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Abstract

Java’s support for parallel and distributed processing makes the language attractive for
metacomputing applications, such as parallel applications that run on geographically distributed
(wide-area) systems. To obtain actual experience with a Java-centric approach to metacomput-
ing, we have built and used a high-performance wide-area Java system, called Manta. Manta
implements the Java Remote Method Invocation (RMI) model using different communication
protocols (active messages and TCP/IP) for different networks. The paper shows how wide-
area parallel applications can be expressed and optimized using Java RMI. Also, it presents
performance results of several applications on a wide-area system consisting of four Myrinet-
based clusters connected by ATM WANs. We finally discuss alternative programming models,
namely object replication, JavaSpaces, and MPI for Java.

1 Introduction

Metacomputing is an interesting research area that tries to integrate geographically distributed
computing resources into a single powerful system. Many applications can benefit from such an
integration [14, 32]. Metacomputing systems support such applications by addressing issues like
resource allocation, fault tolerance, security, and heterogeneity. Most metacomputing systems are
language-neutral and support a variety of programming languages. Recently, interest has also
arisen in metacomputing architectures that are centered around a single language. This approach
admittedly is restrictive for some applications, but also has many advantages, such as a simpler
design and the usage of a single type system. In [36], the advantages of a Java-centric approach
to metacomputing are described, including support for code mobility, distributed polymorphism,
distributed garbage collection, and security.
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In this paper, we describe our early experiences in building and using a high-performance
Java-based system for one important class of metacomputing applications: parallel computing on
geographically distributed resources. Although our system is not a complete metacomputing en-
vironment yet (e.g. it currently provides neither code mobility nor fault tolerance), it is interesting
for several reasons. The system, called Manta, focuses on optimizations to achieve high perfor-
mance with Java. It uses a native compiler and an efficient, light-weight RMI (Remote Method
Invocation) protocol that achieves a performance close to that of C-based RPC protocols [25]. We
have implemented Manta on a geographically distributed system, called DAS, consisting of four
Pentium Pro/Myrinet cluster computers connected by wide-area ATM links. The resulting sys-
tem is an interesting platform for studying parallel Java applications on geographically distributed
systems.

The Java-centric approach achieves a high degree of transparency and hides many details of the
underlying system (e.g., different communication substrates) from the programmer. For several
high-performance applications, however, the huge difference in communication speeds between
the local and wide-area networks is a problem. In our DAS system, for example, a Java RMI over
the Myrinet LAN costs about 40 µsec, while an RMI over the ATM WAN costs several millisec-
onds. Our Java system therefore exposes the structure of the wide-area system to the application,
so applications can be optimized to reduce communication over the wide-area links.

This paper is based on our earlier work as published in [34]. We show how wide-area parallel
applications can be expressed and optimized using Java RMI and we discuss the performance of
several parallel Java applications on DAS. We also discuss some shortcomings of the Java RMI
model for wide-area parallel computing and how this may be overcome by adapting features from
alternative programming models. The outline of the paper is as follows. In Section 2 we describe
the implementation of Manta on our wide-area system. In Section 3 we describe our experiences
in implementing four wide-area parallel applications in Java and we discuss their performance. In
Section 4 we discuss which alternative programming models may contribute to an RMI-based pro-
gramming model. In Section 5 we look at related work and in Section 6 we give our conclusions.

2 A wide-area parallel Java system

In this section, we will briefly describe the DAS system and the original Manta system (as designed
for a single parallel machine). Next, we discuss how we implemented Manta on the wide-area DAS
system. Finally, we compare the performance of Manta and the Sun JDK on the DAS system.

2.1 The wide-area DAS system

We believe that high-performance metacomputing applications will typically run on collections of
parallel machines (clusters or MPPs), rather than on workstations at random geographic locations.
Hence, metacomputing systems that are used for parallel processing will be hierarchically struc-
tured. The DAS experimentation system we have built reflects this basic assumption, as shown in
Figure 1. It consists of four clusters, located at different universities in The Netherlands. The nodes
within the same cluster are connected by 1 � 2 Gbit/sec Myrinet [7]. The clusters are connected by
dedicated 6 Mbit/s wide-area ATM networks.
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Figure 1: The wide-area DAS system.

The nodes in each cluster are 200 MHz/128 MByte Pentium Pros. One of the clusters has 128
processors, the other clusters have 24 nodes each. The machines run RedHat Linux version 2.0.36.
The Myrinet network is a 2D torus and the wide area ATM network is fully connected. The system,
called DAS, is more fully described in [29] (and on http://www.cs.vu.nl/das/ ).

2.2 The Manta system

Manta is a Java system designed for high-performance parallel computing. Like JavaParty [28],
Manta uses a separate remote keyword to indicate which classes allow their methods to be in-
voked remotely. This method is somewhat more flexible and easier to use than inheriting from
java.rmi.server.UnicastRemoteObject (the standard RMI mechanism). JavaParty requires a pre-
processor for implementing this language extension; for Manta, we have modified our compiler.
Except for this difference, the programming model of Manta is the same as that of standard RMI.
Manta uses a native compiler and an optimized RMI protocol. The most important advantage of a
native compiler (compared to a JIT) is that it can do more aggressive optimizations and therefore
generate better code. The compiler also generates the serialization and deserialization routines,
which greatly reduces the runtime overhead of RMIs. Manta nodes thus contain the executable
code for the application and (de)serialization routines. The nodes communicate with each other
using Manta’s own light-weight RMI protocol.

