
Middleware Adaptation with the Delphoi Service
Jason Maassen, Rob V. van Nieuwpoort, Thilo Kielmann, Kees Verstoep

Dept. of Computer Science, Vrije Universiteit, Amsterdam, The Netherlands
{jason,rob,kielmann,versto}@cs.vu.nl

http://www.gridlab.org/delphoi/

Abstract— Grid middleware needs to adapt to changing re-
sources for a large variety of operations. Currently, information
about Grid resources can be retrieved from various monitoring
and information systems. However, the available information
is rather low level and also dispersed across many individual
sources. In this paper, we present the Delphoi service that
provides a unified interface to all necessary information, on an ab-
straction level that matches the adaptation needs of middleware
services. Delphoi has been developed as part of the EC-funded
GridLab project and is currently being deployed on the project’s
testbed for adding adaptivity to GridLab’s middleware services.

I. INTRODUCTION

Grids can offer unprecendented opportunities to resource-
hungry applications. However, availability and performance of
Grid resources (processors, network links) are highly variable.
Traditional application codes, oblivious of this resource vari-
ability, hardly achieve acceptable levels of performance.

In order to adapt application behavior to actual resource
performance, Grid middleware is needed both to provide infor-
mation about the status of the resources and to guide decisions
about adapting application performance. Unfortunately, the
many pieces of information that are needed for this purpose,
are typically scattered among many sources, and are low-
level, resource-centric data items. In consequence, adaptive
middleware is rather complicated and much functionality gets
re-implemented by each adaptive middleware component.

In this paper, we present the Delphoi service that provides
unified access to various information sources. Delphoi has
been developed by the EC-funded GridLab project in order
to provide adaptivity for a variety of use cases of the Grid
Application Toolkit (GAT). Besides access to information,
Delphoi provides translation to high-level information in com-
bination with prediction1 into the near-term future. Delphoi has
a flexible and extensible system architecture that also supports
application-specific metrics and event logging. Delphoi is
currently being deployed in GridLab’s testbed for a variety
of performance optimizations. In this paper, we present one
example use case, the fully automated optimization of large
file transfers with GridFTP.

In Section II, we outline the need for behavior adaptation
by GridLab’s Grid Application Toolkit (GAT). Section III
presents the Delphoi service emphasizing its high-level inter-
face to resource-related data. Section IV presents Delphoi’s

1The ability to answer questions like “How long will my job have to wait?”
made us name the service after the Delphoi oracle, known from ancient Greek
mythology.

architecture and distributed implementation. In Section V we
present one example use case: the fully automated adaptation
of GridFTP. We discuss related work in Section VI before we
conclude in Section VII.

II. ADAPTATION IN THE GRID APPLICATION TOOLKIT

The GridLab project [1] aims at supporting application de-
velopment for Grids. The main product is the Grid Application
Toolkit (GAT) [2]. The GAT’s main objective is to provide a
single, easy-to-use Grid API, while hiding the complexity and
diversity of the actual Grid resources and their middleware
layers.

Figure 1 shows the GAT software architecture. It mainly
distinguishes between user space and capability space. The
application code, that has been programmed using the GAT
API, is running in user space. The GAT engine is a lightweight
layer that dispatches GAT API calls to service invocations via
GAT adaptors. Adaptors are specific to given services and
hide all service-specific details from the GAT. A GAT engine
typically loads adaptors dynamically at runtime, whenever a
certain service is needed. We currently have GAT implemen-
tations and language bindings for C, C++, Python, and Java.

While application and GAT together run in user space, the
services are executed in the so-called capability space, which
is distributed across the machines of a virtual organization
(VO). The capability space comprises the resources themselves
(hosts, data, etc.) and the middleware providing services to ac-
cess them. The GAT adaptors can directly access standard Grid
middleware like Globus [3] or Unicore [4]. For more advanced
functionality, GridLab also provides higher-level services like
the GRMS resource broker [5] or the services for remote
file access, data movement, and replication management [6].
Within the GridLab software framework, these services are the
ones having the most demand for behavior adaption based on
current and expected resource availability and performance.

In particular, the following adaptation use cases are the most
important ones that are dealt with by GridLab:

• Data transfer protocol optimization.
For job execution on a Grid node, data and program
files need to be transferred to the execution site before
program start. Resulting data sets need to be transferred
back afterwards. As these data sets can be quite large, it
is important to optimize data transfer times, depending
both on the available software (like GridFTP [7]) and on
the network performance characteristics [8].



