
Ibis: Real-World Problem Solving using Real-World Grids

H.E. Bal, N. Drost, R. Kemp, J. Maassen,

R.V. van Nieuwpoort, C. van Reeuwijk, and F.J. Seinstra

Department of Computer Science, Vrije Universiteit,

De Boelelaan 1081A, 1081 HV Amsterdam, The Netherlands

{bal, ndrost, rkemp, jason, rob, reeuwijk, fjseins}@cs.vu.nl

Abstract

Ibis is an open source software framework that

drastically simplifies the process of programming and

deploying large-scale parallel and distributed grid ap-

plications. Ibis supports a range of programming

models that yield efficient implementations, even on

distributed sets of heterogeneous resources. Also, Ibis

is specifically designed to run in hostile grid environ-

ments that are inherently dynamic and faulty, and that

suffer from connectivity problems.

Recently, Ibis has been put to the test in two compe-

titions organized by the IEEE Technical Committee on

Scalable Computing, as part of the CCGrid 2008 and

Cluster/Grid 2008 international conferences. Each of

the competitions’ categories focused either on the as-

pect of scalability, efficiency, or fault-tolerance. Our

Ibis-based applications have won the first prize in all

of these categories. In this paper we give an overview

of Ibis, and — to exemplify its power and flexibility —

we discuss our contributions to the competitions, and

present an overview of our lessons learned.

1 Introduction

In 2001, grid experts Foster, Kesselman, and

Tuecke published one of the most influential and defin-

ing papers in the field of grid computing [3]. The au-

thors indicate that the fundamental problem that un-

derlies the grid concept is ”flexible, secure, coordi-

nated resource sharing and problem solving in dy-

namic collections of individuals, institutions, and re-

sources”. Also, the field is ”distinguished from con-

ventional distributed computing by its focus on large-

scale resource sharing, innovative applications, and,

in some cases, high-performance orientation”. With

”grid-enabled programming systems” available that

”enable familiar programming models to be used”,

this definition holds a promise, i.e. the promise of ef-

ficient and easy-to-use wall-socket computing over a

distributed set of resources [11].

The promise of abstractions that would allow large

sets of computing and storage resources to be seen as

a single virtual supercomputer has raised high expec-

tations — especially in domains that have an imme-

diate need for large-scale distributed compute power

(e.g., astronomy, multimedia). Despite rewarding re-

sults that have been obtained for specific application

types (i.e., parameter sweeps [1], workflow driven

problems [5, 13]), the field of grid computing at large

has not yet been able to live up to its promise. This

is unfortunate, because — in contrast to common be-

lief — many grid systems allow for a much larger

class of communication-intensive and distributed ap-

plications to be executed effectively [14].

We ascribe this rather limited use of grid systems

to the intrinsic complexity of writing and deploy-

ing distributed applications. Grid programmers often

are required to use low-level programming interfaces

that change frequently. Programmers also must deal

with system- and software-heterogeneity, connectiv-

ity problems, and resource failures. Also, managing

a running application is complicated, because the ex-

ecution environment may change dynamically as re-

sources come and go. All of these problems limit the

acceptance of grid computing technology.

The Ibis project aims to overcome these problems,

and to drastically simplify the programming and de-

ployment process of (high-performance) grid appli-

cations. The Ibis philosophy is that grid applica-

tions should be developed on a local workstation and

simply be launched from there. This ‘write-and-go’

philosophy is directly derived from the abovemen-

tioned ’promise of the grid’: it requires minimalis-

tic assumptions about the execution environment, and

expects most of the environment’s software (e.g., li-

braries) to be sent along with the application. To this

end, Ibis exploits Java virtual machine technology, and

uses middleware-independent Application Program-

ming Interfaces that are automatically mapped onto

the available middleware.