The most difficult problem addressed by the Manta system is to allow interoperability with
other JVMs. One problem is that Manta has its own, light-weight RMI protocol that is incompat-
ible with Sun’s JDK protocol. We solve this problem by letting a Manta node also communicate
through a JDK-compliant protocol. Two Manta nodes thus communicate using our fast protocol,
while Manta-to-JVM RMIs use the standard RMI protocol.

Another problem concerning interoperability is that Manta uses a native compiler instead of a
byte code interpreter (or JIT). Since Java RMIs are polymorphic [35], Manta nodes must be able to
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send and receive byte codes to interoperate with JVMs. For example, if a remote method expects a
parameter of a certain class C, the invoker may send it an object of a subclass of C. This subclass
may not yet be available at the receiving Manta node, so its byte code may have to be retrieved and
integrated into the computation. With Manta, however, the computation is an executable program,
not a JVM. In the reverse situation, if Manta does a remote invocation to a node running a JVM,
it must be able to send the byte codes for subclasses that the receiving JVM does not yet have.
Manta solves this problem as follows. If a remote JVM node sends byte code to a Manta node, the
byte code is compiled dynamically to object code and this object code is linked into the running
application using the

���������
	���
dynamic linking interface. Also, Manta generates byte codes for

the classes it compiles (in addition to executable code). These byte codes are stored at an http
daemon, where remote JVM nodes can retrieve them. For more details, we refer to [25].

The Manta RMI protocol is designed to minimize serialization and dispatch overhead, such as
copying, buffer management, fragmentation, thread switching, and indirect method calls. Manta
avoids the several stream layers used for serialization by the JDK. Instead, RMI parameters are
serialized directly into a communication buffer. Moreover, the JDK stream layers are written in
Java and their overhead thus depends on the quality of the interpreter or JIT. In Manta, all layers
are either implemented as compiled C code or compiler-generated native code. Heterogeneity
between little-endian and big-endian machines is achieved by sending data in the native byte order
of the sender, and having the receiver do the conversion, if necessary.1 For further optimization, the
Manta compiler heuristically checks whether a method called via RMI may block during execution.
If the compiler can exclude this, remote invocations are served without thread creation at the server
side. Otherwise, threads from a thread pool are used to serve remote method invocations.

To implement distributed garbage collection, the Manta RMI protocol also keeps track of object
references that cross machine boundaries. Manta uses a mark-and-sweep algorithm (executed by
a separate thread) for local garbage collection and a reference counting mechanism for remote
objects.

The serialization of method arguments is an important source of overhead of existing RMI im-
plementations. Serialization takes Java objects and converts (serializes) them into an array of bytes.
The JDK serialization protocol is written in Java and uses reflection to determine the type of each
object during run time. With Manta, all serialization code is generated by the compiler, avoiding
the overhead of dynamic type inspection. The compiler generates a specialized serialization and
deserialization routine for every class. Pointers to these routines are stored in the method table.
The Manta serialization protocol optimizes simple cases. For example, an array whose elements
are of a primitive type is serialized by doing a direct memory-copy into the message buffer, which
saves traversing the array. Compiler generation of serialization is one of the major improvements
of Manta over the JDK [25].

In the current implementation, the classes of serialized objects are transferred as numerical
type identifiers. They are only consistent for the application binary for which they have been
generated by the Manta compiler. This implies that Manta’s RMI is type safe as long as all nodes
of a parallel run execute the same binary. When combining different application binaries, type
inconsistencies may occur. Due to the same problem, Manta’s serialization may currently only
be used for persistent storage when the same application binary stores and later loads serialized

1Manta supports the serialization and deserialization protocols needed to support heterogeneous systems, but the
underlying Panda library does not yet support heterogeneity, as it does not do byte-conversions on its headers yet.
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Figure 2: Wide area communication based on Panda

objects. The replacement of Manta’s numerical type identifiers by a globally unique (and hence
type safe) class identification scheme is subject to ongoing work.

2.3 Manta on the wide area DAS system

To implement Java on a wide-area system like DAS, the most important problem is how to deal
with the different communication networks that exist within and between clusters. As described
in Section 2.1, we assume that wide-area parallel systems are hierarchically structured and consist
of multiple parallel machines (clusters) connected by wide area networks. The LANs (or MPP
interconnects) used within a cluster typically are very fast, so it is important that the communi-
cation protocols used for intra-cluster communication are as efficient as possible. Inter-cluster
communication (over the WAN) necessarily is slower.

Most Java RMI implementations are built on top of TCP/IP. Using a standard communication
protocol eases the implementation of RMI, but also has a major performance penalty. TCP/IP
was not designed for parallel processing, and therefore has a very high overhead on fast LANs
such as Myrinet. For the Manta system, we therefore use different protocols for intra-cluster and
inter-cluster communication.

To obtain a modular and portable system, Manta is implemented on top of a separate communi-
cation library, called Panda [3]. Panda provides communication and multithreading primitives that
are designed to be used for implementing runtime systems of various parallel languages. Panda’s
communication primitives include point-to-point message passing, RPC, and broadcast. The prim-
itives are independent of the operating system or network, which eases porting of languages imple-
mented on top of Panda. The implementation of Panda, however, is structured in such a way that
it can exploit any useful functionality provided by the underlying system (e.g., reliable message
passing or broadcast), which makes communication efficient [3].