Application

Application Layer

GAT Layer

U
ser S

p
ace

C
ap

ab
ility S

p
ace

GAT API

GAT Engine

GAT Adaptors

Globus

Sun Grid Engine

UnicorePythiaPythia

GRMS

iGrid Mercury

Delphoi

Manager
Replica

Movement
Data

Fig. 1. GridLab’s GAT framework software architecture.

• Replica selection.
Whenever more than one replica of a given file is
available, it is beneficial to select the one that can be
transferred with the shortest completion time to a given
site of a VO. Assuming data transfer protocol optimiza-
tion will take place as in the previous use case, it also
becomes necessary to estimate the transfer times for each
replica.

• Remote data visualization.
Some data sets may become so large (e.g., in the order
of terabytes) that making a local copy becomes infeasi-
ble. Instead, such files need to be accessed directly as
remote files. For example, for visualizing large data sets
generated by a Cactus [9] simulation, remote data access
needs to be adapted to user constraints (waiting time,
image quality) and network capacities.

• Job waiting time estimation.
The GRMS resource broker is used for scheduling jobs on
machines of a VO, trying to minimize the job completion
time. Part of this problem is finding machines on which
jobs will be started as soon as possible. For this purpose,
GRMS needs performance-related information about ma-
chines, the available queues of their local scheduler, and
the currently expected waiting time for a given job in
these queues.

These use cases have in common that they need various
kinds of data about the resources within a VO, in order to
combine this data into higher-level performance information.
Typically, the required data is scattered among various sources.

Lookup and retrieval of this data, along with the presentation
of those as high-level information are frequently recurring
tasks for Grid middleware. Our Delphoi service implements
these tasks for higher-level Grid middleware services in need
of performance adaptation.

III. THE DELPHOI SERVICE

In this section we explain the functionality provided by the
Delphoi service. Whenever possible, we give examples how
these pieces of functionality are used by GridLab components.
We will show several calls of the Delphoi interface, and
explain how they can be used to retrieve information. These in-
terfaces are general, and can be implemented in many different
ways. As we will describe in Section IV, we currently provide
RMI and Web Service implementations of this interface.

A. Meta-information Methods

Delphoi provides several methods that can be used to get
meta-information about what data are collected on which
resources. For instance, the following method returns a list
of hosts that Delphoi has information about:

String[] getActiveSites()

Another method returns a list of the metrics that are
collected for a given resource:

MetricInfo[] knownMetrics(String hostName)

The MetricInfo object contains information about a partic-
ular metric, such as its name and its parameters. A metric



name could for instance be “freeDiskSpace”, while a pa-
rameter could then be the physical device that is measured
(“/dev/hda”).

B. Low-level Resource and Network Information

Using the meta-information retrieved using the aforemen-
tioned calls, information on a specific resource can be ex-
tracted from Delphoi. Information can be from the past,
present or future. In the latter case, Delphoi returns predictions
based on historic data. A time frame is passed to many of the
calls presented in this section, using start and end times. The
time frame can be in the past, the future, or it could start in
the past and end in the future. If the start and end times are
null, the most recent data available will be returned. A metric
for a single resource can be retrieved with the following call:

String estimateMetric(
String hostName,
MetricInfo metric,
String operation,
Calendar startTime,
Calendar endTime)

The MetricInfo object has been described above. It can
specify “host.load”, for instance, to obtain information about
the CPU load on the host. This particular metric does not
require additional parameters. The operation parameter can
be “min”, “mean” or “max”, indicating the minimum, mean
or maximum host load during the given time frame. The result
of this method is a string, because the actual data type that is
returned depends on the requested metric.

The estimateMetric call can also be used to retrieve low-
level network performance data, such as bandwidth, capacity
or latency. The “hostName” parameter then represents the
source, while the destination is passed as a parameter to
the MetricInfo object. A list of network metrics that are
currently supported (in accordance with [8]), is shown in
Table I. Besides network metrics, Delphoi also supports single-
resource metrics such as CPU load, memory and disk usage,
and queuing information. These metrics are provided by
Mercury [10] and iGrid [11], the monitoring and information
systems developed in GridLab.