This paper focuses on real-world problems that

were defined in two competitions organized by the

IEEE Technical Committee on Scalable Computing

(see www.ieeetcsc.org): (1) The First IEEE In-

ternational Scalable Computing Challenge (SCALE

2008, held in conjunction with CCGrid 2008 in Lyon,

France), and (2) The First International Data Analy-

sis Challenge for Finding Supernovae (DACH 2008,

held in conjunction with IEEE Cluster/Grid 2008 in

Tsukuba, Japan). The objective of these competi-

tions was to highlight and showcase real-world prob-

lem solving and large-scale data analysis, by applying

scalable, efficient, and fault-tolerant computing tech-

niques using real-world grid systems. Our winning

results, in all competition categories, are a clear in-

dication of the broad applicability of the Ibis system.

This paper is organized as follows. Section 2 gives

an overview of Ibis. Section 3 presents the SCALE

2008 challenge, as well as our winning contribution.

Section 4 explains the two competition categories of

DACH 2008, and presents our contribution to each of

these. Related work is discussed in Section 5. Lessons

learned, as well as conclusions, are given in Section 6.

2 The Ibis Project

The Ibis project (see also www.cs.vu.nl/

ibis/) aims to provide transparent solutions to all

inherent grid computing problems, and — as such —

to make significant steps forward towards realizing the

’promise of the grid’. To this end, Ibis provides a

rich software stack that provides all functionality that

is traditionally (e.g., for sequential computers) asso-

ciated with programming languages on the one hand,

and operating systems on the other. More specifically,

Ibis offers an integrated, layered solution, consisting

of two subsystems: the High-PerformanceApplication

Programming System and the Distributed Application

Deployment System (see Figure 1).

2.1 The Ibis HighPerformance Application
Programming System

The Ibis High-Performance Application Program-

ming System consists of (1) the IPL, (2) the program-

ming models, and (3) SmartSockets, described below.

(1) The Ibis Portability Layer (IPL): The IPL is

at the heart of the High-Performance Application Pro-

gramming System. It is a communication library that

is written entirely in Java, so it runs on any platform

that provides a suitable Java Virtual Machine (JVM).

The library is typically shipped with the application

(as Java jar files), such that no preinstalled libraries

need to be present at any destination machine.

Figure 1. Ibis: high level overview.

The IPL provides a range of communication prim-

itives (partially comparable to those provided by li-

braries such as MPI), including point-to-point and

multicast communication, and streaming. It applies

efficient protocols that avoid copying and other over-

heads as much as possible, and uses bytecode rewrit-

ing optimizations for efficient transmission.

To deal with real-world grid systems, in which re-

sources can crash, and can be added or deleted, the IPL

incorporates a runtime mechanism that keeps track of

the available resources. The mechanism, called Join-

Elect-Leave (JEL), is based on the concept of signal-

ing, i.e., notifying the application when resources have

Joined or Left the computation. JEL also includes

Elections, to select resources with a special role.

The IPL has been implemented on top of the socket

interface provided by the JVM, and on top of our own

SmartSockets library (see below). Irrespective of the

implementation, the IPL can be used ’out of the box’

on any system that provides a suitable JVM. In addi-

tion, the IPL can exploit specialized native libraries,

such as a Myrinet device driver (MX).

(2) Ibis ProgrammingModels: The IPL can be (and

has been) used directly to write applications, but Ibis

also provides several higher-level programming mod-

els on top of the IPL, including (1) an implementa-

tion of the MPJ standard, i.e. an MPI version in Java,

(2) Satin, a divide-and-conquer model, described be-

low, (3) Remote Method Invocation (RMI), an object-

oriented form of Remote Procedure Call, (4) Group

Method Invocation (GMI), a generalization of RMI

to group communication, (5) Maestro, a fault-tolerant

and self-optimizing data-flow model, and (6) Jorus, a

user transparent parallel programming model for mul-

timedia applications.



Figure 2. The IbisDeploy GUI that enables runtime loading of grids and applications (top),

and keeping track of running processes (bottom). Center left shows the locations of avail

able resources; center right shows SmartSockets connections between these resources.

The most transparent model of these is Satin [15],

a divide-and-conquer system that automatically pro-

vides fault-tolerance and malleability. Satin recur-

sively splits a program into subtasks, and then waits

until the subtasks have been completed. At runtime

a Satin application can adapt the number of nodes to

the degree of parallelism, migrate a computation away

from overloaded resources, remove resources with

slow communication links, and add new resources to

replace resources that have crashed. As such, Satin is

one of the few systems that provides transparent pro-

gramming capabilities in dynamic systems.