Panda has been implemented on a variety of machines, operating systems, and networks. The
implementation of Manta and Panda on the wide-area DAS system is shown in Figure 2. For
intra-cluster communication over Myrinet, Panda internally uses the LFC communication system
[6]. LFC is a highly efficient, user-space communication substrate for Myrinet, similar to active
messages.

For inter-cluster communication over the wide-area ATM network, Panda uses one dedicated
gateway machine per cluster. The gateways also implement the Panda primitives, but support
communication over both Myrinet and ATM. A gateway can communicate with the machines in
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its local cluster, using LFC over Myrinet. In addition, it can communicate with gateways of other
clusters, using TCP/IP over ATM. The gateway machines thus forward traffic to and from remote
clusters. In this way, the existence of multiple clusters is transparent to the Manta runtime system.
Manta’s RMI protocol simply invokes Panda’s communication primitives, which internally calls
LFC and/or TCP/IP.

The resulting Java system thus is highly transparent, both for the programmer and the RMI
implementor. The system hides several complicated issues from the programmer. For example,
it uses a combination of active messages and TCP/IP, but the application programmer sees only
a single communication primitive (RMI). Likewise, Java hides any differences in processor-types
from the programmer.

As stated before, parallel applications often have to be aware of the structure of the wide-
area system, so they can minimize communication over the wide-area links. Manta programs
therefore can find out how many clusters there are and to which cluster a given machine belongs. In
Section 3, we will give several examples of how this information can be used to optimize programs.

2.4 Performance measurements on the DAS system

Table 1 shows the latency and throughput obtained by Manta RMI and Sun JDK RMI over the
Myrinet LAN and the ATM WAN. The latencies are measured for null-RMIs, which take zero
parameters and do not return a result. The maximum throughputs are measured for RMIs that take
a large array as parameter. The Manta measurements were run on the Linux operating system.
With Sun JDK over ATM, we used JDK version 1.1.6 on Linux. The performance of the JDK on
Myrinet was measured on BSD/OS (using the JDK 1.1.4), because we do not have a Linux port of
the JDK on Myrinet yet.

For intra-cluster communication over Myrinet, Manta is much faster than the JDK, which uses
a slow serialization and RMI protocol, executed using a byte code interpreter. Manta uses fast seri-
alization routines generated by the compiler, a light-weight RMI protocol, and an efficient commu-
nication protocol (Panda). The maximum throughput of Manta is 38.0 MByte/sec. A performance
breakdown of Manta RMI and JDK RMI is given in [25].

For inter-cluster communication over ATM, we used the wide area link between the DAS clus-
ters at VU Amsterdam and TU Delft (see Figure 1), which has the longest latency (and largest
distance) of the DAS wide-area links. The difference in wide-area RMI latency between Manta
and the JDK is 1.2 msec. Both Manta and the JDK achieve a maximum wide-area throughput of
0.55 MByte/sec, which is almost 75% of the hardware bandwidth (6 Mbit/sec). The differences in
wide-area latency between Manta and the JDK are due to Manta’s more efficient serialization and
RMI protocols, since both systems use the same communication layer (TCP/IP) over ATM.

3 Application experience

We implemented four parallel Java applications that communicate via RMI. Initially, the appli-
cations were designed for homogeneous (local area) networks. We adapted these single cluster
versions to exploit the hierarchical structure of the wide-area system by minimizing the communi-
cation overhead over the wide area links, using optimizations similar to those described in [4, 29].
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Table 1: Latency and maximum throughput of Manta and Sun JDK

Myrinet ATM
Latency Throughput Latency Throughput

(µs) (MByte/s) (µs) (MByte/s)
Manta 42.3 38.0 4350 0.55
Sun JDK 1228 4.66 5570 0.55

Below, we briefly discuss the original (single cluster) applications as well as the wide-area opti-
mized programs and we give performance measurements on the DAS system. We only present
results for Manta, as other competitive Java platforms (e.g., the JDK and Kaffe) are not yet avail-
able on the DAS system (using Myrinet and Linux).

For each of the four programs, we will analyze its performance on the wide-area DAS system,
using the following approach. The goal of wide-area parallel programming is to obtain higher
speedups on multiple clusters than on a single cluster. Therefore, we have measured the speedups
of each program on a single DAS cluster and on four DAS clusters, the latter with and without
wide-area optimizations. In addition, we have measured the speedups on a single cluster with
the same total number of nodes, to determine how much performance is lost by using multiple
distributed clusters instead of one big centralized cluster. (All speedups are computed relative to
the same program on a single machine.)

The results are shown in Figure 8. The figure contains four bars for each application, giving the
speedups on a single cluster of 16 nodes, four clusters of 16 nodes each (with and without wide-
area aware optimizations), and a single cluster of 64 nodes. The difference between the first two
bars thus indicates the performance gain by using multiple 16-node clusters (at different locations)
instead of a single 16-node cluster, without any change to the application source. The performance
gain achieved by the wide-area optimizations can be seen from the difference between the second
and the third bar of each application. Comparing the second and the third bars with the fourth bar
shows how much performance is lost (without and with wide-area optimizations) due to the slow
wide-area network. (The 64-node cluster uses the fast Myrinet network between all nodes.)

3.1 Successive Overrelaxation

Red/black Successive Overrelaxation (SOR) is an iterative method for solving discretized Laplace
equations on a grid. Here, it is used as an example of nearest neighbor parallelization methods.
SOR is an iterative algorithm that performs multiple passes over a rectangular grid, until the grid
changes less than a certain value, or a fixed number of iterations has been reached. The new value
of a grid point is computed using a stencil operation, which depends only on the previous value of
the point itself and its four neighbors on the grid.

