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SUMMARY

When parallel applications are run in large-scale distributed environments, such as grids, peer-to-peer (P2P)
systems, and clouds, the set of resources used can change dynamically as machines crash, reservations end,
and new resources become available. It is vital for applications to respond to these changes. Therefore,
it is necessary to keep track of the available resources—a problem which is known to be notoriously
difficult. In this article we argue that resource tracking must be provided as the standard functionality
in the lower parts of the software stack. We propose a general solution to resource tracking: the Join–
Elect–Leave (JEL) model. JEL provides unified resource tracking for parallel and distributed applications
across environments. JEL is a simple yet powerful model based on notifying when resources have Joined
or Left the computation. We demonstrate that JEL is suitable for resource tracking in a wide variety of
programming models, ranging from the fixed resource sets traditionally used in MPI-1 to flexible grid-
oriented programming models. We compare several JEL implementations, and show these to perform and
scale well in several real-world scenarios involving grids, clouds and P2P systems applied concurrently,
and wide-area systems with failing resources. Using JEL, we have won the first prize in a number of
international distributed computing competitions. Copyright � 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Traditionally, supercomputers and clusters are the main computing environments‡ for running high
performance parallel applications. When a job is scheduled and started, it is assigned a number of
machines, which it uses until the computation is finished. Thus, the set of resources used for an
application in these environments is generally fixed.

In the recent years, parallel applications are also run on large-scale grid systems [1], where a
single parallel application may use resources across multiple grid sites simultaneously. Recently,
peer-to-peer (P2P) systems [2], desktop grids [3], and clouds [4] are also used for running parallel
and distributed applications. In all such environments, resources may become unavailable at any
time, for instance when machines fail or reservations end. In addition, new resources may become

∗Correspondence to: Niels Drost, Department of Computer Science, VU University, De Boelelaan 1081A, 1081 HV
Amsterdam, The Netherlands.

†E-mail: niels@cs.vu.nl
‡We will use the term environment for collections of compute resources, such as supercomputers, clusters, grids,

desktop grids, clouds, and P2P systems, throughout this article.

Contract/grant sponsor: Dutch Ministry of Education, Culture and Science (OC&W)
Contract/grant sponsor: Netherlands Organization for Scientific Research (NWO); contract/grant number: 612.060.214

Copyright � 2010 John Wiley & Sons, Ltd.



18 N. DROST ET AL.

Figure 1. Abstract system hierarchy with resource tracking and communication primitives being the central
low-level primitives for developing fault-tolerant and malleable programming models and applications.

available after the application has started. As a result, it is no longer possible to assume that
resource allocation is static.

To run successfully in these increasingly dynamic environments, applications must be able to
handle the inherent problems of these environments. Specifically, applications must incorporate
both malleability [5], the capability to handle changes in the resources used during a computation,
and fault tolerance, the capability to continue a computation despite failures. Without mechanisms
for malleability and fault tolerance, the reliable execution of applications on dynamic systems is
difficult, if not impossible.

A first step in creating a malleable and fault-tolerant system is to obtain an accurate and up-to-
date view of the resources participating in a computation, and what roles they have. We therefore
require some form of signaling whenever changes to the resource set occur. This information
can then be used by the application itself, or by the runtime system (RTS) of the application’s
programming model, to react to these changes. In this article we refer to such functionality as
resource tracking.

An important question is at what level in the software hierarchy should resource tracking be
implemented. One option is to implement it in the application itself. However, this requires each
application to implement resource tracking separately. Another option is to implement resource
tracking in the RTS of the programming model of the application. Unfortunately, this still requires
implementing resource tracking for each programming model separately. In addition, an imple-
mentation of resource tracking designed for use on a grid will be very different from one designed
for a P2P environment. Therefore, the resource tracking functionality of each programming model
will have to be implemented for each target environment as well. This situation is clearly not ideal.

Based on the observations above, we argue that resource tracking must be an integral part of a
system designed for dynamic environments, in addition to the low-level communication primitives
already present in such systems [6–8]. Figure 1 shows the position of resource tracking in a software
hierarchy. There, a programming model’s RTS uses low-level resource tracking functionality to
implement the required higher level fault tolerance and malleability. In this way, resource tracking
(indirectly) allows applications to run reliably and efficiently on dynamic systems, such as grids
and clouds.

In this article we propose a general solution for resource tracking: the Join–Elect–Leave (JEL)
model. JEL acts as an intermediate layer between the programming models and the environment
they run on. As different environments have different characteristics, using a single implementation
is impractical, if not impossible. Instead, several implementations of the JEL API are required,
each optimized for a particular environment.

We have implemented JEL efficiently on clusters, grids, P2P systems, and clouds. These different
JEL implementations can be used transparently by a range of programming models, in effect
providing unified resource tracking for parallel and distributed applications across environments.

The contributions of this article are as follows:

• We show the need for unified resource tracking models in dynamic environments, such as
grids, P2P systems, and clouds, and explore the requirements of these models.
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• We define JEL: a unified model for tracking resources in dynamic environments. JEL is
explicitly designed to be simple yet powerful, scalable, and flexible. The flexibility of JEL
allows it to support parallel as well as distributed programming models.

• We show how JEL suits the resource tracking requirements of several programming models.
We have implemented seven different programming models using JEL, ranging from
traditional models, such as MPI-1 (in the form of MPJ [9]), to Satin [5], a high-level
divide-and-conquer grid programming model that transparently supports malleability and fault
tolerance.

• We show that JEL is able to function on a range of environments by discussing multiple
implementations of JEL. These include a centralized solution for relatively stable environ-
ments, such as clusters and grids, and a fault-tolerant P2P implementation. In part, these
implementations are based on the well-known techniques of information dissemination in
distributed systems. Notably, JEL can be implemented efficiently in different environments,
due to the presence of multiple consistency models.

Our research is performed in the context of the Ibis [7] Java-based grid computing project.
In the previous work we presented the Ibis Portability Layer (IPL) [7], a communication library
specifically targeted at dynamic systems such as grids. We augmented the IPL with our JEL
resource tracking model, leading to a software system which can efficiently run applications on
clusters, grids, P2P systems, and clouds. Using the software§ developed in this project, including
our implementations of JEL, we have been the first prize winner in a number of international
competitions [10]. Notably, our winning submission in the Fault-Tolerant Category of the DACH
2008 Challenge¶ Cluster/Grid 2008 in Tsukuba, Japan, made extensive use of the JEL model for
detecting and reporting node failures.

