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Abstract Grid computing is becoming the natural way to aggregate and share
large sets of heterogeneous resources. However, grid development and
acceptance hinge on proving that grids reliably support real applica-
tions. A step in this direction is to combine several grid components
into a demonstration and testing framework. This paper presents such
an integration effort, in which three research prototypes, namely a grid
application development toolkit (Ibis), a grid scheduler capable of co-
allocating resources (Koala), and a synthetic grid workload generator
(GrenchMark), are used to generate and run workloads comprising
well-established and new grid applications on our DAS multi-cluster
testbed.
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1. Introduction
Grid computing’s long term promise is a seamlessly shared infras-

tructure comprising heterogeneous resources, to be used by multiple or-
ganizations and independent users alike [12]. With the infrastructure
starting to fulfill the requirements of such an ambitious promise [4], it
is crucial to prove that grids can run real applications, from traditional
sequential and parallel applications to new, grid-specific, applications.
As a consequence, there is a clear need for generating workloads com-
prising of real applications, and for running them in grid environments,
for demonstration and testing purposes.

A significant number of projects have tried to tackle this problem
from different angles: attempting to produce a representative set of grid
applications like the NAS Grid Benchmarks [13], creating synthetic ap-
plications that can assess the status of grid services like the GRASP
project [7], and creating tools for launching benchmarks and reporting
results like the GridBench project [21].

This work addresses the problem of generating and running synthetic
grid workloads, by integrating the results of three research projects com-
ing from CoreGRID partners, namely the grid application development
toolkit Ibis [22], the grid scheduler Koala [17], and the synthetic grid
workload generator and submitter GrenchMark. Ibis is being devel-
oped at VU Amsterdam1 and provides a set of generic Java-based grid
applications. Koala is being developed at TU Delft2 and allows running
generic grid applications. Finally, GrenchMark is being developed at
TU Delft3 and is able to generate workloads comprising typical grid
applications, and to submit them to arbitrary grid environments.

2. A Case for Synthetic Grid Workloads
There are three ways of evaluating the performance of a grid system:

analytical modeling, simulation, and experimental testing. This section
presents the benefits and drawbacks of each of the three, and argues for
evaluating the performance of grid systems using synthetic workloads,
one of the two possible approaches for experimental testing.

2.1 Analytical Modeling and Simulations
Analytical modeling is a traditional method for gaining insights into

the performance of computing systems. Analytical modeling may sim-

1Ibis is available from http://www.cs.vu.nl/ibis/.
2Koala is available from http://www.st.ewi.tudelft.nl/koala/.
3GrenchMark is available from http://grenchmark.st.ewi.tudelft.nl/.
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plify what-if analysis, for changes in the system, in the middleware, or in
the applications. However, the sheer size of grids and their heterogeneity
make realistic analytical modeling hardly tractable.

Simulations may handle complex situations, sometimes very close to
the real system. Furthermore, simulations allow the replay of real situ-
ations, greatly facilitating the discovery of appropriate solutions. How-
ever, simulated system size and diversity raises questions on the repre-
sentativeness of simulating grids. Moreover, nondeterminism and other
forms of hidden dynamic behavior of grids make the simulation approach
even less suitable. Even if these problems are overlooked, the simulation
outcome is greatly dependent on the used (synthetic) workloads [9, 11].

2.2 Experimental Testing
There are three ways to experimentally assess the performance of grid

systems: using real grid workloads, using synthetic grid workloads, and
benchmarking.

We argue that traces of real grid workloads (short, traces) are difficult
to replay in currently existing grids: the infrastructure changes too fast,
leading to incompatible resource requests when re-running old traces.
This renders the potential use of real traces unsuitable for the moment.
Synthetic grid workloads derived from one or several traces, may be used
instead.

Benchmarking is typically used to understand the quantitative aspects
of running grid applications and to make results readily available for
comparison. A benchmarks comprises a set applications representative
for a class of systems, and a set of rules for running the applications as a
synthetic system workload. Therefore, a benchmark is a single instance
of a synthetic workload.