The skeleton code for the single-cluster parallel Java program for SOR is given in Figure 3.
The parallel algorithm we use distributes the grid row-wise among the available processors, so
each machine is assigned several contiguous rows of the grid, denoted by the interval LB to UB (for
lower bound and upper bound). Each processor runs a Java thread of class SOR, which performs the
SOR iterations until the program converges (see the run method). Each iteration has two phases,
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for the red and black grid points. The processes are logically organized in a linear array. Due to
the stencil operations and the row-wise distribution, every process needs one row of the grid from
its left neighbor (row LB � 1) and one row from its right neighbor (row UB

�
1). (Exceptions are

made for the first and last process, but we have omitted this from our skeleton code.)
At the beginning of every iteration, each SOR thread exchanges rows with its left and right

neighbors and then updates its part of the grid using this boundary information from its neighbors.
The row exchange is implemented using a remote object of class Bin on each processor. This object
is a buffer that can contain at most one row. It has synchronized methods to put and get data.
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Figure 3: Code skeleton for SOR, implementation for single cluster.

On a local cluster with a fast switch-based interconnect (like Myrinet), the exchange between
neighbors adds little overhead, so parallel SOR obtains a high efficiency. On a wide-area system,
however, the communication overhead between neighbors that are located in different clusters will
be high, as such communication uses the WAN. The Java program allocates neighboring processes
to the same cluster as much as possible, but the first and/or last process in each cluster will have
a neighbor in a remote cluster. To hide the high latency for such inter-cluster communication,
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Table 2: Performance breakdown for SOR, average times in milliseconds

clusters � CPUs optimization speedup total computation sendRows receiveRows
1 � 16 no 15.2 76888 75697 419 772
4 � 16 no 37.5 30973 18397 2088 10488
4 � 16 yes 53.9 21601 17009 4440 152
1 � 64 no 60.6 19091 17828 754 509

the wide-area optimized program uses split-phase communication for exchanging rows between
clusters, as shown in Figure 4. It first initiates an asynchronous send for its boundary rows and
then computes on the inner rows of the matrix. When this work is finished, a blocking receive
for the boundary data from the neighboring machines is done, after which the boundary rows are
computed.

The optimization is awkward to express in Java, since Java lacks asynchronous communica-
tion. It is implemented by using a separate thread (of class SenderThread) for sending the bound-
ary data. To send a row to a process on a remote cluster, the row is first given to a newly created
SenderThread; this thread will then put the row into the Bin object of the destination process on a
remote cluster, using an RMI. During the RMI, the original SOR process can continue computing,
so communication over the wide-area network is overlapped with computation. For communica-
tion within a cluster, the overhead of extra thread-switches slightly outweighs the benefits, so only
inter-cluster communication is handled in this way (see the method sendRows).

The performance of the SOR program is shown in Figure 8. We ran a problem with a grid
size of 4096 � 4096 and a fixed number of 64 iterations. The program obtains a high efficiency
on a single cluster (a speedup of 60.6 on 64 processors). Without the optimization, SOR on the
wide-area system achieves only a speedup of 37 � 5 on 4 � 16 processors. With the latency-hiding
optimization, the speedup increases to 53 � 9, which is quite close to the speedup on a single 64-node
cluster. Latency hiding thus is very effective for SOR. Table 2 presents a performance breakdown.
It shows the total execution time in the run method, the time spent computing, and the time spent
in the sendRows and receiveRows methods. The times in the table are the average values over
all SOR threads of a run. Comparing the two runs with 4 � 16 CPUs shows the effectiveness
of our optimization. With split-phase communication, the time spent in receiveRows is reduced
dramatically. The price for this gain is the creation of new threads for asynchronous sending. This
is why the optimized version of sendRows takes about twice as much time as its unoptimized (non-
threaded) counterpart. In total, the split-phase communication saves about 9 � 5 seconds compared
to the unoptimized version.

3.2 All-pairs Shortest Paths Problem

The All-pairs Shortest Paths (ASP) program finds the shortest path between any pair of nodes in
a graph, using a parallel version of Floyd’s algorithm. The program uses a distance matrix that is
divided row-wise among the available processors. At the beginning of iteration k, all processors
need the value of the kth row of the matrix. The most efficient method for expressing this commu-
nication pattern would be to let the processor containing this row (called the owner) broadcast it to
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Figure 4: Code skeleton for SOR, implementation for wide-area system.

all the others. Unfortunately, Java RMI does not support broadcasting, so this cannot be expressed
directly in Java. Instead, we simulate the broadcast with a spanning tree algorithm implemented
using RMIs and threads.

The skeleton of a single-cluster implementation is shown in Figure 5. Here, all processes run
a thread of class Asp. For broadcasting, they collectively call their broadcast method. Inside
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broadcast, all threads except the row owner wait until they receive the row. The owner initiates the
broadcast by invoking transfer, which arranges all processes in a binary tree topology. Such a tree
broadcast is quite efficient inside clusters with fast local networks. transfer sends the row to its
left and right children in the tree, using daemon threads of class Sender. A Sender calls transfer
on its destination node which recursively continues the broadcast. For high efficiency, sending
inside the binary tree has to be performed asynchronously (via daemon threads) because otherwise
all intermediate nodes would have to wait until the RMIs of the whole successive forwarding tree
completed. As shown in Figure 8, ASP using the binary tree broadcast achieves almost linear
speedup when run on a single cluster. With a graph of 2500 nodes, it obtains a speedup of 57 � 9 on
a 64-node cluster.