(3) SmartSockets: To run a parallel application on

multiple grid resources, it is necessary to establish

network connections. In practice, however, a vari-

ety of connectivity problems exists that make com-

munication difficult or even impossible, such as fire-

walls, Network Address Translation (NAT), and multi-

homing. It is generally up to the application user to

solve such connectivity problems manually.

The SmartSockets library aims to solve connectiv-

ity problems automatically, with little or no help from

the user. SmartSockets integrates existing and novel

solutions, including reverse connection setup, STUN,

TCP splicing, and SSH tunneling. SmartSockets cre-

ates an overlay network by using a set of intercon-

nected support processes, called hubs. Typically, hubs

are run on the front-end of a cluster. Using gossiping

techniques, the hubs automatically discover to which

other hubs they can establish a connection. The power

of this approachwas demonstrated in a world-wide ex-

periment: in 30 realistic scenarios SmartSockets was

always capable of establishing a connection, while tra-

ditional sockets only worked in 6 of these [6].

2.2 The Ibis Distributed Application Deploy
ment System

The Ibis Distributed Application Deployment Sys-

tem consists of a software stack for deploying and

monitoring applications, once they have been written.

The software stack consists of (1) the JavaGAT, (2)

IbisDeploy, and (3) Zorilla, described below.

(1) The Java Grid Application Toolkit (JavaGAT):

Today, grid programmers generally have to implement

their applications against a grid middleware API that

changes frequently, is low-level, unstable, and incom-

plete [7]. The JavaGAT solves these problems in an in-

tegrated manner. JavaGAT offers high-level primitives

for developing and running applications, independent

of the middleware that implements this functionality.

It does so by integrating multiple middlewares into

a single coherent system. Extensions are frequently

added by ourselves and others. JavaGAT further de-

fines a powerful API for middleware developers to

allow experiments with various middleware designs

without hindering the application programmers.

JavaGAT allows grid applications to transparently

access remote data and spawn off jobs. It also provides

support for monitoring, steering, user authentication,

resource discovery, and storing of application-specific

data. JavaGAT calls are dynamically forwarded to

one or more middlewares that implement the re-

quested functionality. For example, JavaGAT supports

file operations through GridFTP, SSH, HTTP, and

SMB/CIFS, and resource management with GRMS,

Globus(/WS) GRAM, SSH, PBS, SGE, ProActive,

and Zorilla. If a grid operation fails, it automatically

dispatches the API call to an alternative middleware.



(2) IbisDeploy: The IbisDeploy API is a thin layer

on top of the JavaGAT API, that initializes JavaGAT in

the most commonly used ways, and that lifts combina-

tions of multiple JavaGAT calls to a higher abstraction

level. For example, if one wants to run a distributed

grid application written in Ibis, a network of Smart-

Sockets hubs must be started manually. IbisDeploy

takes over this task in a fully transparent manner.

The IbisDeploy GUI (see Figure 2) allows a user to

manually load grids and applications at any time. As

such, multiple grid applications can be started using

the same graphical user interface. More interestingly,

the IbisDeploy GUI allows the user to add new re-

sources to a running application. In addition, the GUI

also allows a certain level of application steering.

(3) Zorilla: As traditional grid middlewares lack

co-scheduling capabilities, Ibis provides its own mid-

dleware implementation. The system, called Zorilla,

is a light-weight peer-to-peer (P2P) middleware sys-

tem that runs on clusters, grids, clouds (Amazon), and

desktop machines. In contrast to traditional middle-

wares, it has no central components. It supports both

fault-tolerance and malleability and it is easy to set up

and maintain. Also, Zorilla was specifically designed

to allow parallel applications to run concurrently on

resources in multiple administrative domains.

As Zorilla is the only part of Ibis that was not used

in our contributions to the SCALE and DACH chal-

lenges, we will not discuss it further.