Benchmarks present severe limitations, when compared to synthetic
grid workloads generation. They have to be developed under the aus-
pices of an important number of (typically competing) entities, and can
only include well-studied applications. Putting aside the considerable
amounts of time and resources needed for these tasks, the main problem
is that grid applications are starting to develop just now, typically at the
same time with the infrastructure [19], thus limiting the availability of
truly representative applications for inclusion in standard benchmarks.
Other limitations in using benchmarks for more than raw performance
evaluation are:

Benchmarking results are valid only for workloads truly repre-
sented by the benchmark’s set of applications; moreover, the num-
ber of applications typically included in benchmarks [13, 21]is typ-
ically small, limiting even more the scope of benchmarks;
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Benchmarks include mixes of applications representative at a cer-
tain moment of time, and are notoriously resistant to include new
applications; thus, benchmarks cannot respond to the changing
requirements of developing infrastructures, such as grids;

Benchmarks measure only one particular system characteristic (low-
level benchmarks), or a mix of characteristics (high-level bench-
marks), but not both.

An extensible framework for generating and submitting synthetic grid
workloads uses applications representative for today’s grids, and fosters
the addition of future grid applications. This approach can help over-
come the aforementioned limitations of benchmarks. First, it offers bet-
ter flexibility in choosing the starting applications set, when compared
to benchmarks. Second, applications can be included in generated work-
loads, even when they are in a debug or test phase. Third, the workload
generation can be easily parameterized, to allow for the evaluation of
one or a mix of system characteristics.

2.3 Grid Applications Types
From the point of view of a grid scheduler, we identify two types of

applications that can run in grids, and may be therefore included in
synthetic grid workloads.

Unitary applications This category includes single, unitary, appli-
cations. At most the job programming model must be taken into
account when running in grids (e.g., launching a name server be-
fore launching an Ibis job). Typical examples include sequential
and parallel (e.g., MPI, Java RMI, Ibis) applications. The tasks
composing a unitary application, for instance in a parallel appli-
cation, can interact with each other.

Composite applications This category includes applications com-
posed of several unitary or composite applications. The grid sched-
uler needs to take into account issues like task inter-dependencies,
advanced reservation and extended fault-tolerance, besides the com-
ponents’ job programming model. Typical examples include pa-
rameter sweeps, chains of tasks, DAG-based applications, and even
generic graphs.

2.4 Purposes of Synthetic Grid Workloads
We further present five reasons for using synthetic grid workloads.

System design and procurement Grid architectures offer many al-
ternatives to their designers, in the form of hardware, of operating
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software, of middleware (e.g., a large variety of schedulers), and of
software libraries. When a new system is replacing an old one, run-
ning a synthetic workload can show whether the new configuration
performs according to the expectations, before the system becomes
available to users. The same procedure may be used for assessing
the performance of various systems, in the selection phase of the
procurement process.

Functionality testing and system tuning Due to the inherent het-
erogeneity of grids, complicated tasks may fail in various ways,
for example due to misconfiguration or unavailability of required
grid middleware. Running synthetic workloads, which use the mid-
dleware in ways similar to the real application, helps testing the
functionality of the grids and detecting many of the existing prob-
lems.

Performance testing of grid applications With grid applications be-
ing more and more oriented toward services [15]or components [14],
early performance testing is not only possible, but also required.
The production cycle of traditional parallel and distributed appli-
cations must include early testing and profiling. These require-
ments can be satisfied with a synthetic workload generator and
submitter.

Comparing grid components Grid middleware comprises various
components, e.g., resource schedulers, information systems, and
security managers. Synthetic workloads can be used for solving
the requirements of component-specific use cases, or for testing
the Grid-component integration.

Building runtime databases In many cases, getting accurate in-
formation about an application’s runtime is critical for further
optimizing its execution. For many scheduling algorithms, like
backfilling, this information is useful or even critical. In addition,
some applications need (dynamic) on-site tuning of their parame-
ters in order to run faster. The use of historical runtime informa-
tion databases can help alleviate this problem [18]. An automated
workload generator and submitter would be of great help in filling
the databases.

In this paper we show how GrenchMark can be used to generate
synthetic workloads suitable for one of these goals (functionality testing
and system tuning), and lay out a research roadmap that may lead to
fulfilling the requirements of all five goals (see Section 6).
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3. An Extensible Framework for Grid Synthetic
Workloads

This section presents an extensible framework for generating and
submitting synthetic grid workloads. The first implementation of the
framework integrates two research prototypes, namely a grid applica-
tion development toolkit (Ibis), and a synthetic grid workload generator
(GrenchMark).