A binary tree broadcast obtains poor performance on the wide-area system, causing the original
ASP program to run much slower on four clusters than on a single (16-node) cluster (see Figure 8).
The reason is that the spanning tree algorithm does not take the topology of the wide-area system
into account, and therefore sends the same row multiple times over the same wide-area link. To
overcome this problem, we implemented a wide-area optimized broadcast similar to the one used
in our MagPIe collective communication library [20]. With the optimized program, the broadcast
data is forwarded to all other clusters in parallel, over different wide-area links. We implement
this scheme by designating one of the Asp processes in each cluster as a coordinator for that
cluster. The broadcast owner asynchronously sends the rows to each coordinator in parallel. This
is achieved by one dedicated thread of class Sender per cluster. Using this approach, each row
is only sent once to each cluster. Due to the asynchronous send, all wide-area connections can
be utilized simultaneously. Inside each cluster, a binary tree topology is used, as in the single-
cluster program. The code skeleton of this implementation is shown in Figure 6. As shown in
Figure 8, this optimization significantly improves ASP’s application performance and makes the
program run faster on four 16-node clusters than on a single 16-node cluster. Nevertheless, the
speedup on four 16-node clusters lags far behind the speedup on a single cluster of 64 nodes. This
is because each processor performs several broadcasts, for different iterations of the k-loop (see
the run method). Subsequent broadcasts from different iterations wait for each other. A further
optimization therefore would be to pipeline the broadcasts by dynamically creating new Sender
threads (one per cluster per broadcast), instead of using dedicated daemon threads. However, this
would require a large number of dynamically created threads, even increasing with the problem
size. If a truly asynchronous RMI would be available, the excessive use of additional threads could
be completely avoided and the overhead related to thread creation and thread switching would also
disappear. Table 3 shows a performance breakdown for ASP. It shows the total execution time
in the run method, the time spent computing, and the time spent in broadcast. The times in the
table are the average values over all Asp threads of a run. Comparing the two runs with 4 � 16
CPUs, it can be seen that the wide-area optimization saves most of the communication costs of the
unoptimized version. But even with the optimization, wide-area communication of 4 � 16 CPUs
takes much more time, compared to 64 CPUs in a single cluster. By comparing the computation
times of the three configurations with 64 CPUs it becomes obvious that the inferior speedup of the
4 � 16 configurations is due to slow wide-area communication.
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Figure 5: Code skeleton for ASP, implementation for single cluster.

3.3 The Traveling Salesperson Problem

The Traveling Salesperson Problem (TSP) computes the shortest path for a salesperson to visit
all cities in a given set exactly once, starting in one specific city. We use a branch-and-bound
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Figure 6: Code skeleton for ASP, implementation for wide-area system.

algorithm, which prunes a large part of the search space by ignoring partial routes that are already
longer than the current best solution. The program is parallelized by distributing the search space
over the different processors. Because the algorithm performs pruning, however, the amount of
computation needed for each sub-space is not known in advance and varies between different parts
of the search space. Therefore, load balancing becomes an issue. In single-cluster systems, load
imbalance can easily be minimized using a centralized job queue. In a wide-area system, this would
also generate much wide-area communication. As wide-area optimization we implemented one job
queue per cluster. The work is initially equally distributed over the queues. Job stealing between
the cluster queues balances the load during runtime without excessive wide-area communication.
The job queues are remote objects, so they can be accessed over the network using RMI. Each job
contains an initial path of a fixed number of cities; a processor that executes the job computes the

Table 3: Performance breakdown for ASP, average times in milliseconds

clusters � CPUs optimization speedup total computation broadcast
1 � 16 no 15.6 230173 227908 2265
4 � 16 no 2.5 1441045 57964 1383081
4 � 16 yes 24.3 147943 56971 90972
1 � 64 no 57.9 61854 57878 3976
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lengths of all possible continuations, pruning paths that are longer than the current best solution.
Each processor runs one worker thread that repeatedly fetches jobs from the job queue of its cluster
(using RMI) and executes the job, until all work is finished.

The TSP program keeps track of the current best solution found so far, which is used to prune
part of the search space. Each worker contains a copy of this value in an object of class Minimum.
If a worker finds a better complete route, the program does an RMI to all other peer workers to
update their copies. To allow these RMIs, the Minimum values are declared as remote objects. The
implementation shown in Figure 7 is rather straight forward and will not scale to very large num-
bers of workers. In that case, a (cluster-aware) forwarding tree would perform better. Fortunately,
these updates happen infrequently. Using a 17-city problem, we counted as few as 7 updates during
the whole run of 290 seconds when using 64 CPUs.

The performance for the TSP program on the wide-area DAS system is shown in Figure 8,
using a 17-city problem. The runtime of our TSP program is strongly influenced by the actual job
distribution which results in different execution orders and hence in different amounts of routes
that can be pruned. To avoid this problem, the results presented in Figure 8 and Table 4 have
been obtained by initializing the Minimum value to the length of the resulting shortest path. Con-
sequently, the Minimum objects are never updated, but pruning is always the same, independent
of configuration and execution order. Runtime differences are thus only due to communication
behavior.