This article is structured as follows. Section 2 discusses the requirements of a general resource
tracking model. Section 3 shows one possible model fulfilling these requirements: our JEL model.
Section 4 explains how JEL is used in several programming models. In Section 5 we discuss
a (partially) centralized and a fully distributed implementation of JEL. Section 6 compares the
performance of our implementations, and shows the applicability of JEL in real-world scenarios.
As a worst case, we show that JEL is able to support even short-lived applications on large numbers
of machines. Section 7 discusses the related work. Finally, Section 8 describes the future work
and concludes.

2. REQUIREMENTS OF RESOURCE TRACKING MODELS

In this section we explore the requirements of resource tracking in a dynamic system. As mentioned
above, resource tracking functionality can best be provided at a level between programming
models and the computational environment (see Figure 1). A programming model’s RTS uses this
functionality to implement fault tolerance and malleability. This naturally leads to two sets of
requirements for resource tracking: requirements imposed by the programming model above and
requirements resulting from the environment below. We will discuss each in turn.

2.1. Programming model requirements

For any resource tracking model to be generally applicable, it needs to support multiple program-
ming models, including both parallel and distributed models. Below is a list of the requirements
covering the needs of most, if not all, parallel and distributed programming models.
List of participants: The most obvious requirement of a resource tracking model is the capability

to build up a list of all the computational resources participating in a computation. When

§ Implementations of programming models and other software referred to in this paper can be freely downloaded
from http://www.cs.vu.nl/ibis.
¶http://www.cluster2008.org/challenge/.
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communicating and cooperating with other participants of a computation, one must know who
the other participants are.

Reporting of changes: Simply building a list of participants at startup is not sufficient.
As resources may be added or removed during the runtime of a computation, a method for
updating the current list of participants is also required. This can be done for instance by
signaling the programming models’ RTS whenever a change occurs.

Fault detection: Not all resources are removed gracefully. Machines may crash, and processes
may be terminated unannounced by a scheduling system. For this reason, the resource tracking
model also needs to include a failure detection and reporting mechanism.

Role selection: It is often necessary to select a leader from a set of resources for a specific task.
For instance, a primary object may have to be selected in primary-copy replication, or a master
may have to be selected in a master–worker application. Therefore, next to keeping track of
which resources are present in a computation, a method for determining the roles of these
resources is also required.

2.2. Environment requirements

Next to supporting multiple programming models, a generally applicable resource tracking model
must also support multiple environments, including clusters, grids, clouds, and P2P systems.
We now determine the requirements resulting from the environment in which a resource tracking
model is used.
Small, simple interface: Different environments may have wildly different characteristics.

On cluster systems, the set of resources is usually constant. On grids and clouds resource
changes occur, albeit at a low rate. P2P systems, however, are known for their high rate of
change. Therefore, different (implementations of) algorithms are needed for efficient resource
tracking on different environments. To facilitate the efficient re-targeting of a resource tracking
model, its interface must be as small and simple as possible.

Flexible quality of service: Even with a small and simple interface, it may not be possible to
implement all the features of a resource tracking model efficiently on all environments with
the same quality of service. For instance, reliably tracking each and every change to the set of
resources in a small-scale cluster system is almost trivial, whereas in a large-scale P2P environ-
ment this is difficult to implement efficiently, if at all possible. However, not all programming
models require the full functionality of a resource tracking model. Therefore, a resource tracking
model should include quality of service features. If the resource tracking model allows for a
programming model to specify the required features and their quality of service, a suitable imple-
mentation could be selected at runtime. This flexibility would greatly increase the applicability
of a resource tracking model.

3. THE JOIN–ELECT–LEAVE MODEL

We will now describe our resource tracking model: JEL. JEL fulfills all the stated requirements of
a resource tracking model. As shown in Figure 1, JEL is located at the same layer of the software
hierarchy as low-level communication primitives. Applications use a programming model, ideally
with support for fault tolerance and malleability. The programming model’s RTS uses JEL for
resource tracking, as well as a communication library. In this section we refer to programming
models as users of JEL.

Figure 2 shows the JEL API. Next to an initialization function, the API consists of two parts:
Joins and Leaves, and Elections. Together, these fulfill the requirements of parallel and distributed
programming models as stated in the previous section.

In general, each machine used in a computation initializes JEL once, and is tracked as a single
entity. However, modern machines usually contain multiple processors and/or multiple compute
cores per processor. In some cases, it is therefore useful to start multiple processes per machine for
a single computation, which then need to be individually tracked. In this paper, we therefore use
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Figure 2. JEL API (pseudocode, simplified).

the abstract term node to refer to a computational resource. Each node represents a single instance
in a computation, be it an entire machine, or one processor of that machine.

JEL has been designed to work together with any communication library. The communication
library is expected to create a unique identifier containing a contact address for each node in the
system. JEL uses this address to identify nodes in the system, allowing a user to contact a node
whenever JEL refers to it.

3.1. Joins and leaves

In JEL, the concept of a pool is used to denote the collection of resources used in a computation.
To keep track of exactly which nodes are participating in a pool, JEL supports join notifications.
Users are being notified whenever a new node joins a pool. When a node joins a pool, it also
is notified of all nodes already present in the pool via the same notifications, given using the
JELNotifications interface. This is typically done using callbacks, although a polling mechanism
can be used instead, if callbacks are not supported by a programming language.

JEL also supports nodes leaving a computation, both gracefully and due to failures. If a node
notifies JEL that it is leaving the computation, users of the remaining nodes in the pool receive a
leave notification for this node. If a node does not leave gracefully, but crashes or is killed, the
notification will consist of a died message instead. Implementations of JEL try to detect failing
nodes, but the user can also report suspected failures to JEL using the maybeDead function.

3.2. Elections

It is often necessary to select a leader node from a set of resources for a specific task. To select a
single resource from a pool, JEL supports Elections. Each election has a unique name. Nodes can
nominate themselves by calling the elect function with the name of the election as a parameter.
The identifier of the winner will be returned. Using the getElectionResult function, nodes can
retrieve the result without being a candidate.