3.1 Ibis: Grid Applications
Ibis is a grid programming environment offering the user efficient exe-

cution and communication [8], and the flexibility to run on dynamically
changing sets of heterogeneous processors and networks.

The Ibis distribution package comes with over 30 working applica-
tions, in the areas of physical simulations, parallel rendering, computa-
tional mathematics, state space search, bioinformatics, prime numbers
factorization, data compression, cellular automata, grid methods, op-
timization, and generic problem solving. The Ibis applications closely
resemble real-life parallel applications, as they cover a wide-range of
computation/communication ratios, have different communication pat-
terns and memory requirements, and are parameterized. Many of the
Ibis applications report detailed performance results. Last but not least,
all the Ibis applications have been thoroughly described and tested in
various grids [8, 22]. They work on various numbers of machines, and
have automatic fault tolerance and migration features, thus respond-
ing to the requirements of dynamic environments such as grids. For a
complete list of publications, please visit http://www.cs.vu.nl/ibis.
Therefore, the Ibis applications are representative for grid applications
written in Java, and can be easily included in synthetic grid workloads.

3.2 GrenchMark: Synthetic Grid Workloads
GrenchMark is a synthetic grid workload generator and submitter.

It is extensible, in that it allows new types of grid applications to be in-
cluded in the workload generation, parameterizable, as it allows the user
to parameterize the workloads generation and submission, and portable,
as its reference implementation is written in Python.

The workload generator is based on the concepts of unit generators
and of job description files (JDF) printers. The unit generators produce
detailed descriptions on running a set of applications (workload unit),
according to the workload description provided by the user. There is
one unit for each supported application type. The printers take the
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Figure 1. The GrenchMark process.

generated workload units and create job description files suitable for
grid submission. In this way, multiple unit generators can be coupled to
produce a workload that can be submitted to any grid resource manager,
as long as the resource manager supports that type of applications.

The grid applications currently supported by GrenchMark are se-
quential jobs, jobs which use MPI, and Ibis jobs. We use the Ibis applica-
tions included in the default Ibis distribution (see Section 3.1). We have
also implemented three synthetic applications: sser, a sequential ap-
plication with parameterizable computation and memory requirements,
sserio, a sequential application with parameterizable computation and
I/O requirements, and smpi1, an MPI application with parameteriz-
able computation, communication, memory, and I/O requirements. Cur-
rently, GrenchMark can submit jobs to Koala and Globus GRAM.

The workload generation is also dependent on the applications inter-
arrival time [6]. Peak job arrival rates for a grid system can also be
modeled using well-known statistical distributions [6, 16]. Besides the
Poisson distribution, used traditionally in queue-based systems simula-
tion, modeling could rely on uniform, normal, exponential and hyper-
exponential, Weibull, log normal, and gamma distributions. All these
distributions are supported by the GrenchMark generator.

The workload submitter generates detailed reports of the submis-
sion process. The reports include all job submission commands, the
turnaround time of each job, including the grid overhead, the total
turnaround time of the workload, and various statistical information.
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3.3 Using the Framework
Figure 1 depicts the typical usage of our framework. First, the user de-

scribes the workload to be generated, as a formatted text file (1). Based
on the user description, on the known application types, and on informa-
tion about the grid sites, a workload is then generated by GrenchMark
(2). A generated workload is then submitted or resubmitted to the grid
(3). The grid environment is responsible for executing the jobs and re-
turning their results (4). The results include the outcome of the jobs,
and detailed submission reports. Finally, the user processes all results
in a post-production step (5).

4. A Concrete Case:
Synthetic Workloads for the DAS

This section presents a concrete case for our framework: generat-
ing and running synthetic workloads on the DAS [3], a 400 processors
multi-cluster environment. The Ibis applications were combined with
the synthetic applications, to create a pool of over 35 grid applications.
The GrenchMark tools were used to generate and launch the synthetic
workloads.

4.1 Koala: Scheduling Grid Applications
A key part of the experimental infrastructure is the Koala [17] grid

scheduler. To the author’s knowledge, Koala is the only fault-tolerant,
well-tested, and deployed grid scheduler that provides support for co-
allocated jobs, that is, it can simultaneously allocate resources in multi-
ple grid sites to single applications which consist of multiple components.
Koala was used to submit the generated workloads to the DAS multi-
cluster. Its excellent reporting capabilities were also used for evaluating
the jobs execution results.