3 SCALE 2008

SCALE 2008, or the First IEEE International Scal-

able Computing Challenge, is a competition organized

by the IEEE Technical Committee on Scalable Com-

puting (TCSC, see also www.ieeetcsc.org), and

endorsed by the IEEE Technical Committee on Par-

allel Processing (tcpp.computer.org). The ob-

jective of the competition, held in conjunction with

the CCGrid 2008 international conference in Lyon,

France, was to highlight and showcase real-world

problem solving using scalable computing techniques.

All participants were expected to identify significant

real-world problems where scalable computing can be

effectively used, and to design, implement, evaluate

and demonstrate their solutions.

Six finalists, from a total of 11 teams, were invited

to participate in the challenge and to present their com-

petition contribution. The participating teams were

judged by a panel of experts based on the follow-

ing criteria: (1) the significance and potential impact

of the application and its appropriateness for scalable

computing, (2) novelty, complexity and correctness of

the presented solution and the results achieved, (3) ex-

tent to which the presented solution pushes the en-

velope in scalable computing, (4) demonstration and

presentation by the team. The panel of experts se-

lected two of the participating teams (i.e. Konrad-

Zuse-Zentrum für Informationstechnik, Berlin, and

Vrije Universiteit, Amsterdam) as shared first prize

winner. Our Ibis-based contribution to the SCALE

2008 competition is described below.

3.1 WallSocket Multimedia Computing

With the increasing omnipresence of multimedia

data, automatic multimedia content analysis (MMCA)

is rapidly becoming a problem of phenomenal propor-

tions. At SCALE 2008 we presented a scalable dis-

tributed supercomputing solution for the MMCA do-

main. Specifically, we developed an application in

which a digital camera is capable of real-time ’recog-

nition’ of objects from a set of learned objects, while

being connected to a world-wide grid system (see Fig-

ure 3). Object recognition is a computationally de-

manding problem that involves a non-trivial tradeoff

between specificity of recognition and invariance (e.g.,

to different lighting conditions).

With our application we demonstrated true wall-

socket grid computing. The entire application, includ-

ing all required libraries, was stored on a memory

stick, which could be plugged into any Linux or Win-

dows laptop with an appropriate JVM installed. From

there, the application was compiled and started (using

IbisDeploy), with the world-wide set of available grid

resources being employed entirely transparently.

For our SCALE participation we have put most ef-

fort in the implementation of a transparent program-

ming model for multimedia computing, directly on top

of the IPL. Themodel, called Jorus, is a full Ibis imple-

mentation of the Parallel-Horus system [10]. As such,

Jorus is a cluster programming model that allows its

Figure 3. Overview of the MMCA

application. A video of is available at

www.cs.vu.nl/˜fjseins/aibo.shtml



users to implement parallel multimedia applications as

fully sequential programs, using a carefully designed

set of building block operations that hide all complexi-

ties of parallelization behind a familiar sequential API.

For reasons of efficiency, Jorus applies an advanced

runtime optimization approach that automatically par-

allelizes a sequential program by inserting commu-

nication primitives and memory management oper-

ations whenever necessary. Earlier results obtained

with Parallel-Horus have shown the feasibility of the

approach, with data parallel performance consistently

being found to be optimal with respect to the abstrac-

tion level of message passing programs.

In our SCALE application, the processing of a sin-

gle video frame is a data-parallel Jorus task (executed

on a cluster) and calculations over consecutive frames

are executed in a task-parallel manner on a grid. Be-

cause Jorus aimed to mimic Parallel-Horus as much

as possible, the underlying IPL was configured to run

using a closed-world pool of resources: like MPI,

Jorus is not fault-tolerant at the level of single com-

pute nodes, as no resources can be added or removed

at application run-time. Still, for the full distributed

application cluster-level fault-tolerance and malleabil-

ity was obtained easily, by letting multiple Jorus in-

stances run together under an open-world model.

During our SCALE demonstration we concurrently

used up to 20 clusters in Europe, USA, and Australia

(commonly employing 500-800 cores in total), with a

mix of grid middlewares (including Globus, Zorilla,

and even SSH), and under a variety of connectivity

problems solved by SmartSockets. We often obtained

recognition at a rate of 10 to 15 frames per second,

where the original sequential code took 30 seconds

per frame on a single core of a fast desktop computer.