Elections are not democratic. It is up to the JEL implementation to select a winner from the
candidates. For instance, an implementation may simply select the first candidate as the winner.
At the user level, all that is known is that some candidate will be chosen. When a winner of
an election leaves or dies, JEL will automatically select a new winner from the remaining living
candidates. This ensures that the election mechanism will function correctly in a malleable pool.

3.3. Consistency models

Together, join/leaves and elections fulfill all resource tracking requirements of fault-tolerant and
malleable programming models as stated in Section 2.1. However, we also require our model to
be applicable to a wide range of environments, from clusters to P2P systems. To this end, JEL
supports several consistency models for the join/leave notifications and the elections. These can
be selected independently when JEL is initialized using the init function. Joins/leaves or elections
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can also be turned off completely, if either part is not used. For examples of situations of when
some parts of JEL remain unused, see Section 4.

Relaxing the consistency model allows JEL to be used on more dynamic systems such as P2P
environments, where implementing strict consistency models cannot be done efficiently, if at all.
For example, Section 5.2 describes a fully distributed implementation that is robust against failures,
under a relaxed consistency model.

JEL offers two consistency models for joins and leaves. The reliable consistency model ensures
that all notifications arrive in the same order on all nodes. Using reliable joins and leaves, a user
can build up a list of all the nodes in the pool. As an alternative, JEL also supports unreliable joins
and leaves, where notifications are delivered on a best effort basis, and may arrive out of order or
not at all.

Similarly, JEL supports multiple consistency models for elections. If uniform elections are used,
a single winner is guaranteed for each election, known at all nodes. Using the non-uniform model,
an election is only guaranteed to converge to a single winner in unbounded time. The implemen-
tation of JEL will try to reach consensus on the winner of an election as soon as possible, but
in a large system this may be time consuming. Before a consensus is reached, different nodes
may perceive different winners for a single election. Intuitively, this non-uniform election has a
very weak consistency. However, it is still useful in a number of situations (Section 4.2 shows an
example).

4. APPLICABILITY OF JEL

JEL has been specifically designed to cover the required functionality of a range of programming
models found in distributed systems. We have implemented JEL in the IPL [7], the communication
library of the Ibis project. Figure 3 shows the position of JEL in the software stack of the Ibis
project. All programming models implemented in the Ibis project use JEL to track resources,
notably:

• Satin [5], a divide-and-conquer model
• Java RMI [11], an object-oriented RPC model
• GMI [12], a group method invocation model
• MPJ [9], a Java binding for MPI-1
• RepMI [12], a replicated object model
• Maestro [10], a fault-tolerant and self-optimizing dataflow model
• Jorus [10], a user-transparent parallel model for multimedia computing

As JEL is a generic model, it also supports other programming models. In addition to the
models listed, we have implemented a number of prototype programming models, including data
parallel, master–worker, and Bulk Synchronous Parallel (BSP) models. Although our current JEL
implementations are implemented using Java, the JEL model itself is not limited to this language.
The foremost problem when porting JEL to other programming languages is the possible absence
of a callback mechanism. This problem can be solved by using downcalls instead. In addition,

Figure 3. Position of JEL in the Ibis grid programming software stack.
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Table I. Parts and consistency models of JEL used in the example programming models.

Model Joins and leave Elections

Master–Worker — Uniform
Divide-and-Conquer (elected master) Unreliable Uniform
Divide-and-Conquer (selected master) Unreliable Non-uniform
Message passing Reliable —

parts of current JEL implementations could be reused, for instance by combining the server of the
centralized implementation with a client written in another language.

We will now illustrate the expressiveness of JEL by discussing several models in more detail.
These programming models use different parts and consistency models of JEL, see Table I for an
overview.

4.1. Master–worker

The first programming model we discuss is the master–worker [13] model, which requires a single
node to be assigned as the master. As the master controls the application, its identity must be
made available to all other (worker) nodes. Depending on the application, the number of suitable
candidates for the role of master may range from a single node to all participating nodes. For this
selection, the master–worker model uses uniform elections.

As the workers do not intercommunicate, the only information that a worker needs in a master–
worker model is the identity of the master node. Thus, in this model, joins and leaves are not
needed and can simply be switched off.

4.2. Divide-and-conquer

The second programming model that we discuss is divide-and-conquer. We use Satin [5] as an
example of such a system. Satin is malleable, can handle failures, and hides many intricacies of the
grid from the application programmer. It also completely hides which resources are used. Distri-
bution and load balancing are performed automatically by using random work stealing between
nodes. Satin is cluster-aware: it exploits the hierarchical nature of grids to optimize load balancing
and data transfer. For instance, nodes prefer to steal work from nodes inside their local cluster, as
opposed to from remote sites. The Satin programming model requires support from the resource
tracking model for adding new nodes, as well as removing running nodes (either gracefully or due
to a crash). Satin applies this information to re-execute subtasks if a processor crashes. In addition,
it dynamically schedules subtasks on new machines that become available during the computation,
and it migrates subtasks if machines leave the computation.

Although Satin requires notifications whenever nodes join or leave the computation, these
notifications do not need to be completely reliable, nor do they need to be ordered in any way. Satin
uses the joins and leaves to build up a list of nodes in the pool. This list is then used to randomly
select nodes to steal work from. As long as each node has a reasonably up-to-date view of who is
participating in the application, Satin will continue to work. When the information is out-of-date
or incomplete, the random sampling will be skewed slightly, but in practice the negative impact
on the performance is small (see Section 6.4). Satin therefore uses the unreliable consistency of
the join and leave notifications.

In Satin, an election is used to select a special coordinator per cluster. These coordinators are
used to optimize the distribution of fault tolerance-related data in wide-area systems. When multiple
coordinators are present, more data will be transferred, which may lead to a lower performance.
Satin will still function correctly, however. Therefore, the election mechanism used to select the
cluster coordinators does not necessarily have to return a unique result, meaning that the non-
uniform elections of JEL can be used.

When an application is starting, Satin needs to select a master node that starts the main function
of the application. This node can be explicitly specified by the user or application, or it can be
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automatically selected by Satin. The latter requires the uniform election mechanism of JEL. If the
master node is specified in advance by the user, no election is needed for this functionality.