TABLE I

CURRENTLY SUPPORTED NETWORK METRICS.

Metric Description
path.delay.oneway one way delay between two sites
path.delay.roundtrip round trip delay between two sites
path.bandwidth.available available bandwidth between two sites
path.bandwidth.utilized used bandwidth between two sites
path.bandwidth.capacity network capacity between two sites
hoplist hoplist of network between two sites

annotated with hop.delay.oneWay values

Delphoi also provides a method for retrieving multiple
metrics at a time, designed to improve the performance of
lookups:

public String[] estimateMetricForMultipleHosts(
String[] hostNames,

MetricInfo metric,
String operation,
Calendar startTime,
Calendar endTime)

This method is similar to the previous one, but it can be
used to simultaneously retrieve a single metric for a set of
hosts, thereby reducing the amount of communication required
between a client and Delphoi. In addition, all queries which
require additional network communication (e.g., information
lookups in remote databases) can then be performed by
Delphoi in parallel. This can reduce the reply time signifi-
cantly.

Finally, Delphoi allows retrieving raw, unprocessed, metric
data:

String[] getRawMeasurementData(
String hostName,
MetricInfo metric,
Calendar startTime,
Calendar endTime)

This data can be used for debugging or visualization purposes.

C. High-level Network Information

In addition to low-level metrics, Delphoi provides additional
value-added methods that apply some intelligence to transform
low-level metrics to useful application-level information.

public TcpOptions estimateTcpOptions(
String sourceHostName,
String destinationHostName,
long dataSize,
String transferMethod,
int maxTcpStreams,
Calendar startTime)

This call will give an estimation of the optimal configuration
of a TCP connection between two machines. Given the source,
destination and the number of kilobytes that has to be trans-
ferred, it predicts the TCP send buffer size and the number
of parallel TCP streams (as proposed by [12]) that should be
used for maximal performance. The “transferMethod” input
parameter indicates the transfer method that will be used (e.g.
GridFTP [7]). This can be any user-defined string; the purpose
of this string will be explained below. The “maxTcpStreams”
parameter can be used to limit the amount of parallel TCP
streams that is allowed. The result of the method is a TcpOp-
tions object that contains the prediction of the optimal number
of parallel streams and the send and receive buffer sizes. In
Section V, we will show a scenario that uses this call to
optimize GridFTP file transfers.

public double estimateTransferTime(
String sourceHostName,
String destinationHostName,
long dataSize,
String transferMethod,
Calendar startTime)

This call estimates the time it will take to transfer a specified
amount of data from one grid site to another.

public double[] estimateTransferTimeOneToMany(
boolean substractLoggedTraffic,



String sourceHostName,
String[] destinationHostNames,
long dataSize,
String transferMethod,
Calendar startTime)

Like the previous one, this call estimates the time it will
take to transfer an amount of data from one grid site to
another. For efficiency reasons, however, the call can predict
the time for multiple destinations. This call is useful to a
scheduler that must select a grid site for a job with a large
input set or checkpoint file. The scheduler can invoke this
method providing all possible candidate sites that can run the
job, and then select the site with the smallest transfer time.

public double[] estimateTransferTimeManyToOne(
String[] sourceHostNames,
String destinationHostName,
long dataSize,
String transferMethod,
Calendar startTime)

This call mirrors the previous one: it predicts the data
transfer time to a given destination for multiple source sites.
Within GridLab, this call is used for replica selection. For
instance, if a file is replicated across several sites, and the
“best”, or “closest” replica must be chosen, this call can be
used to find out what the transfer times of each replica to the
destination would be. Next, the site with the smallest transfer
time can be chosen.

public void logDataTransfer(
String source,
String destination,
long dataSize,
String transferMethod,
TcpOptions options,
Calendar startTime,
Calendar endTime)

Using this method, applications can provide feedback to
Delphoi about data transfers that have taken place. This feed-
back can be used by Delphoi to improve future predictions of
data transfer times and TCP options. The method is optional,
and is only used to improve predictions.

The “transferMethod” parameter can be any user de-
fined string that indicates the transfer method used (e.g.,
“GridFTP”). By matching this parameter to the “transfer-
Method” parameters passed in the estimation method de-
scribed above, Delphoi is able to differentiate between dif-
ferent transfer mechanisms. By correlating feedback to pre-
dictions with the same transfer method identifier, Delphoi
can try to improve future predictions of each transfer method
separately. The parameter “options” describes the TCP options
that were used for the transfer, if applicable.

