Java
Restructuring Compiler. Concurrency: Practice and Expe-
rience, 9(11):1181–1191, November 1997.

[7] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiser-
son, K. H. Randall, and Y. Zhou. Cilk: An Efficient Mul-
tithreaded Runtime System. In 5th ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming
(PPoPP’95), pages 207–216, Santa Barbara, CA, July 1995.

[8] R. D. Blumofe and C. E. Leiserson. Scheduling Multi-
threaded Computations by Work Stealing. In 35th Annual
Symposium on Foundations of Computer Science (FOCS
’94), pages 356–368, Santa Fe, New Mexico, November
1994.

[9] R. D. Blumofe and P. Lisiecki. Adaptive and Reliable Par-
allel Computing on Networks of Workstations. In USENIX
1997 Annual Technical Conference on UNIX and Advanced
Computing Systems, pages 133–147, Anaheim, CA, 1997.

[10] I. Foster and C. Kesselman. Globus: A Metacomputing In-
frastructure Toolkit. International Journal of Supercomputer
Applications, 11(2):115–128, Summer 1997.

[11] I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke. A secu-
rity architecture for computational grids. In 5th ACM Con-
ference on Computer and Communication Security, pages
83–92, San Francisco, CA, November 1998.

[12] B. Freisleben and T. Kielmann. Automated Transformation
of Sequential Divide–and–Conquer Algorithms into Parallel
Programs. Computers and Artificial Intelligence, 14(6):579–
596, 1995.

[13] A. Grimshaw and W. A. Wulf. The Legion Vision of a
Worldwide Virtual Computer. Comm. ACM, 40(1):39–45,
1997.

[14] C. A. Herrmann and C. Lengauer. HDC: A Higher-Order
Language for Divide-and-Conquer. Parallel Processing Let-
ters, 10(2–3):239–250, 2000.

[15] L. V. Kalé, M. Bhandarkar, N. Jagathesan, S. Krishnan, and
J. Yelon. Converse: An interoperable framework for paral-
lel programming. In Intl. Parallel Processing Symposium,
1996.

[16] K. Kaneda, K. Taura, and A. Yonezawa. Virtual private
grid: A command shell for utilizing hundreds of machines
efficiently. In 2nd IEEE/ACM International Symposium
on Cluster Computing and the Grid (CCGrid 2002), pages
212–219, Berlin, Germany, May 2002.

[17] T. Kielmann, H. E. Bal, J. Maassen, R. van Nieuwpoort,
L. Eyraud, R. Hofman, and K. Verstoep. Programming
Environments for High-Performance Grid Computing: the
Albatross Project. Future Generation Computer Systems,
18(8):1113–1125, 2002.

[18] D. Lea. A Java Fork/Join Framework. In Proceedings of
the ACM 2000 Java Grande Conference, pages 36–43, San
Francisco, CA, June 2000.

[19] C. Lee, S. Matsuoka, D. Talia, A. Sussmann, M. Müller,
G. Allen, and J. Saltz. A Grid programming primer. Global
Grid Forum, August 2001.

[20] M. Leech, M. Ganis, Y. Lee, R. Kuris, D. Koblas, and
L. Jones. RFC 1928: SOCKS protocol version 5, April
1996.

[21] J. Maassen, T. Kielmann, and H. Bal. GMI: Flexible and
Efficient Group Method Invocation for Parallel Program-
ming. In In proceedings of LCR-02: Sixth Workshop on
Languages, Compilers, and Run-time Systems for Scalable
Computers, pages 1–6, Washington DC, March 2002.

[22] J. Maassen, T. Kielmann, and H. E. Bal. Parallel Applica-
tion Experience with Replicated Method Invocation. Con-
currency and Computation: Practice and Experience, 13(8-
9):681–712, 2001.

[23] J. Maassen, R. van Nieuwpoort, R. Veldema, H. Bal, T. Kiel-
mann, C. Jacobs, and R. Hofman. Efficient Java RMI for
Parallel Programming. ACM Transactions on Programming
Languages and Systems, 23(6):747–775, 2001.

[24] J. Maassen, R. van Nieuwpoort, R. Veldema, H. E. Bal,
T. Kielmann, C. Jacobs, and R. Hofman. Efficient Java RMI
for Parallel Programming. ACM Transactions on Program-
ming Languages and Systems, 23(6):747–775, 2001.

[25] M. O. Neary and P. Cappello. Advanced Eager Schedul-
ing for Java-Based Adaptively Parallel Computing. In Pro-
ceedings of the Joint ACM 2002 Java Grande - ISCOPE
(International Symposium on Computing in Object-Oriented
Parallel Environments) Conference, pages 56–65, Seattle,
November 2002.

[26] Public netperf homepage. www.netperf.org.
[27] R. V. v. Nieuwpoort, T. Kielmann, and H. E. Bal. Efficient

Load Balancing for Wide-area Divide-and-Conquer Appli-
cations. In Proceedings Eighth ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming
(PPoPP’01), pages 34–43, Snowbird, UT, June 2001.

[28] L. Peng, W. Wong, M. Feng, and C. Yuen. SilkRoad: A
Multithreaded Runtime System with Software Distributed
Shared Memory for SMP Clusters. In IEEE International
Conference on Cluster Computing (Cluster2000), pages
243–249, Chemnitz, Saxony, Germany, November 2000.

[29] M. Philippsen, B. Haumacher, and C. Nester. More efficient
serialization and RMI for Java. Concurrency: Practice and
Experience, 12(7):495–518, 2000.

[30] L. F. G. Sarmenta. Volunteer Computing. PhD thesis,
Dept. of Electrical Engineering and Computer Science, MIT,
2001.

[31] Y. Tanaka, H. Nakada, S. Sekiguchi, T. Suzumura, and
S. Matsuoka. Ninf-G: A Reference Implementation of RPC-
based Programming Middleware for Grid Computing. Jour-
nal of Grid Computing, 1(1):41–51, 2003.

[32] R. V. van Nieuwpoort, J. Maassen, R. Hofman, T. Kielmann,
and H. E. Bal. Ibis: an Efficient Java-based Grid Program-
ming Environment. In Joint ACM Java Grande - ISCOPE
2002 Conference, pages 18–27, Seattle, Washington, USA,
November 2002.

[33] A. Wollrath, J. Waldo, and R. Riggs. Java-Centric Dis-
tributed Computing. IEEE Micro, 17(3):44–53, 1997.

[34] I.-C. Wu and H. Kung. Communication Complexity for Par-
allel Divide-and-Conquer. In 32nd Annual Symposium on
Foundations of Computer Science (FOCS ’91), pages 151–
162, San Juan, Puerto Rico, Oct. 1991.