Clearly, without the benefits of Ibis, moving the appli-

cation from a controlled laboratory setting to a real-

world system would have been close to impossible.

4 DACH 2008

DACH 2008, the First International Data Analysis

Challenge for Finding Supernovae, was held in con-

juction with the IEEE Cluster/Grid 2008 international

conference in Tsukuba, Japan. The competition was

organized by the IEEE Technical Committee on Scal-

able Computing, the Japan MEXT grant-in-aid for pri-

ority area research called Info-Plosion, and the Spe-

cial Interest Group on High Performance Computing

(SIGHPC) of the Information Processing Society of

Japan (IPSJ). The competition was driven by the ob-

servation that the importance of large scale data anal-

ysis increases every year, not only in the scientific do-

main (e.g. astronomy, biology), but also in industry.

In the DACH challenge a large distributed database

(of several hundreds of GBytes) of scientific data,

gathered by the Subaru telescope in Hawaii, had to

be searched to find new and unknown ‘supernova can-

didates’. For the calculations, the participants were

given access to a supercomputer system comprising

of 12 compute clusters distributed over Japan — i.e.

a combination of the InTrigger Info-Plosion platform

and Tokyo Tech Presto III, with a combined total of

1163 cores and over 140 TByte of storage.

To find all supernova candidates, it was necessary

to compare image pairs at an interval of one month.

The data analysis program itself, a sequential program

implemented in C called ‘SuperFind’, was provided by

the competition organizers. The participants were al-

lowed to optimize the SuperFind program, and to em-

bed it in any kind of distributed software environment,

as long as the calculated results would be identical to

the results that were pre-calculated by the organizers.

With all these preconditions being identical, the com-

petition was split into two different categories: (1) The

Basic Category (BS), in which the goal was to perform

all of the necessary calculations as fast as possible,

(2) The Fault-Tolerant Category (FT), which had the

added complexity of artificial node failures.

Fourteen teams participated in DACH 2008. The

contest was considered difficult: not more than 9

teams submitted a result in the BS category, and only 1

team completed the FT category. Our Ibis-based con-

tributions are described below.

4.1 Hierarchical Task Farming with Ibis

Initial runs of the SuperFind program on a small

sample data set showed that the execution time was

widely varying. For some input image pairs the exe-

cution took only 30 seconds, while for other (similar

sized) input pairs the program took over 40 minutes

to complete. When calculating in a distributed fash-

ion, such wide fluctuations in execution times easily

result in load imbalances - and a longer overall exe-

cution time. To overcome this problem, and to speed

up the program as a whole, we have parallelized the

original SuperFind code. Although there is no funda-

mental reason why the SuperFind program could not

be implemented in Java, due to the shear complexity

of the original code, and the need to present identical

results even under fluctuations in the internal storage

of floating point numbers by different programming

languages, we decided to keep C as the language of

choice. This part of our solution is, therefore, outside

the scope of this paper. The following description in-

dicates, however, the ease with which ‘legacy’ codes

in languages other than Java are integrated with Ibis.



Figure 4. (a) Design of the DACH application. (b) The hierarchical masterworker model.

For the BS problem, we developed a new Master-

Worker Framework and a File Transfer Framework

(see Figure 4(a)). Our application starts by obtaining

a directory where the input files can be found. The ap-

plication then uses the Ibis File Transfer library to ob-

tain a list of files available on the different clusters. To

perform this operation, a simple File Server is started

on each of the sites. This File Server is implemented in

Java and is based on the IPL, which — in turn — uses

SmartSockets. The JavaGAT is used to start these File

Servers over SSH. Note that, on different systems, this

could be any other middleware, such as Globus, with

little or no change to the application code.

Once the DACH application has obtained a list of

all input files, it generates a set of Jobs. Each job con-

tains a pair of files that need to be compared using the

SuperFind program. The jobs also contain a list of lo-

cations where each of the files can be found. These

jobs are passed on to the Master-Worker Framework,

which uses the JavaGAT to start a single Local Master

on each of the participating sites. In turn, each Local

Master uses the JavaGAT to start a worker on each of

the compute nodes of its local cluster. The framework

itself acts as the Global Master. This results in a hier-

archical master-worker setup, as shown in Figure 4(b).