D. Queuing Information

To discover which batch queues are monitored, Delphoi
provides the following call:

Queue[] getQueues()

getQueues returns a list of all queues which are currently
being monitored. Each Queue object in this list contains the

host name, the name of the job manager, and the queue name
of a monitored queue. Multiple job managers may be available
on the same host (e.g., PBS, Condor, LSF), and multiple
queues may be available for one job manager.

These Queue objects can be used to retrieve more detailed
information about a specific queue. For this purpose, the
following calls are available:

QueueConf getQueueConf(Queue queue)

GetQueueConf returns information about a queue’s con-
figuration. This configuration includes the number of hosts
available to the queue, the number of CPUs in each host,
and information on any limits that the queue imposes on use
of CPU time, wall time, memory usage, or number of jobs.
Although changes to a queue’s configuration are infrequent,
they may still occur occasionally. For instance, some hosts
in a cluster could be down temporarily, decreasing the hosts
available to the queue. Therefore, applications should not
assume this information is static, but instead should contact
Delphoi to retrieve it.

QueueWaitingTime getQueueWaitingTime(
Queue queue,
int jobSize,
Calendar startTime,
Calendar endTime)

GetQueueWaitingTime retrieves information about the wait-
ing time of jobs in a queue in a specified time interval. It
returns an object containing the average number of waiting
jobs, average job waiting time, and the standard deviation of
job waiting time in that interval. In general, the waiting time of
a job may depend on its size (i.e., the number of hosts required
to run it). Large jobs, for example, must often wait longer
for the required resources to become available. Therefore,
getQueueWaitingTime requires the job size to be passed as a
parameter. The information returned by getQueueWaitingTime
will only be valid for jobs of the specified size. Because it
is difficult to treat jobs of each possible number of hosts
separately, Delphoi currently uses 4 classes of job sizes, single
(1 host), small (2 to 4 hosts), medium (5 to 16 hosts), and large
(17 or more hosts). Delphoi automatically matches queries to
the appropriate job class.

ResourceUtilization getResourceUtilization(
Queue queue,
Calendar startTime,
Calendar endTime)

GetResourceUtilization returns information about the aver-
age number of free hosts available to a queue in the specified
time interval. This is a measure for the utilization of the
machine.

E. Logging

Delphoi also provides an interface to retrieve logging infor-
mation. Services or applications write log entries locally using
Mercury[10]. Each log entry contains the following fields:

• service: name of the service which produced the log;
• component: name of the component within the service;



• origin: name of the user and host who produced the log;
• severity: severity of the log message;
• message: the text of the log message.

Logs can be retrieved using the getLogs call. Applications
can also use this mechanism to store application-specific per-
formance metrics to allow high-level performance adaptation.

String[] getLogs(String service,
String component,
String origin,
int severity,
Calendar startTime,
Calendar endTime)

For each field in the log entries (except message), getLogs
accepts a parameter which it will try to match to the entries
in logs. Each parameter may contain an exact value, or some
regular expression that describes the desired content of the
fields. Any matching log entries found that where generated
in the specified time interval will be returned.

IV. THE DELPHOI SERVICE ARCHITECTURE

In this section will describe the architecture of our infor-
mation framework in more detail. To be portable to various
Grid sites, the whole system has been implemented in the
Java language, with interfaces to external processes where
necessary. For forecasting purposes, we have developed a
Java version of the NWS forecaster library [13]. As shown
in Figure 2, the framework consists of several components.

The central component in our framework is Delphoi, con-
taining the intelligence to convert high level queries into the
processing of low level metrics. For example, to predict the
time it takes to transfer a file between two sites, Delphoi knows
that both the file size and network bandwidth between the two
sites are required.

Queries can be sent to Delphoi using its RMI or web
service frontends. The RMI frontend is directly integrated into
Delphoi, while the webservice frontend is a separate module,
as shown in Figure 2. For the RMI frontend, we currently have
a client that can visualize network performance data.

All queries received by the webservice frontend are simply
translated to RMI queries and forwarded to Delphoi. Both
frontends provide the API which is described in detail in
Section III. The separation of frontends from the core func-
tionality also allows us to easily add frontends to other service
architectures like OGSA [14] of WRSF [15].