From the discussion above, we can conclude that the requirements of Satin differ depending on
the circumstances. If the user has specified a master node, Satin requires unreliable join and leave
notifications for the list of nodes, as well as non-uniform elections for electing cluster coordinators.
If, on the other hand, a master node must be selected by Satin itself, uniform elections are an
additional requirement.

4.3. Message passing (MPI-1)

The last programming model we discuss is the Message Passing model, in this case represented by
the commonly used MPI [6] system. MPI is widely used on clusters and even for multi-site runs
on grid systems. We implemented a Java version of MPI-1, MPJ [9]. The MPI model assigns ranks
to all nodes. Ranks are integers uniquely identifying a node, assigned from 0 up to the number of
nodes in the pool. In addition, users can retrieve the total number of nodes in the system.

Joins and leaves with reliable consistency are guaranteed to arrive in the same order on all
nodes. This allows MPI to build up a totally ordered list of nodes, by assigning rank 0 to the first
node that joins the pool, rank 1 to the second, etc. As in the master–worker model, MPI does not
require all functionalities of JEL, as elections are not used.

MPI-1 has very limited support for changes of resources and failures. Applications using this
model cannot handle changes to the resources, such as nodes leaving or crashing. Using an MPI
implemented on top of JEL will not fix this problem. However, some extensions to MPI are possible.
For instance, MPI-2 supports new nodes joining the computation, Phoenix [14] adds supports for
nodes leaving gracefully, and FT-MPI [15] allows the user to handle faults, by specifying the action
to be taken when a node dies. All these extensions to MPI can be implemented using JEL for the
required resource tracking capabilities.

5. JEL IMPLEMENTATIONS

It is impractical, if not impossible, to use the same implementation of JEL on clusters, grids,
clouds, as well as P2P systems. As these different environments have different characteristics, there
are different trade-offs in implementation design. We have explored several alternative designs,
and discuss these in this section.

On cluster systems, resources used in a computation are mostly fixed, and do not change much
over time. Therefore, our JEL implementation targeted at single cluster environments uses a rela-
tively simple algorithm for tracking resources, based on a central coordinator. This ensures high
performance and scalability, and the simple design leads to a more robust, less error-prone imple-
mentation. This central implementation provides reliable joins and leaves, and uniform elections.
As this implementation uses a central coordinator for tracking resources, these stronger consistency
models can be implemented without much effort.

On more dynamic systems, such as grids, clouds, and desktop grids, the simple implementation
design used on clusters is not sufficient. As the number of machines in the system increases, so
does the number of failures. Moreover, any change to the set of resources needs to be dissemi-
nated to a larger set of machines, possibly with high network latencies. Thus, these environments
require a more scalable implementation of JEL. We used a number of techniques to decrease
the effort required and the amount of data transferred by the central coordinator, at the cost
of an increased complexity of the implementation. As the resource tracking still uses a central
coordinator, the stronger consistency models for joins, leaves, and elections of JEL are still
available.

Lastly, we implemented JEL on P2P environments. By definition, it is not possible to use central-
ized components in P2P systems. Therefore, our P2P implementation of JEL is fully distributed.
Using Lamport clocks [16] and a distributed election algorithm [17] it is possible to implement
strong consistency models in a fully distributed manner. However, these algorithms are prohibitively
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difficult to implement. Therefore, our P2P implementation only provides unreliable joins and
leaves, and non-uniform elections, making it extremely simple, robust, and scalable. We leave
implementing a P2P version of JEL with strong consistency models for future work.

As mentioned above, we have augmented our IPL [7] with JEL. The IPL is a low-level message-
based communication library implemented in Java, with support for streaming and efficient serial-
ization of objects. All functionalities of JEL are exported in the IPL’s Registry. JEL is implemented
in the IPL as a separate thread of the Java process. Notifications are passed to the programming
models’ RTS or to application using a callback mechanism.

5.1. Centralized JEL implementation

Our centralized JEL implementation uses a single server to keep track of the state of the pool.
Using a centralized server makes it possible to implement stronger consistency models. However,
it also introduces a single point of failure and a potential performance bottleneck.

The server has three functions. First, it handles requests of nodes participating in the computation.
For example, a node may signal that it has joined the computation, is leaving, or is running for an
election. By design, these requests require very little communication or computation.

Second, the server tracks the current resources in the pool. It keeps a list of all nodes and
elections, and detects failed nodes. Our current implementation is based on a leasing mechanism,
where nodes are required to periodically contact the server. If a node has had no contact with the
server for a certain number of seconds, it sends a so-called heartbeat to the server. If it fails to
do so, the server will try to connect to the node, to see if the node is still functional. If the server
cannot reach the node, this node is declared dead, and removed from the pool.

Third, the server disseminates all changes of the state of the pool to the nodes. The nodes use
these updates to generate join, leave, died, and election notifications for the application. If there
are many nodes, the dissemination may require a significant amount of communication and lead
to performance problems. To alleviate these problems we use a simple yet effective technique.
Any changes to the state of the pool are mapped to events. These events have a unique sequence
number, and are totally ordered. An event represents a node joining, a node leaving, a node dying,
or an election result.

A series of state changes to a sequence of events can now be perceived as a stream of events.
Dissemination of this stream can be optimized using well-known techniques, such as broadcast
trees or gossiping. Figure 4 shows an example of a stream of events. In this case, two nodes join,
one leaves, one is elected master, and then dies. This stream of events thus results in an empty pool.

We have experimented with four different methods of disseminating the event stream: a simple
serial send, serial send with peer bootstrap, a broadcast tree, and gossiping. The different mecha-
nisms and their implementations are described below.

5.1.1. Serial send. In our first dissemination technique, the central server forwards all events occur-
ring in the pool to each node individually. Such a serial send approach is straightforward to imple-
ment, and is very robust. It may lead to performance problems though, as a large amount of data
may have to be sent by the server. To optimize the network usage, the server sends to multiple nodes
concurrently.

In this implementation, a large part of the communication performed by the server consists of
sending a list of all the nodes to a new, joining node (the so-called bootstrap data). If many nodes
join a computation at the same time, this may cause the server to become overloaded.