Whenever a worker is idle, it requests a job from its

Local Master, who forwards the request to the Global

Master. If a job is available, it will be returned using

the reverse path. This approach is chosen because the

input files of some jobs are replicated on multiple clus-

ters. By using a single centralized job queue, we pre-

vent these jobs from being run more that once. Also,

by routing all worker request through a Local Master

on each cluster, the number of required network con-

nections is significantly reduced.

Once a worker receives a job, it calls a DACH ap-

plication specific function to process the job. This

function copies the input files to a temporary directory

on the local disk, either using NFS (in case of local

files), or using the Ibis File Transfer library (in case of

remote files). It then calls the SuperFind program to

process the files. The result of the comparison is then

sent to the Global Master (again via the Local Mas-

ter), which returns it to the DACH application. When

all results have been received, they are checked against

the results that were pre-calculated by the organizers.

In initial experiments, we (and other teams) found

that data transfer between sites occasionally took an

excessive amount of time. This behavior is shown in

Figure 5, plotting the total time and related data trans-

fer for each job. As a result, a complete run, consisting

of 1052 jobs to be processed, would spend half of its

time waiting for the last 100 jobs. To overcome this

problem, we let each cluster process local files only.

As a consequence, some clusters finished earlier than

others, but no time was lost in data transfer.

Our Ibis-based solution obtained by far the fastest

result. While we required only 36 minutes for all cal-

culations, the second best team used more than 1 hour.

All other teams obtained run-times of 3 to even more

than 25 times longer. Our result was partially due to

our parallelization of the SuperFind program. With-

out parallelization, our solution runs in under 50 min-

utes — still significantly faster than all other teams.

More importantly, we benefited from the flexibility of

Ibis. This allowed us to implement multiple solutions

in a short time frame, using a grid system that we —

in contrast to many other teams — had no experience

with until the start of the competition.

Figure 5. Total time vs. data transfer time.



4.2 Maestro: SelfOrganizing DataFlows

The purpose of also participating in the fault tol-

erant challenge was to test a new Ibis programming

model: Maestro, a system for data-flow computations

in real-world grid systems. An important feature of

Maestro is that it is self-organizing. In particular, dis-

tribution of computations over nodes is based on local

decisions made by each of the nodes independently,

not by a central coordinator. The only special nodes in

the system are the ‘Maestro’ nodes that put input data

into the system and that handle the final result.

Each node has two queues: a submission queue and

a work queue. The tasks in the submission queue are

submitted to the ‘best’ node in the system for execu-

tion, either the local node, or a remote one. To se-

lect the best node, the capabilities and performance of

all nodes are continuously ‘gossiped’ by a background

process on each node. To avoid idle times, the work

queue on each node contains tasks to be executed on

the local node only. To allow rapid reaction to chang-

ing circumstances, the work queue is kept small.

Maestro is designed for data-flow systems, where

computations ‘flow’ through a number of distinct pro-

cessing steps. By interpreting the DACH computa-

tions as a flow of size one, we simply reducedMaestro

to a master-worker configuration. More problematic

was the central assumption in Maestro that a computa-

tion consists of repeated tasks, each with comparable

execution time. Nodes use these properties to learn

the best allocation of computations to nodes based on

previous experiences. The DACH computations do

not match these assumptions, since the SuperFind pro-

gram has widely varying computation times. More-

over, since the DACH challenge was relatively small-

scale, there is limited opportunity to learn from earlier

calculations. In fact, for best performance the system

cannot afford to learn at all; from the start it must as-

sign the longest running jobs in an optimal manner.

We solved this problem by introducing a new type of

tasks in Maestro: unpredictable tasks. For such tasks

Maestro runs a benchmark on each node of the sys-

tem on startup. Maestro then favors task submission

to nodes with fast benchmark results.