The third component in our framework is Pythia. Pythia is
responsible for gathering the information that Delphoi needs
to answer queries.2 Pythia is an internal component of our
framework and does not offer any API for external use. Only
Delphoi is able to access the gathered information.

A Pythia is continuously collecting information, or metrics,
about its environment, and stores these metrics for future
reference. Since the amount of metrics collected by a Pythia
is large, it is important that a Pythia is “co-located” with
the resources where the metrics are produced. In a typical

2In Greek mythology, Pythia was the goddess through the body of which
the Delphoi oracle made its predictions.

setting, multiple Pythias will be used. In the Gridlab Testbed,
for example, one Pythia is running on each site, either on the
frontend node of a cluster, or a single CPU of a shared-memory
machine.

A Pythia uses separate modules for gathering different types
of information. This modular design simplifies the develop-
ment of new functionality and allows a Pythia to selectively
load the modules that are suitable for the site it is installed
on. Each module typically consist of some “glue code” to an
external tool which performs the measurements.

To collect local information, such as CPU load, memory
usage, or the status of the local queing system, Pythia contains
a module to communicate with Mercury. When this module is
started, it notifies the local instance of Mercury that it wishes
to subscribe itself to a certain set of metrics. Mercury will
then start collecting these metrics and it will regularly forward
them to the Pythia module. When Mercury is running on the
frontend of a cluster machine, it is capable of retrieving metrics
from all compute nodes. Therefore, a single Pythia installation
suffices on a cluster.

Mercury is only capable of collecting metrics produced on
a single resource. For the Pythias to collect information about
the network connections to other sites, four additional modules
are used: Delay, PathRate, PathChirp, and TopoMon. Since
most network measurements require two sites to cooperate,
the Pythias are capable of communicating amongst each other
to perform the necessary measurement set-up.

The scheduling of network measurements is done locally.
Each module tries to obtain a certain measurement frequency.
When a module notices it is time to do a network measure-
ment, it requests a list of all currently-active Pythias from
Delphoi. It then contacts each of these Pythias to check if it is
running the same module, and whether this module is ready
to perform a measurement. If so, any necessary measurement
set-up is done, and the measurement is performed.

Because the measurement scheduling is done locally, colli-
sions will occur frequently. A collision occurs when a module
contacts another Pythia which is not ready to participate,
because it is already busy performing other measurements. (To
avoid direct interferences, network modules may only perform
a single measurement at a time.) How a collision is handled
depends on the measurement frequency of the module. If this
frequency is high (e.g., for delay measurements, which are
done every few minutes) the module will simply ignore any
sites that are not ready to cooperate. They will have to wait
until the next run. If the frequency is low (e.g., for capacity
measurements, which are typically done only once a day), the
module will remember any sites that where busy, and retry
them later. It will keep retrying until it manages to perform
all measurements, or until the frequency interval has expired
and all sites must be re-measured.

The Delay module regularly performs a delay measurement
to the other sites. It simply sends one-byte packets back and
forth repeatedly and calculates the average time required for
one round-trip.

The PathChirp module determines the available network



Frontend
RMI

Delphoi
Information

Logic

Pythia

storage
data

historic

storage
data

historic

Web
Service

Frontend

OGSA

Frontend

WSRF

Frontend

Mercury

Pythia

measurements
network

information requests

information requests information requests

Site 1 Site 2

information requests

information requests

GRMS Movem.

Data Replica
Manager

MercuryTopoMonPathChirpPathRate PathRate PathChirp

glue glue glue glue

TopoMon

glueglueglueglue

Client

Net
Viz.

Fig. 2. The Delphoi system architecture.

bandwidth between two sites using PathChirp [16]. PathChirp
is an active probing tool for estimating the available bandwidth
on a communication network path. It is based on the concept
of self-induced congestion. PathChirp sends series of multiple
packets in special patterns, called chirps. By rapidly increasing
the probing rate within each chirp, PathChirp obtains infor-
mation from which it can dynamically estimate the available
bandwidth.

The PathRate module determines the network bandwidth
capacity between two sites using PathRate [17]. PathRate
uses packet dispersion methods, in conjunction with statistical
techniques, to estimate the capacity of the bottleneck link in
the network path.