For co-allocated jobs, Koala gives the user the option to specify the
actual execution sites, i.e., the clusters where job components should run.
Koala supports fixed jobs, for which users fully specify the execution
sites, non-fixed jobs, for which the user does not specify the execution
sites, leaving instead Koala to select the best sites, and semi-fixed jobs,
which are a mix of the previous two. Koala may schedule different
components of a non-fixed or of a semi-fixed job onto the same site. We
used this feature heavily for the Ibis and the synthetic MPI applications.
The structure of all used applications requires interaction between their
co-allocated components.
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Table 1. The experimental workloads. As the DAS has only 5 sites; jobs with more
than 5 components will have several components running at the same site.

# of # of Component Success
Workload Applications types Jobs CPUs No. Size Rate

gmark1 synthetic, sequential 100 1 1 1 97%
gmark+ synthetic, seq. & MPI 100 1-128 1-15 1-32 81%
ibis1 N Queens, Ibis 100 2-16 1-8 2-16 56%
ibis+ various, Ibis 100 2-32 1-8 2-16 53%
wl+all all types 100 1-32 1-8 1-32 90%

# File-type: text/wl-spec
#ID Jobs Type   SiteType Total SiteInfo ArrivalTimeDistr   OtherInfo
?   25   sser   single 1 *:? Poisson(120s)      StartAt=0s
?   25   sserio single 1 *:? Poisson(120s)      StartAt=60s
?   25   smpi1  single 1 *:? Poisson(120s)      StartAt=30s,ExternalFile=smpi1.xin
?   25   smpi1  single 1 *:? Poisson(120s)      StartAt=90s,ExternalFile=smpi2.xin

Figure 2. A GrenchMark workload description example.

4.2 The Workload Generation
Table 1 shows the structure of the five generated workloads, each

comprising 100 jobs. To satisfy typical grid situations, jobs request
resources from 1 to 15 sites. For parallel jobs, there is a preference
for 2 and 4 sites. Site requests are either precise (specifying the full
name of a grid site) or non-specified (leaving the scheduler to decide).
For multi-site jobs, components occupy between 2 and 32 processors,
with a preference for 2, 4, and 16 processors. We used combinations
of parameters that would keep the run-time of the applications under
30 minutes, under optimal conditions. Each job requests resources for a
time below 15 minutes. Various inter-arrival time distributions are used,
but the submission time of the last job of any workload is kept under
two hours.

Figure 2 shows the workload description for generating the gmark+
test, comprising 100 jobs of four different types. The first two lines are
comments. The next two lines are used to generate sequential jobs of
types sser and sserio, with default parameters. The final two lines are
used to generate MPI jobs of type smpi1, with parameters specified in
external files smpi1.xin and smpi2.xin. All four job types assume an
arrival process with Poisson distribution, with a average rate of 1 job
every 120 seconds. The first job of each type starts at a time specified
in the workload description with the help of the StartAt tag.

4.3 The Workload Submission
GrenchMark was used to submit the workloads. Each workload

was submitted in the normal DAS working environment, thus being in-
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Table 2. A summary of time and run/success percentages for different job types.

Turnaround [s] Runtime [s] Run+
Job name Job type Avg. Min Max Avg. Min Max Run Success

sser sequential 129 16 926 44 1 588 100% 97%
smpi1 MPI 332 21 1078 110 1 332 80% 85%
N Queens Ibis 99 15 1835 31 1 201 66% 85%

fluenced by the background load generated by other DAS users. Some
jobs could not finish in the time for which they requested resources,
and were stopped automatically by the Koala scheduler. This situa-
tion corresponds to users under-estimating applications’ runtimes. Each
workload ran between the submission start time and 20 minutes after
the submission of the last job. Thus, some jobs did not run, as not
enough free resources were available during the time between their sub-
mission and the end of the workload run. This situation is typical for
real working environments, and being able to run and stop the work-
load according to the user specifications shows some of the capabilities
of GrenchMark.

5. The Experimental Results
This section presents an overview of the experimental results, and

shows that workloads generated with GrenchMark can cover in prac-
tice a wide-range of run characteristics.