Figure 4. Example of an event stream.
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5.1.2. Peer bootstrap. As an optimization of the serial send technique, we implemented peer
bootstrapping, where joining nodes use other nodes (their peers) to obtain the necessary bootstrap
data. When a node joins, the server sends it a small list of randomly chosen nodes in the pool. The
joining node then tries to obtain the bootstrap data from the nodes in this list. If, for some reason,
none of the nodes in the list can be reached, the joining node uses the server as a backup source
of bootstrap data. This approach guarantees that the bootstrap process will succeed eventually.

5.1.3. Broadcast tree. A more efficient way of disseminating the stream of events from the server
to all nodes is a broadcast tree. Broadcast trees limit the load on the server by using the nodes
themselves to forward data. Broadcast trees also have disadvantages, as the tree itself is a distributed
data structure that needs to be managed. This requires significant effort, and makes broadcast trees
less robust than serial send.

Our broadcast implementation uses a binomial tree structure with the server as the root of the
tree, which is also commonly used in MPI implementations [18]. To minimize the overhead of
managing the tree, we use the data stream being broadcast to manage the tree. As this stream
includes totally ordered notifications of all joining and leaving nodes, we can use it to construct
the broadcast tree at each node.

To increase the robustness of our broadcast implementation, we implemented fallback informa-
tion dissemination. Periodically, the server directly connects to each node in the pool, and sends
it any events it has not received yet. This fallback mechanism guarantees the functioning of the
system, regardless of the number, and type, of failures occurring. In addition, it causes very little
overhead if there are no failures.

5.1.4. Gossiping. A fourth alternative for disseminating the events of a pool to all its nodes is
the use of gossiping techniques. Gossiping works on the basis of periodic information exchanges
(gossips) between peers (nodes). Gossiping is robust, easy to implement, and has low resource
requirements.

In the gossiping dissemination, all nodes record the event stream. Periodically, a node contacts
one of its peers. The event stream of those two nodes are then merged by sending any missing
events from one peer to the other. To reduce memory usage old events are eventually purged from
the system.

Although the nodes exchange events among themselves, the pool is still managed by the central
server. The server still acts as a contact point for nodes that want to join, leave, or run for an election.
In addition the server creates all events, determines the ordering of events, detects failing nodes, etc.

To seed the pool of nodes with data, the server periodically contacts a random node, and sends it
any new events. The nodes will then distribute these new events among themselves using gossiping.
When the nodes gossip at a fixed interval, the events travel through the system at an exponential
rate. The dissemination process thus requires a time that is logarithmically proportional to the
pool size.

To speed up the dissemination of the events to all nodes, we implemented an adaptive gossiping
interval at the server. Instead of waiting a fixed time between sending events to nodes, we calculate
the interval based on the size of the pool by dividing the standard interval by the base 2 logarithm
of the pool size. Thus, events are seeded at a speed proportional to the pool size. The dissemination
speed of events becomes approximately constant, at the expense of an increase in communication
load on the server.

As gossip targets are selected randomly, there is no guarantee that all nodes will receive all
events. To ensure reliability, we use the same fallback dissemination technique that we used in
the broadcast tree implementation. Periodically, the server contacts all nodes and sends them any
events they do not have.

5.2. Distributed JEL implementation

Although the performance problems of the centralized implementation are largely solved by using
broadcast trees and gossiping techniques, the server component is still a central point of failure,

Copyright � 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2011; 23:17–37
DOI: 10.1002/cpe



JEL: UNIFIED RESOURCE TRACKING 27

and not suitable for usage in P2P systems. As an alternative, we created a fully distributed
implementation of JEL using P2P techniques. It has no central components, hence failures of
individual nodes do not lead to a failure of the entire system.

Our implementation is based on our ARRG [19] gossiping algorithm. ARRG is resilient against
failures, and can handle network connectivity problems, such as firewalls and Network Address
Translations (NATs). Each node in the system has a unique identifier in the form of a UUID [20],
which is generated locally at startup. ARRG needs the address of an existing node at startup to
bootstrap, hence this must be provided. This address is used as an initial contact point in the pool.
ARRG provides a so-called peer sampling service [21], guaranteeing a random sampling of the
entire pool even if failures and network problems occur.

In addition to ARRG, we use another gossiping algorithm to exchange data on nodes and
elections. Periodically, a node connects to a random node (provided by ARRG) and exchanges
information about other nodes and elections. It sends a random subset of the nodes and elections it
knows and includes information about itself. It then receives a number of members and elections
from the peer node, and merges these with its own state. Over time, the nodes build up a list of
the nodes and elections in the pool.

If a node wants to leave the computation, it sends out this information to a number of nodes
in the system. Eventually, this information will reach all nodes. As a crashed node cannot send a
notification to the other nodes indicating that it has died, a distributed failure detection mechanism
is needed.

The failure detection mechanism uses a witness system. A timeout is kept in every entry on a
node, indicating the last time that this node has successfully been contacted. Whenever the timeout
expires, a node is suspected of having died. Nodes with expired entries in their node list try to
contact these suspects. If this fails, they add themselves as a witness to this node’s demise. The
witness list is part of the gossiped information. If a sufficient number of nodes declare that a node
has died, it is pronounced dead.

Besides joins and leaves, the distributed implementation also supports elections. Because of the
difficulties of implementing distributed election algorithms [17], and the lack of guarantees even
when using the more advanced algorithms, we only support the non-uniform election consistency
model. In this model, an election converges to a single winner. Before that time, nodes may not
agree on the winner of that election.

Election results are gossiped. When a node needs the result of an unknown election, it simply
declares itself as the winner. If a conflict arises when merging two different election results, one of
the two winners is selected deterministically (the node with the numerically lowest UUID wins).
Over time, only a single winner remains in the system.

As a consequence of the aforementioned design, the distributed implementation of JEL is fault
tolerant in many aspects. First, the extensive use of gossiping techniques inherently leads to fault
tolerance. The ARRG protocol adds further tolerance against failures, for example by using a
fallback cache containing previously successful contacts [19]. Most importantly, the distributed
implementation lacks any centralized components, providing fully distributed implementations of
all the required functionality instead.