The final module available to Pythia is TopoMon. This
module uses the TopoMon [18] tool to determine the network
topology between two sites by means of traceroute.
Unlike the previous network-related modules, the topology
module does not need cooperation from a remote Pythia.

V. EXAMPLE: TRANSFER TIME OPTIMIZATION WITH

GRIDFTP

In this section we will describe how our framework can be
used to optimize data transfer times. Data has been transferred
from a single site in the Gridlab testbed (litchi.zib.de) to seven
other sites, using GridFTP as the transfer mechanism. As
shown in Table II, the amount of data transferred varies per
destination between 50 and 310 megabytes.

To optimize the data transfer, GridFTP allows the user to
use multiple TCP streams and modify the send and receive
buffer sizes of each stream. To determine the optimal settings,
a good estimation of the network delay and capacity between
the sender and the receiver are required. Manually optimizing
these settings is hard, and either involves doing separate
performance measurements or trying to find good settings by
trial and error. Even assuming the manual optimization has
been performed successfully, it may not remain optimal, since
both network delay and capacity may change over time. By
using the information gathered by Delphoi and the Pythias,
this optimization can be automated.

In our experiment, the data is initially transferred using an
untuned GridFTP. Figure 3 shows the required transfer time
to each of the sites. Next, to optimize the transfer, the esti-
mateTcpOptions method of Delphoi is used. As described in
Section III-C, this method requires the source and destination
machines, data size, and start time as parameters.

Once the estimateTcpOptions call arrives at Delphoi, it
requests an estimate of the network delay from the Pythia on
the sending machine and an estimate of the network capacity
from the Pythia on the receiving machine. The Pythias then
retrieve the appropriate metrics from their historic data storage,
and use this information to predict the network performance
at the given time. This information is returned to Delphoi.
Delphoi also retrieves information on the maximum TCP send
and receive buffer sizes that may be used on both machines.



TABLE II

TRANSFER TIME OPTIMIZATION WITH GRIDFTP (SOURCE HOST LITCHI.ZIB.DE).

Transferred Data Non-Optimized Optimized parallel TCP Buffer
Destination Host Size (MBytes/sec.) (seconds) (seconds) Streams Size (KBytes)
skirit.ics.muni.cz 310 126 30 9 64
hitcross.lrz-muenchen.de 310 134 150 5 128
gridentry.uni-paderborn.de 50 77 36 6 64
rage1.man.poznan.pl 310 319 61 9 128
n0.hpcc.sztaki.hu 310 164 36 9 64
fs0.das2.cs.vu.nl 300 163 39 5 128
mike4.lsu.edu 102 284 78 16 64

0

25

50

75

100

125

150

175

200

225

250

275

300

325

T
ra

ns
fe

r 
ti

m
e 

(s
ec

on
ds

)

Not optimized Optimized

skirit hitcross gridentry rage1 n0 fs0 mike4

Fig. 3. Transfer times from litchi.zib.de.

It computes the TCP stream buffer size as:

bufsize = min(max-send-buffer, max-receive-buffer)

Using the product of network delay and capacity, Delphoi is
able to determine the amount of data that the sender can write
into the network before the first acknowledgment is received
from the receiver. Delphoi then determines if the TCP buffer
size can be set large enough to contain this amount of data.
If so, a single TCP stream will suffice.

However, if the TCP buffer size cannot be set large enough,
a single TCP stream will never be able to use the full capacity
of the network, because the sender will not be able to write
enough data into the buffer to keep the network filled. As
a result, the sender will eventually block, waiting for an
acknowledgment from the receiver. By using multiple streams,
the sender can continue sending data on a different TCP
stream, even if previous streams are blocked.

Delphoi will calculate how many TCP streams are required
to fully use the capacity of the network as follows:

streams =

⌈

delay.roundtrip× bandwidth.capacity

bufsize

⌉

Both the desired number of streams and TCP buffer size are
then returned to the client.

By using these TCP option estimations, we were able to
significantly improve the performance of the GridFTP data
transfer. The result of this optimized data transfer is shown
in Figure 3. In all cases but one, the transfer times could
be reduced significantly. Only with hitcross, the concurrency

induced by parallel streams actually increased transfer times
slightly, because this machine has only remote NFS file
systems that seemingly dominate transfer performance to this
machine.