As can be seen in Figure 8, the speedup of TSP on the wide-area system is only slightly inferior
than on a single 64-node cluster. Our wide-area optimized version is even slightly faster than the
unoptimized version on a single, large cluster. This is presumably because there is less contention
on the queue objects when the workers are distributed over four queues. To verify this assumption,
we also used our optimized version with four queues with 1 � 64 CPUs and obtained another slight
performance improvement compared to a single queue and 1 � 64 CPUs. Table 4 supports this
presumption. It presents the speedups, the average time spent by the worker threads in total, while
computing, and while getting new jobs. It also shows the average number of jobs processed per
worker and the average time per get operation. The speedups are computed for the whole parallel
application (the maximum time over all processes), while the time values in the table are averaged
over the worker threads.

On a single cluster, the average time per get operation with 64 CPUs is three times as high as
with only 16 CPUs. This fact supports the assumption that contention at the queue-owning CPUs
is a problem. Unfortunately, we were not able to directly measure the time spent serving incoming
get requests. The total time spent in the get method is very low compared to the computation
time which explains the high speedup values. With four queues, the average get time is much
higher than with a single queue, because job stealing between queues takes additional time. But
as the achieved speedups suggest, the benefits of having multiple queues more than outweigh the
additional costs with getting jobs in this case.

3.4 Iterative Deepening A*

Iterative Deepening A* is another combinatorial search algorithm, based on repeated depth-first
searches. IDA* tries to find a solution to a given problem by doing a depth-first search up to
a certain maximum depth. If the search fails, it is repeated with a higher search depth, until a
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Figure 7: Code skeleton for TSP, update of current best solution.

Table 4: Performance breakdown for TSP, average times in milliseconds

time get operations
clusters � CPUs optimization speedup total computation get number time per get

1 � 16 no 16.0 509768 509696 72 211 0.3
4 � 16 no 60.7 128173 127904 269 53 5.1
4 � 16 yes 61.1 129965 127270 2695 53 50.9
1 � 64 no 60.9 128144 128094 50 53 0.9
1 � 64 yes 61.7 131763 127184 4579 53 86.4

solution is found. The search depth is initialized to a lower bound of the solution. The algorithm
thus performs repeated depth-first searches. Like branch-and-bound, IDA* uses pruning to avoid
searching useless branches.

We have written a parallel IDA* program in Java for solving the 15-puzzle (the sliding tile
puzzle). IDA* is parallelized by searching different parts of the search tree concurrently. The
program uses a more advanced load balancing mechanism than TSP, based on work stealing. Each
machine maintains its own job queue, but machines can get work from other machines when they
run out of jobs. Each job represents a node in the search space. When a machine has obtained
a job, it first checks whether it can prune the node. If not, it expands the node by computing the
successor states (children) and stores these in its local job queue. To obtain a job, each machine first
looks in its own job queue; if it is empty it tries the job queues of some other, randomly selected
machines. We implemented one wide-area optimization: to avoid wide-area communication for
work stealing, each machine first tries to steal jobs from machines in its own cluster. Only if that
fails, the work queues of remote clusters are accessed. In each case, the same mechanism (RMI) is
used to fetch work, so this heuristic is easy to express in Java.

Figure 8 shows the speedups for the IDA* program. The program takes about 5% longer on
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Figure 8: Speedups of four Java applications on a single cluster of 16 nodes, 4 WAN-connected
clusters of 16 nodes (original and optimized program), and a single cluster of 64 nodes.

Table 5: Performance breakdown for IDA*, average times in milliseconds

time jobs stolen
clusters � CPUs optimization speedup total computation get local remote

1 � 16 no 15.6 77384 75675 1709 69
4 � 16 no 50.1 23925 19114 4811 46 15
4 � 16 yes 52.5 22782 19098 3684 62 8
1 � 64 no 55.4 21795 19107 2688 70

the wide-area DAS system than on a single cluster with 64 nodes. The communication overhead
is due to work-stealing between clusters and to the distributed termination detection algorithm
used by the program. The gain of the wide-area optimization is small in this case. For obtaining
meaningful results across various parallel configurations, our IDA* implementation searches all
solutions of equal minimal depth for a given puzzle. Table 5 shows a performance breakdown for
IDA*. The times presented are averages over all threads, showing the times spent in total, while
computing, and while getting new jobs. Comparing the two runs with 4 � 16 CPUs it can be seen
that our wide-area optimization is effective, but has only a minor impact on the total completion
time. This is because job stealing occurs infrequently. The numbers of actually stolen jobs shown
in the table are also average values over all threads. It can be seen that the optimization helps
reducing wide-area communication by reducing the number of jobs stolen from remote clusters.
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4 Alternative programming models

We have discussed the implementation and wide-area optimization of four parallel applications
using the RMI model. RMI supports transparent invocation of methods on remote objects and
thus is a natural extension of Java’s object model to distributed memory systems. In this section,
we discuss alternative programming models and we compare them to RMI in terms of expres-
siveness (ease of programming) and implementation efficiency. We will discuss replicated objects
[3, 23, 26, 33], JavaSpaces [15], and MPI for Java [10]. These alternative models have not been
implemented in the Manta system, so we do not provide application measurements. Our experi-
ences in wide-area parallel programming using replicated objects and MPI in combination with
other languages (Orca and C) are described elsewhere[4, 20, 29]. We first briefly describe the four
programming models.

4.1 The programming models

RMI. With RMI, parallel applications strictly follow Java’s object-oriented model in which client
objects invoke methods on server objects in a location-transparent way. Each remote object is
physically located at one machine. Although the RMI model hides object remoteness from the
programmer, the actual object location strongly impacts application performance.