Since the SuperFind program had such widely

varying computation times, it was important to iden-

tify the longest computations, and start these as soon

as possible. As it is reasonable to assume that there is a

correlation between image file size and the duration of

the computation, the master first assigns the image pair

with the largest total file size to the best node, then the

second largest to the best remaining node, and so on.

With this adapted Maestro framework we partici-

pated in the FT challenge. We could do so thanks

to the resource tracking mechanisms provided by

the Join-Elect-Leave (JEL) model, discussed earlier.

Whenever a task is terminated involuntarily, Maestro

is notified of this event, such that appropriate action

(i.e. the restarting of the same task) can be taken.

Maestro was the only system capable of participat-

ing in the FT challenge; it finished all computations in

5.5 hours. This execution time is not very relevant, as

it is largely determined by the high cost of file trans-

fer, and partially also by the number of processes be-

ing killed. For faster execution, it would have helped

to use the parallel version of SuperFind, but since our

effort was for the purpose of testing Maestro, we used

the standard version. Maestro used a total of 92 nodes,

34 (i.e. more than one third) of which were killed, and

one of which crashed by itself. Maestro automatically

restarted about 10 percent of all SuperFind compar-

isons, before returning the correct result.

5 Related Work

ProActive [2] is one of the few systems that, like

Ibis, follows a dual-subsystem approach. It contains

several grid programming models and provides grid

deployment and virtualization components. Whereas

Ibis has a strong focus on performance, the core of

ProActive is more heavy-weight. ProActive further

differs from Ibis in that it requires the user to manually

handle all connection setup problems and to manually

(and statically) select the appropriate middleware. Fi-

nally, ProActive is one integrated system, from which

individual components cannot be used separately.

Phoenix [12] also follows a dual-subsystem ap-

proach. It consists of a message passing model that,

like the Ibis IPL, allows compute nodes to be added to

and removed from a running application. Phoenix au-

tomatically deals with several connection setup prob-

lems (e.g., firewalls), but our SmartSockets solution

is more extensive. Phoenix also provides easy-to-use

tools that handle common grid operations. Unlike the

JavaGAT system, however, it cannot automatically ex-

ploit different grid middlewares at the same time.

Genesis II [8] is an open source, and standards-

based grid system for compute and data intensive ap-

plications. Its main focus is on grid deployment, un-

der the motto ”by default the user should not have

to think”. Genesis II extensively uses the file-system

paradigm, allowing transparent access through famil-

iar mechanisms (such as drag-and-drop remote job ex-

ecution), giving functionality similar to the Ibis Java-

GAT. It does not focus on high-performance (dis-

tributed) computing, however, and lacks a grid-centric

communication system (such as our IPL) or higher

level grid programming models.



The Open Grid Forum is currently standardizing

the next generation grid programming toolkit: the

Simple API for Grid Applications (SAGA) [4]. The

goal is to provide a ”grid counterpart to MPI” (at least

in impact), that would supply developers with a sim-

ple, uniform, and standard programming interface for

distributed applications. SAGA will support several

programming languages and will provide consistent

semantics and style for different grid functionality.

Notably, the Java Reference Implementation of SAGA

is implemented directly on top of Ibis JavaGAT.

Finally, SyD [9] is a Java-based dual-subsystem

middleware for collaborative and distributed applica-

tions over mobile and other devices. While SyD seems

to be no longer under active development, it is a rele-

vant reference given the fact that an Ibis implementa-

tion is available for the Android smart phone platform.

6 Lessons Learned and Conclusions

Contests such as described in this paper can play

an important role in pushing forward the state-of-the-

art in the field. Having to solve real problems on real

grid systems forces the development process of appli-

cations, runtime systems, and middlewares to be more

than a theoretical exercise. Performing grid research

on ‘hostile’ systems is essential, as many grid users

come from scientific and industrial domains. These

users need to solve real problems using real grids.

SCALE, DACH, and other contests have helped us

to identify and fix shortcomings in Ibis over the years,

and inspired us to develop solutions for problems in

real-world grids. As a result, Ibis now solves most of

the inherent grid complexities transparently, allowing

more time to be spend on the actual problem at hand.