VI. RELATED WORK

Most Grid monitoring systems, like Mercury [10] or
NWS [13], have been built according to the Grid Monitor-
ing Architecture (GMA) [19]. Whereas monitoring systems
provide dynamically variable performance data, information
systems like the Globus MDS [3] or iGrid [11] provide static
configuration data. None of them provides a unified interface
to all relevant data for given adaptive middleware components.

In contrast, Delphoi implements such a unified interface,
combined with translation of low-level measured data to high-
level information, and a prediction capability into the near-
term future. In fact, Delphoi’s predictor is a version of the
NWS forecaster library, that we have ported to Java, and made
available to all numerical metrics being dealt with by Delphoi.

The Autopilot system [20] was the first to propose a closed-
loop architecture for tuning running applications according
to actual resource performance information. However, Au-
topilot’s information closely intertwines the application with
the remote sensing and controling infrastructure. Using the
Delphoi service draws a clear boundary between the ap-
plication and the adaptive middleware, allowing to use any
Grid service architecture (like OGSA or WSRF) for which a
Delphoi frontend has been built.



André et al. propose a generic framework for adaptive
software components for Grids [21]. In combination with
Delphoi, this framework could retrieve the necessary resource
information.

In [22], a collection of articles has been compiled, ad-
dressing various aspects of adaptive middleware. Most of
these approaches are based upon reflection mechanisms that
aim at switching implementation strategies. Delphoi is mostly
concerned with parametric adaptation of a given strategy.
However, in combination with dynamic adaptor loading within
the GAT, also switching of strategies or protocols can be
implemented using Delphoi.

VII. CONCLUSION

Grid applications need to be aware of the performance
variability of the resources they are using. Therefore, Grid
middleware is needed both to provide information about the
status of the resources and to guide decisions about adapting
application performance. Usually, adaptive Grid middleware
components re-implement this difficult process over and over
again. In this paper, we have presented the Delphoi service
that provides unified access to various information sources,
translates it to high-level information in combination with
prediction into the near-term future. Delphoi has a flexible and
extensible system architecture that also supports application-
specific metrics and event logging.

Delphoi’s architecture separates the core functionality from
the service interface, allowing to use different service ar-
chitectures (like OGSA or WSRF), even simultaneously. On
each Grid site, a Pythia process regularly collects performance
information and stores it locally. Only upon request, this
information is sent to Delphoi. This design, along with the
choice of sensors for CPU and network information, results in
minimally intrusive operation of our service.

Delphoi is currently being deployed in GridLab’s testbed
for a variety of performance optimizations used by the Grid
Application Toolkit (GAT). In this paper, we presented one
example use case, the fully automated optimization of large
file transfers with GridFTP. We have shown that Delphoi
can automatically tune such file transfers, minimizing transfer
times. Other use cases show similar results, applied to different
adaptation goals. The Delphoi software suite is open source
and can be retrieved from www.gridlab.org.

ACKNOWLEDGMENTS

This work has been funded by the European Commission,
grant IST-2001-32133, as part of the GridLab project. The
authors would also like to thank their numerous colleagues
from GridLab who have contributed to the development of the
system. Andrei Hutanu performed the GridFTP measurements.

REFERENCES

[1] G. Allen, K. Davis, K. N. Dolkas, N. D. Doulamis, T. Goodale,
T. Kielmann, A. Merzky, J. Nabrzyski, J. Pukacki, T. Radke, M. Russell,
E. Seidel, J. Shalf, and I. Taylor, “Enabling Applications on the Grid
– A GridLab Overview,” International Journal on High Performance
Computing Applications, vol. 17, no. 4, pp. 449–466, 2003.

[2] G. Allen, K. Davis, T. Goodale, A. Hutanu, H. Kaiser, T. Kielmann,
A. Merzky, R. van Nieuwpoort, A. Reinefeld, F. Schintke, T. Schütt,
E. Seidel, and B. Ullmer, “The Grid Application Toolkit: Towards
Generic and Easy Application Programming Interfaces for the Grid,”
Proceedings of the IEEE, 2004, to appear.

[3] The Globus Alliance, http://www.globus.org/.
[4] D. Erwin, “UNICORE – a Grid Computing Environment,” Concurrency

and Computation: Practice and Experience, vol. 14, no. 13–15, pp.
1395–1410, 2002.