Replication. From the client’s point of view, object replication is conceptually equivalent to the
RMI model. The difference is in the implementation: objects may be physically replicated on
multiple processes. The advantage is that read-only operations can be performed locally, without
any communication. The disadvantage is that write operations become more complex and have to
keep object replicas consistent.

JavaSpaces. JavaSpaces adapt the Linda model [16] to the Java language. Communication oc-
curs via shared data spaces into which entries (typed collections of Java objects) may be written.
Inside a space, entries may not be modified, but they may be read or removed (taken) from a space.
A reader of an entry provides a template that matches the desired entry type and also desired ob-
ject values stored in the entry. Wildcards may be used for object values. Additionally, a space may
notify an object whenever an entry matching a certain template has been written. Space objects
may be seen as objects that are remote to all communicating processes; read and write operations
are implemented as RMIs to space objects. JavaSpaces also supports a transaction model, allowing
multiple operations on space objects to be combined in a transaction that either succeeds or fails
as a whole. This feature is especially useful for fault-tolerant programs.

MPI. With the Message Passing Interface (MPI) language binding to Java, communication is
expressed using message passing rather than remote method invocations. Processes send mes-
sages (arrays of objects) to each other. Additionally, MPI defines collective operations in which
all members of a process group collectively participate; examples are broadcast and related data
redistributions, reduction computations (e.g., computing global sums), and barrier synchronization.
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4.2 Comparison of the models

To compare the suitability of the models for wide-area parallel computing, we study three impor-
tant aspects. Table 6 summarizes this comparison. In general, we assume that the underlying pro-
gramming system (like Manta) exposes the physical distribution of the clustered wide-area system.
This information may be used either by application programs (as with Manta) or by programming
platforms designed for wide-area systems (e.g., the MagPIe library [20]).

Synchronous vs. asynchronous communication. Remote method invocation is a typical exam-
ple of synchronous communication. Here, the client has to wait until the server object has returned
the result of the invoked method. This enforces rendezvous-style synchronization of the client
with another, possibly remote process. With asynchronous communication, the client may imme-
diately continue its operation after the communication has been initiated. It may later check or
wait for completion of the communication operation. Asynchronous communication is especially
important for wide-area computing, where it can be used to hide the high message latencies by
overlapping communication and computation.

MPI provides asynchronous sending and receiving. The other three models, however, rely on
synchronous method invocation so applications have to simulate asynchronous communication us-
ing multithreading. For local-area communication, the corresponding overhead for thread creation
and context switching may exceed the cost of a synchronous RMI. To cope with this problem,
the optimized code for SOR gets rather complicated, as has been shown in the previous section.
The broadcast implementation in ASP also requires asynchronous communication, both in the
original (single cluster) and wide-area optimized version. (With synchronous RMI, a broadcast
sender would have to wait for the whole spanning tree to complete.) The TSP code could also
be improved by treating local and remote communication differently when updating the value of
the current best solution. Fortunately, TSP is less sensitive to this problem because these updates
occur infrequently. In IDA*, work stealing is always synchronous but fortunately infrequent. So,
IDA* is hardly affected by synchronous RMI.

In conclusion, for wide-area parallel computing on hierarchical systems, directly supporting
asynchronous communication (as in MPI) is easier to use and more efficient than using syn-
chronous communication and multithreading.

Explicit vs. implicit receipt. A second issue is the way in which messages are received and
method invocations are served. With RMI and with replicated objects, method invocations cause
upcalls on the server side, which is a form of implicit message receipt. MPI provides only explicit
message receipt, making the implementations of TSP and IDA* much harder. Here, incoming
messages (for updating the global bound or for job requests) have to be polled for by the applica-
tions. This complicates the programs and makes them also less efficient, because finding the right
polling frequency (and the best places in the applications to put polling statements at) is difficult
[3]. With clustered wide-area systems, polling has to simultaneously satisfy the needs of LAN
and WAN communication, making the problem of finding the right polling frequency even harder.
With programming models like RMI that support implicit receipt, application-level polling is not
necessary.
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Table 6: Aspects of programming models

RMI replication JavaSpaces MPI
send synchronous synchronous synchronous synchronous and asynchronous
receive implicit implicit explicit and implicit explicit
collective communication no broadcast no yes

JavaSpaces provide explicit operations for reading and removing entries from a space, result-
ing in the same problems as with MPI. Additionally, a space object may notify a potential reader
whenever an entry has been written that matches the reader’s interests. Unfortunately, this notifi-
cation simply causes an upcall at the receiver side which in turn has to actually perform the read or
take operation. This causes a synchronous RMI back to the space object. The additional overhead
can easily outweigh the benefit of implicit receipt, especially when wide-area networks are used.

Point-to-point vs. collective communication. Wide-area parallel programming systems can
ease the task of the programmer by offering higher-level primitives that are mapped easily onto the
hierarchical structure of the wide-area system. In this respect, we found MPI’s collective operations
(e.g., broadcast and reduction) to be of great value. The MagPIe library [20] optimizes MPI’s
collective operations for clustered wide-area systems by exploiting knowledge about how groups
of processes interact. For example, a broadcast operation defines data transfers to all processes of
a group. MagPIe uses this information to implement a broadcast that optimally utilizes wide-area
links; e.g., it takes care that data is sent only once to each cluster. Replicated objects that are
implemented with a write-update protocol [3] can use broadcasting for write operations, and thus
can also benefit from wide-area optimized broadcast.