We have also learned that Ibis can provide real-time

(SCALE) as well as off-line (DACH) solutions for

different domains (i.e., multimedia and astronomy).

Also, from the fact that our SCALE solution was a

pure Java/Ibis application, while our DACH solutions

comprised of a mix of Java, Ibis, and ‘legacy’ codes,

we conclude that Ibis is likely to have broad appli-

cability, in many application areas, and under many

domain- and application-specific requirements.

Clearly, we also encountered difficulties, due to a

lack of a sufficiently large set of available program-

ming models, and due to shortcomings in earlier im-

plementations. Apart from the lack of support for un-

predictable tasks, Maestro suffered from a lack of sup-

port for locality-aware execution, to favor computa-

tions to be performed where data resides. Also, Ibis

lacked a hierarchical master-worker model, and a li-

brary for distributed file access. These problems have

been fixed, making Ibis as a whole much more mature.

To conclude: participation in the two contests was

a great experience, and we will continue to embrace

these and other competitions in the future. We sin-

cerely hope that other research projects in the domains

of scalable and high-performance grid computing will

do the same. When this happens, there is a realistic

chance that such competitions indeed will push for-

ward the overall state-of-the-art in our research field.

References

[1] D. Abramson et al. Nimrod: A Tool for Performing

Parametised Simulations using Distributed Worksta-

tions. In HPDC’95, Pentagon City, USA, Aug. 1995.
[2] L. Baduel et al. Programming, Deploying, Compos-

ing, for the Grid. In Grid Computing: Software Envi-

ronments and Tools. Springer-Verlag, Jan. 2006.
[3] I. Foster et al. The Anatomy of the Grid: En-

abling Scalable Virtual Organizations. Int. J. of High-

Perform. Comput. Appl., 15(3):200–222, 2001.
[4] T. Goodale et al. SAGA: A Simple API for Grid Appli-

cations, High-Level Application Programming on the

Grid. Comp. Meth. Sci. Tech., 12(1):7–20, 2006.
[5] B. Ludäscher et al. Scientific Workflow Management

and the KEPLER System. Concur. Comput.: Pract.

Exp., 18(10):1039–1065, Aug. 2005.
[6] J. Maassen et al. SmartSockets: Solving the Con-

nectivity Problems in Grid Computing. In Proc.

HPDC’07, pages 1–10, Monterey, USA, June 2007.
[7] R. Medeiros et al. Faults in Grids: Why are they so

bad and What can be done about it? In Proc. 4th Inter-

national Workshop on Grid Computing, pages 18–24,

Phoenix, AZ, USA, Nov. 2003.
[8] M. Morgan and A. Grimshaw. Genesis II - Standards

Based Grid Computing. In Proceedings of CCGrid’07,

pages 611–618, Rio de Janeiro, Brazil, May 2007.
[9] S. Prasad et al. SyD: A Middleware Testbed for

Collaborative Applications over Small Heterogeneous

Devices and Data Stores. In Proc. Middleware’04,

pages 352–371, Toronto, Canada, Oct. 2004.
[10] F. Seinstra et al. High-Performance Distributed Video

Content Analysis with Parallel-Horus. IEEE Multime-

dia, 15(4):64–75, Oct. 2007.
[11] V. Sunderam. True Grid: What Makes a Grid Spe-

cial and Different? Keynote Lecture ICCS’04, Cra-

cow, Poland, June 2004.
[12] K. Taura et al. Phoenix: Parallel Programming Model

for Accommodating Dynamically Joining/Leaving

Resources. InPPoPP’03, San Diego, USA, June 2003.
[13] I. Taylor et al. Distributed Computing with Triana on

the Grid. Concurrency and Computation: Practice

and Experience, 17(9):1197–1214, Aug. 2005.
[14] K. Verstoep et al. Experiences with Fine-grained Dis-

tributed Supercomputing on a 10G Testbed. In Proc.

CCGrid’08, pages 376–383, Lyon, France, May 2008.
[15] G. Wrzesińska, J. Maassen, and H. Bal. Self-Adaptive

Applications on the Grid. In Proc. PPoPP’07, pages

121–129, San Jose, CA, USA, Mar. 2007.