[5] The GridLab Project, “GridLab Resource Management System
(GRMS),” 2003, http://www.gridlab.org/grms/.

[6] The GridLab Project, “GridLab Data Management Services,” 2003,
http://www.gridlab.org/data/.

[7] W. Allcock (Editor), “GridFTP: Protocol Extensions to FTP for the
Grid,” GFD-R-P.020 (Proposed Recommendation), Global Grid Forum,
2003.

[8] B. Lowekamp, B. Tierney, L. Cottrell, R. Hughes-Jones, T. Kielmann,
and M. Swany, “A Hierarchy of Network Performance Characteristics
for Grid Applications and Services,” GFD-R-P.023 (Proposed Recom-
mendation), Global Grid Forum, 2004.

[9] G. Allen, E. Seidel, and J. Shalf, “Scientific Computing on the Grid,”
Byte, pp. 24–32, Spring 2002.

[10] P. Kacsuk, G. Dózsa, J. Kovács, R. Lovas, N. Podhorszki, Z. Balaton,
and G. Gombás, “P-GRADE: A Grid Programming Environment,”
Journal of Grid Computing, vol. 2, pp. 171–197, 2003.

[11] G. Aloisio, M. Cafaro, I. Epicoco, D. Lezzi, M. Mirto, and S. Mocavero,
“The Design and Implementation of the GridLab Information Service,”
in Second International Workshop on Grid and Cooperative Computing
(GCC 2003). Lecture Notes in Computer Science, Springer, 2003.

[12] H. Sivakumar, S. Bailey, and R. L. Grossman, “ PSockets: The Case
for Application-level Network Striping for Data Intensive Applications
using High Speed Wide Area Networks,” in Supercomputing (SC2000),
2000, p. 38.

[13] R. Wolski, N. Spring, and J. Hayes, “The Network Weather Service:
a Distributed Resource Performance Forecasting Service for Metacom-
puting,” Future Generation Computing Systems, vol. 15, no. 5–6, pp.
757–768, 1999.

[14] I. Foster, C. Kesselman, and S. Tuecke, “The Anatomy of the Grid:
Enabling Scalable Virtual Organizations,” International Journal of Su-
percomputer Applications, vol. 15, no. 3, 2001.

[15] I. Foster, J. Frey, S. Graham, S. Tuecke, K. Czajkowski,
D. Ferguson, F. Leymann, M. Nally, I. Sedukhin, D. Snelling,
T. Storey, W. Vambenepe, and S. Weerawarana, “Modeling
Stateful Resources with Web Services v. 1.1,” White paper, 2004,
http://www-106.ibm.com/developerworks/library/ws-resource/ws-
modelingresources.pdf.

[16] V. Ribeiro, R. Riedi, R. Baraniuk, J. Navratil, and L. Cottrell,
“pathChirp: Efficient Available Bandwidth Estimation for Network
Paths,” in Passive and Active Measurement Workshop (PAM 2003).
NLANR, 2003.

[17] C. Dovrolis, P. Ramanathan, and D. Moore, “What do Packet Dispersion
Techniques Measure?” in IEEE Infocom, 2001.

[18] M. den Burger, T. Kielmann, and H. E. Bal, “TopoMon: A Monitoring
Tool for Grid Network Topology,” in International Conference on
Computational Science (ICCS 2002), 2002, pp. 558–567, published as
LNCS Vol. 2330.

[19] B. Tierney, R. Aydt, D. Gunter, W. Smith, M. Swany, V. Taylor, and
R. Wolski, “A Grid Monitoring Architecture,” GFD-I.7 (Informational),
Global Grid Forum, 2002.

[20] R. Ribler, J. Vetter, H. Simitci, and D. Reed, “Autopilot: Adaptive Con-
trol of Distributed Applications,” in Proc. High-Performance Distributed
Computing (HPDC), Chicago, IL, July 1998.

[21] F. André, J. Buisson, and J.-L. Pazat, “Dynamic Adaptation of Parallel
Codes: toward Self-adaptable Components for the Grid,” in Component
Models and System for Grid Applications, V. Getov and T. Kielmann,
Eds. Springer, 2004, pp. 145–156.

[22] G. Agha (Editor), “Special Issue on Adaptive Middleware,” Communi-
cations of the ACM, vol. 45, no. 6, 2002.