5.1 The Performance Results
Table 1 shows the success rate for all five workloads (column Success

Rate). A successful job is a job that gets its resources, runs, finishes,
and returns all results within the time allowed for the workload. We
have selected the success rate metric to show that GrenchMark can
be used to evaluate the arguably biggest problem of nowadays grids,
i.e., the high rate of failures. The lower performance of Ibis jobs (work-
load ibis+) when compared to all the others, is caused by the fact that
the system was very busy at the time of testing, making the resource
allocation particularly difficult. This situation cannot be prevented in
large-scale environments, and cannot be addressed without special re-
source reservation rights.

The turnaround time of an application can vary greatly (see Table
2), due to different parameter settings, or to varying system load. The
variations in the application runtimes are due to different parameter
settings.
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As expected, the percentage of the applications that are actually run
(Table 2, column Run) depends heavily on the job size and system load.
The success rate of jobs that did run shows little variation (Table 2,
column Run+Success). The ability of GrenchMark to report percent-
ages such as these enables future work on comparing of the success rate
of co-allocated jobs, vs. single-site jobs.

5.2 Dealing With Errors
Using the combined GrenchMark and Koala reports, it was easy

to identify errors at various levels in the submission and execution envi-
ronment: the user, the scheduler, the local and the remote resource, and
the application environment levels. For a better description of the error
levels, and for a discussion about the difficulty of trapping and under-
standing errors, we refer the reader to the work of Thain and Livny [20].

We were able to identify bottlenecks in the grid infrastructure, and
in particular in Koala, which was one of our goals. For example, we
found that for large jobs in a busy system, the percentage of unsuccessful
jobs increases dramatically. The reason is twofold. First, using a single
machine to submit jobs (a typical grid usage scenario) incurs a high
level of memory occupancy, as for each job a Koala job submitter is
started, and one set of Java core and GRAM libraries are loaded into
memory. A possible solution is to allow a single Koala job submitter
to handle multiple jobs simultaneously. Second, there are cases when
jobs attempt to claim the resources allocated by the scheduler, but fail
to do so, for instance because a local request leads to resources being
claimed by another user (scheduling-claiming atomicity problem). A
potential solution is to use an exponential back-off mechanism when
(re-)scheduling such jobs.

6. Proposed Research Roadmap
In this section we present a research roadmap for creating a framework

for synthetic grid workload generation, submission, and analysis. We
argue that such a complex endeavor cannot be completed in one step,
and, most importantly, not by a single research group. We propose
instead an iterative roadmap, in which results obtained in each of the
steps are significant for theoretical and practical reasons.

Step 1. Identify key modeling features for synthetic grid workloads;
Step 2. Build or extend a framework for synthetic grid workloads genera-

tion, submission, and analysis;
Step 3. Analyze grid traces and create models of them;
Step 4. Repeat from Step 1 until the framework includes enough features;
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Step 5. Devise grid benchmarks for specific goals (see Section 2.4);

Step 6. Repeat from Step 1 until all the important domains in Grid are
covered ;

Step 7. Create a comprehensive Grid benchmark, in the flavor of SPEC [1]
and TPC [2].

The work included in this paper represents an initial Step 1-3 iter-
ation. We have first identified a number of key modeling features for
synthetic grid workloads, e.g., application types. We have then built
an extensible framework for synthetic grid workloads generation, sub-
mission, and analysis. Finally, we have used the framework to test the
functionality of and tune the Koala scheduler.

7. Conclusions and Ongoing Work
This work has addressed the problem of synthetic grid workload gen-

eration and submission. We have integrated three research prototypes,
namely a grid application development toolkit, Ibis, a grid metasched-
uler, Koala, and a synthetic grid workload generator, GrenchMark,
and used them to generate and run workloads comprising well-established
and new grid applications on a multi-cluster grid. We have submitted a
large number of application instances, and presented overview results of
their execution.

We are currently adding to GrenchMark composite applications
generation capabilities and an automatic results analyzer. For the future,
we plan to prove the applicability of GrenchMark for specific grid
performance evaluation, such as an evaluation of the DAS support for
High-Energy Physics applications [10], and a performance comparison
of co-allocated and single site applications, to complement our previous
simulation work [5].
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