6. EVALUATION

To evaluate the performance and scalability of our JEL implementations, we performed several
experiments. These include low-level and application-level tests on multiple environments. In
particular, we want to assess how much the performance is sacrificed to gain the robustness of a fully
distributed implementation, as we expect this implementation to have the lowest performance. Exact
quantification of performance differences between implementations, however, is difficult—if not
impossible. As shown below, the performance results are highly dependent on the characteristics of
the underlying hardware. Furthermore, the impact on application performance, in turn, is dependent
on the programming model used. For example, MPI cannot proceed until all nodes have joined,
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whereas Satin starts as soon as a resource is available. All the experiments were performed multiple
times. The numbers shown are taken from a single representative experiment.

6.1. Low-level benchmark: join test

The first experiment is a low-level stress test using a large number of nodes. We ran the experiment
on two different clusters. The purpose of the experiment is to determine the performance of our JEL
implementations under different network conditions. In the experiment, all the nodes join a single
pool and, after a predetermined time, leave again. As a performance metric, we use the average
perceived pool size. To determine this metric, we keep track of the pool size at all nodes. Ideally,
this number is equal to the actual pool size. However, if a node has not received all notifications,
the perceived pool size will be smaller. We then calculate the average perceived pool size over all
nodes in the system. The average is expected to increase over time, eventually becoming equal
to the actual pool size. This indicates that all the nodes have received all the notifications. The
shorter the stabilization time, the better.

This experiment was done on our DAS-2 and DAS-3 clusters. The DAS-2 cluster consists of
72 dual processor Pentium III machines, with 2Gb Myrinet interconnect. The DAS-3 cluster consists
of 85 dual-CPU dual-core Opteron machines, with 10Gb Myrinet. See http://www.cs.vu.nl/das2
and http://www.cs.vu.nl/das3 for more information.

As neither the DAS-2 nor the DAS-3 have a sufficiently large number of machines to stress
test our implementation, we started multiple nodes per machine. As neither our JEL implemen-
tations or the benchmark are CPU bound, the sharing of CPU resources does not influence our
measurements. The nodes do share the network bandwidth though. However, all implementations
of JEL are affected equally, hence the relative results of all tested implementations remain valid.
The server of the centralized implementation of JEL is started on the front-end machine of the
cluster.

6.1.1. DAS-2. Figure 5 shows the performance of JEL on the DAS-2 system. We started 10 nodes
per processor core on 50 dual processor machines, for a total of 1000 nodes. Owing to the sharing
of network resources, all nodes, as well as the frontend running the server, have an effective
bandwidth of about 100 Mbit/s.

For convenience, we only show the first 100 s of the experiment, when all the nodes are joining.
The graph shows that the serial send dissemination suffers from a lack of network bandwidth, and
is the lowest performing implementation.

The peer bootstrap and broadcast tree techniques perform equally well on this system. This is
not surprising, as the broadcast tree and peer bootstrap techniques utilize all nodes to increase
throughput. As the graph shows, adaptive gossip dissemination is faster than the normal central
gossip version, as it adapts its speed to the pool size.

While not shown in the graph, the fully distributed implementation is also converging to the size
of the pool, albeit slower than most versions of the centralized implementation. The slow speed
is caused by an overload of the bootstrap service, which receives 1000 gossip requests within
a few milliseconds when all the nodes start. This is an artifact of this artificial test that causes
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Figure 6. 2000 nodes Join test (DAS-3).

Table II. Total data transferred in Join test with 2000 nodes on the DAS-3.

Implementation Dissemination Server (MB) Node average (MB)

Central Serial send 1521.47 0.76
Peer bootstrap 677.23 0.45
Broadcast tree 5.57 1.32
Gossip 9.83 0.49
Adaptive gossip 40.36 0.57

Distributed Gossip n.a. 25.37

all the nodes to start simultaneously. In a P2P environment this is unlikely to occur. Multiple
instances of the bootstrap service would solve this problem. Yet, the performance of the distributed
implementation is acceptable, especially considering the high robustness of this implementation.

6.1.2. DAS-3. Next, we examine the performance of the same benchmark on the newer DAS-3
system (see Figure 6). As a faster network is available on this machine, congestion of the network
is less likely. As the DAS-3 cluster has more processor cores, we increased the number of nodes
to 2000, resulting in 250 Mbit/s of bandwidth per node. The frontend of our DAS-3 cluster has
10 Gbit/s of bandwidth. Performance on the DAS-3 increases significantly compared to the DAS-2,
mostly because of the faster network. The serial send and gossip techniques no longer suffer
from network congestion at the server or bootstrap service. As a result, the performance increases
dramatically for both. In addition, the graph shows that the performance of the broadcast tree is
now significantly better than any other dissemination technique.

The performance of the central implementation with gossiping is influenced by the larger size
of the pool. It takes considerably longer to disseminate the information to all nodes. As before,
the adaptive gossiping manages to adapt, and reaches the total pool size significantly faster.

From our low-level benchmark on both the DAS-2 and DAS-3 we conclude that it is possible
to implement JEL such that it is able to scale to a large number of nodes. In addition, a number
of different implementation designs are possible for JEL, all leading to reasonable performance.

6.2. Network bandwidth usage

To investigate the cost of using JEL, we recorded the total data transferred by both the server and
the clients in the previous experiment. Table II shows the total traffic generated by the experiment
on DAS-3, after all the nodes have joined and left the pool.

Using the serial send version, the server transferred over 1500 MB in the 10 min experiment.
Using peer bootstrap already halves the traffic needed at the server. However, the broadcast tree
dissemination uses less than 5 MB of server traffic to accomplish the same result. It does this by
using the nodes of the system, leading to a slightly higher traffic at the nodes (1.32 MB instead
of 0.76 MB).
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Figure 7. Join/leave test run on four clusters across the DAS-3 grid. Half of the nodes only
start after 200 s, and leave after 400 s.

From this experiment we conclude that the dissemination techniques significantly increase the
scalability of our implementation. Also, the broadcast tree implementation is very suited for low
bandwidth environments. For the distributed implementation, the average traffic per node is 25 MB,
an acceptable cost for having a fully distributed implementation.