Programming models without group communication (like RMI and JavaSpaces) cannot provide
such wide-area optimizations inside a runtime system. Here, the optimizations are left to the
application itself, making it more complex. The broadcast implemented for ASP is an example of
such an application-level optimization that could be avoided by having group communication in
the programming model. The MagPIe implementation of ASP [20], for example, is much simpler
than the (wide-area optimized) Java version. Similarly, TSP’s global bound could be updated using
a pre-optimized group operation.

4.3 Summary

The remote method invocation model provides a good starting point for wide-area parallel pro-
gramming, because it integrates communication into the object model. Another benefit is RMI’s
implicit receipt capability by which RMIs are served using upcalls. This contributes to expres-
siveness of the programming model as well as to program efficiency, especially with wide-area
systems.

To be fully suited for parallel systems, RMI needs two augmentations. The first one is asyn-
chronous method invocation, especially important with wide-area systems. The second extension
is the implementation of collective communication operations that transfer the benefits of MPI’s
collective operations into Java’s object model.
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Although promising at first glance, JavaSpaces does not really make wide-area parallel pro-
gramming easier, because operations on space objects are neither asynchronous nor collective. As
fault-tolerance becomes more important in wide-area computing, the JavaSpaces model along with
its transaction feature may receive more attention.

5 Related work

We have discussed a Java-centric approach to writing wide-area parallel (metacomputing) applica-
tions. Most other metacomputing systems (e.g., Globus [13] and Legion [17]) support a variety of
languages. The SuperWeb [1], the Gateway system [18], Javelin [11], Javelin++ [9], and Bayani-
han [31] are examples of global computing infrastructures that support Java. A language-centric
approach makes it easier to deal with heterogeneous systems, since the data types that are trans-
ferred over the networks are limited to the ones supported in the language (thus obviating the need
for a separate interface definition language) [36].

Most work on metacomputing focuses on how to build the necessary infrastructure [2, 13, 17,
30]. In addition, research on parallel algorithms and applications is required, since the bandwidth
and latency differences in a metacomputer can easily exceed three orders of magnitude [12, 13,
17, 29]. Coping with such a large non-uniformity in the interconnect complicates application
development. The ECO system addresses this problem by automatically generating optimized
communication patterns for collective operations on heterogeneous networks [24]. The AppLeS
project favors the integration of workload scheduling into the application level [5].

In our earlier research, we experimented with optimizing parallel programs for a hierarchical
interconnect, by changing the communication structure [4]. Also, we studied the sensitivity of
such optimized programs to large differences in latency and bandwidth between the LAN and
WAN [29]. Based on this experience, we implemented collective communication operations as
defined by the MPI standard, resulting in improved application performance on wide area systems
[20]. Some of the ideas of this earlier work have been applied in our wide-area Java programs.

There are many other research projects for parallel programming in Java. Titanium [37] is
a Java-based language for high-performance parallel scientific computing. The JavaParty system
[28] is designed to ease parallel cluster programming in Java. In particular, its goal is to run
multi-threaded programs with as little change as possible on a workstation cluster. Hyperion [26]
also uses the standard Java thread model as a basis for parallel programming. Unlike JavaParty,
Hyperion caches remote objects to improve performance. The Do! project tries to ease paral-
lel programming in Java using parallel and distributed frameworks [22]. Ajents [19] is a parallel
programming environment that supports object migration. Java/DSM [38] implements a JVM on
top of a distributed shared memory system. Breg et al. [8] study RMI performance and interop-
erability. Krishnaswamy et al. [21] improve RMI performance somewhat with caching and by
using UDP instead of TCP. Nester et al. [27] present new RMI and serialization packages (drop-in
replacements) designed to improve RMI performance. The above Java systems are designed for
single-level (“flat”) parallel machines. The Manta system described in this paper, on the other
hand, is designed for hierarchical systems and uses different communication protocols for local
and wide area networks. It uses a highly optimized RMI implementation, which is particularly
effective for local communication.
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6 Conclusions

We have described our experiences in building and using a high-performance Java system that
runs on a geographically distributed (wide-area) system. The goal of our work was to obtain actual
experience with a Java-centric approach to metacomputing. Java’s support for parallel processing
and heterogeneity make it an attractive candidate for metacomputing. The Java system we have
built, for example, is highly transparent: it provides a single communication primitive (RMI) to
the user, even though the implementation uses several communication networks and protocols.

Our Manta programming system is designed for hierarchical wide-area systems, for example
clusters or MPPs connected by wide-area networks. Manta uses a very efficient (active message
like) communication protocol for the local interconnect (Myrinet) and TCP/IP for wide-area com-
munication. The two communication protocols are provided by the Panda library. Manta’s light-
weight RMI protocol is implemented on top of Panda and is very efficient.

We have implemented several parallel applications on this system, using Java RMI for commu-
nication. In general, the RMI model was easy to use. To obtain good performance, the programs
take the hierarchical structure of the wide-area system into account and minimize the amount of
communication (RMIs) over the slow wide-area links. With such optimizations in place, the pro-
grams can effectively use multiple clusters, even though they are connected by slow links.

We compared RMI with other programming models, namely object replication, JavaSpaces,
and MPI for Java. We identified several shortcomings of the RMI model. In particular, the lack of
asynchronous communication and broadcast complicates programming. MPI offers both features
(and further useful collective operations) but lacks RMI’s clean object-oriented model. Object
replication is closer to pure RMI but offers only broadcast-like object updating. A careful integra-
tion of these features into an RMI-based system is our next goal for a Java-centric programming
platform for wide-area parallel programming.
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