6.3. Low-level benchmark in a dynamic environment

We now test the performance of JEL in a dynamic environment, namely the DAS-3 grid. Besides
the cluster at the VU used in the previous tests, the DAS-3 system consists of four more clusters
across the Netherlands. For this test we started our Join benchmark on two clusters (800 nodes), and
add two clusters later, for a total of 1600 nodes. Finally, two clusters also leave, either gracefully,
or by crashing.

Results of the test when the nodes leave gracefully are shown in Figure 7. We tested both the
central implementation of JEL and the distributed implementation. For the central implementation
we have selected the serial send dissemination technique, which performs average on DAS-3
(see Figure 6). On the scale of the graph of Figure 7 results obtained for the other techniques are
indistinguishable.

Figure 7 shows that both implementations are able to track the entire pool. As said, the pool
size starts at 800 nodes, and increases to 1600 nodes 200 s into the experiment. The dip in the
graph at 200 s is an artifact of the metric used: At the moment 800 extra nodes are started, these
nodes have a perceived pool size of 0. Thus, the average over all nodes in the pool halves. As in
the previous test, the central implementation is faster than the distributed implementation. After
400 s, two of the four clusters (800 of the 1600 nodes) leave the pool. The graph shows that JEL
correctly handles nodes leaving, with both implementations processing the leaves shortly.

As said, we also tested with the nodes crashing by forcibly terminating the node’s process.
The results can be seen in Figure 8. When nodes crash instead of leaving, it takes longer for JEL to
detect these nodes have died. This delay is due to the timeout mechanism in both implementations.
A node is only declared dead if it cannot be reached for a certain time (a configuration property
of the implementations, in this instance set to 120 s). Thus, nodes are declared dead with a delay
after crashing. The central implementation of JEL has a slightly longer delay, as it tries to contact
the faulty nodes one more time after the timeout expires. From this benchmark we conclude that
JEL is able to function well in dynamic systems, with both leaving and failing nodes.

6.4. Satin gene sequencing application

To test the performance of our JEL implementations in a real world setting, we used 256 cores
of our DAS-3 cluster to run a gene sequencing application implemented in Satin [5]. Pairwise
sequence alignment is a bioinformatics application where DNA sequences are compared with each
other to identify similarities and differences. We run a large number of instances of the well-known
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Figure 8. Join/fail test run on four clusters across the DAS-3 grid. Half of the nodes
only start after 200 s, and crash after 400 s.

Table III. Gene sequencing application on 256 cores of the DAS-3.

Run time

Implementation Dissemination Small Large Join time

Central Serial send 71.7 408.0 18.2
Peer bootstrap 70.5 406.1 17.2
Broadcast tree 66.4 402.9 10.6

Gossip 67.7 426.6 14.6
Adaptive gossip 67.5 426.4 11.1

Distributed Gossip 82.3 462.4 14.1

Listed are total runtime (in seconds) of the application for two problem sizes and time (in seconds) until all
nodes have joined fully (average perceived pool size is equal to the actual pool size). Runtime includes the
join time.

Smith-Waterman [22] algorithm in parallel using Satin’s divide-and-conquer programming style.
The resulting application achieves excellent performance (93%efficiency on 256 processors).

Table III lists the performance of the application for various JEL implementations, and two
different problem sizes. We specifically chose to include a small problem on a large number of
cores to show that our JEL implementations are also suitable for short-running applications where
the overhead of resource tracking is relatively large. In this very small problem, the application
only ran for little over a minute. The table shows similar performance for all versions of JEL.
Moreover, the relative difference is even smaller in the large problem size. An exception are the
implementations based on gossiping techniques. The periodic gossiping causes a small but constant
amount of network traffic. Unfortunately, the load balancing mechanism of Satin is very sensitive to
this increase in network load. Though the distributed implementation lacks the guaranteed delivery
of notifications present in the central implementation, Satin is able to perform the gene sequencing
calculations with only minor delay. This is an important result, given Satin’s transparent support
for malleability and fault tolerance, as explained in Section 4.2.

To give an impression of the overhead caused by JEL, we also list the join time, the amount
of time from the start of the application it takes for the average perceived pool size to reach
the actual pool size, i.e. the time JEL needs to notify all nodes of all joins. The join time of an
application is independent of the runtime of the application, and mainly influenced by number of
nodes, JEL implementation, and resources used. Therefor, we only list the join time once, for both
problem sizes. The performance of the various JEL implementations is in line with the low-level
benchmark results, with the broadcast tree implementation being the fastest. Our gene sequencing
experiment shows that our model and implementations are able to handle even these short running
applications.
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Table IV. Sites used in the worldwide divide-and-conquer experiment.

Location Country Type Nodes Cores Efficiency (%)

VU University, Amsterdam The Netherlands 32 128 97.3
University of Amsterdam Grid 16 64 96.5
Delft University (DAS-3) 32 64 94.0
Leiden University 16 32 96.7
National Institute of Informatics, Chiba Japan Grid 8 16 84.0
University of Tsukuba (InTrigger) 8 64 81.1
VU University, Amsterdam The Netherlands Desktop Grid 16 17 98.0
Amazon EC2 USA Cloud 16 16 93.2

Total 176 401 94.4

Efficiency is calculated as the difference between total runtime of the application process and time spent
computing. Overhead includes joining and leaving, as well as application communication for load balancing,
returning results, etc.

6.5. Worldwide experiment

To show that JEL is suitable for a large number of different environments, we performed a
worldwide experiment using the central implementation of JEL with serial send dissemination.
We used a prototype of the pending re-implementation of Satin, especially designed for limited
connectivity environments. In our worldwide experiment, connectivity between sites is often limited
because of firewalls, and the network includes a number of low bandwidth and high latency links.

As an application we used an implementation of First Capture Go, a variant of the Go board
game where a win is completed by capturing a single stone. Our application determines the optimal
move for a given player, given any board. It uses a simple brute-force algorithm for determining
the solution, trying all possible moves recursively using a divide-and-conquer algorithm. Since the
entire space needs to be searched to calculate the optimal answer, our application does not suffer
from search overhead.

Table IV shows an overview of the sites used. These consist of two grids (the DAS-3 in the
Netherlands and the InTrigger [23] system in Japan), a desktop grid consisting of student PCs at
the VU University Amsterdam, and a number of machines in the Amazon EC2 [4] compute cloud
in the U.S.A. We used a total of 176 machines, with a total of 401 cores. As we started a single
process per machine, and used threads to distribute work among cores, this amounts to 176 JEL
nodes.

Figure 9 shows the communication structure of the experiment. The graph shown is produced
by the visualization of the SmartSockets [24] library, which is used to connect all the nodes despite
of the firewalls present. In the graph, each site is represented by a different color. Next to the
compute nodes themselves (called Instances in the graph), and the central server, a number of
support processes is used. All part of the SmartSockets [24] library, these support processes allow
communication to pass through firewalls, monitor the communication, and produce the visualization
shown. The support processes run on the frontend machines of the sites used.

Our worldwide system finishes the capture Go application in 35 min. We measured the efficiency
of the machines, comparing the total time spent computing to the total runtime of the processes.
Overhead includes joining and leaving, as well as time spent communicating with other nodes to
load balance the application, return results, etc. Efficiency of the nodes ranges from 79.8 to 99.1%.
The low efficiency on some nodes is due to the severely limited connectivity of these nodes: the
nodes of the InTrigger grid in Japan can only communicate with the outside world through an ssh
tunnel, with a bandwidth of only 1Mbit/s and a latency of over 250 ms to the DAS-3. Even with
some nodes having a somewhat diminished efficiency, the average efficiency over all the nodes in
the worldwide experiment is excellent, at 94.4%.

Although JEL adds to the overhead of the application, running the experiment without JEL
would be difficult, if not impossible. Without JEL, all nodes would have to be known before
starting the application, and this list would have to be spread manually to all nodes. In addition, the
connectivity problems of the InTrigger grid in Japan lead to these nodes starting the computation

Copyright � 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2011; 23:17–37
DOI: 10.1002/cpe



JEL: UNIFIED RESOURCE TRACKING 33

Figure 9. Communication structure of the worldwide divide-and-conquer experiment. Nodes in this graph
represent processes, edges represent connections. The experiment contains both nodes performing the
computation, as well as a number of support processes which allow communication to pass through
firewalls, monitor the communication, and produce this image. Each color represents a different location.

with a significant delay. With JEL, these nodes simply join the running computation later, when
the rest of the nodes have already done a significant amount of work. Our experiment shows that
JEL is suitable for running applications on a large scale and a wide range of systems, including
desktop grids and clouds.

6.6. Competitions

Recently, the software produced by the Ibis project (which includes JEL as one of its core compo-
nents) has been put to the test in two international competitions [10] organized by the IEEE
Technical Committee on Scalable Computing, as part of the CCGrid 2008 (Lyon, France) and
Cluster/Grid 2008 (Tsukuba, Japan) international conferences.

The first competition we participated in was SCALE 2008, or the First IEEE International
Scalable Computing Challenge. Our submission consisted of a multimedia application, which is
able to recognize objects from webcam images. These images are sent to a grid for processing,
and the resulting image descriptions are used to search for objects in a database. In our appli-
cation, JEL is used to keep track of precisely which grid resources are available for processing
images.

The second competition was DACH 2008, or the First International Data Analysis Challenge
for Finding Supernovae. Here, the goal was to find ‘supernova candidates’ in a large distributed
database of telescope images. Again, we used JEL in our submission to keep track of all the
available resources.

The DACH challenge consisted of two categories: a Basic Category where the objective was to
search the entire database as fast as possible and a Fault-Tolerant category, where next to speed,
fault tolerance was also measured by purposely killing over 30% of the nodes in the computation.
Especially in the Fault-Tolerant category, JEL was vital for the successful completion of the
application.

Using our software (including JEL), we have won first prize in both SCALE 2008 and DACH
2008. Moreover, we won both the Basic and the Fault-Tolerant categories at DACH 2008. These
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prizes show that JEL is very effective in many real-world scenarios, including dynamic systems
with failing nodes.

7. RELATED WORK

Other projects have investigated supporting malleability and fault tolerance in various environ-
ments, and resource tracking in these systems. However, most of these projects focus on a single
programming model and a single target environment.

One area of active research for supporting applications on more dynamic environments is the
MPI standard. As said, the MPI-1 standard does not have support for nodes joining or leaving the
computations. To alleviate this problem the follow-up MPI-2 [6] standard also supports changes
to the nodes in a system. A process may spawn new instances of itself, or connect to a different
running set of MPI-2 processes. A very basic naming service is also available.

Although it is possible to add new processes to an MPI application, the resource tracking
capabilities of MPI-2 are very limited by design and a MPI implementation is not required to
handle node failures. In addition, notifications of changes such as machines joining, leaving, or
crashing are not available. Thus, resource tracking of MPI-2 is very limited, unlike our generic
JEL model.

One MPI derivative that does offer explicit support for fault tolerance is FT-MPI [15]. FT-MPI
extends the MPI standard with functionality to recover the MPI library and runtime environment
after a node fails. In FT-MPI, an application can specify if failed nodes must be simply removed
(leaving gaps in the ranks used), replaced with new nodes, or if the groups and communicators of
MPI must be shrunk so that no gap remains. Recovering the application must still be done by the
application itself.

FT-MPI relies on the underlying system to detect failures and notify it of these failures. The refer-
ence implementation of FT-MPI uses HARNESS [25], a distributed virtual machine with explicit
support for adding and removing hosts from the virtual machine, as well as failure detection.
HARNESS shares much of the same goals as JEL, and is able to overcome many of the same
problems JEL tries to solve. However, HARNESS focuses on a smaller set of applications and
environments than JEL. HARNESS does not explicitly support distributed applications, as JEL
does. Also, HARNESS does not offer the flexibility to select the concurrency model required by
the application, hindering the possibility for more loosely coupled implementations of the model,
such as the P2P implementation of JEL.

Other projects have investigated supporting dynamic systems. One example is Phoenix [14],
where an MPI-like message passing model is used. This model is extended with support for
virtual nodes, which are dynamically mapped to physical nodes, the actual machines in the system.
GridSolve [26] is a system for using resources in a grid based on a client–agent–server architecture.
The ‘View Synchrony’ [27] shared data model also supports nodes joining, leaving and failing.
Again, all these programming models focus on resource tracking for a single model, not the generic
resource tracking functionality offered by JEL. All models mentioned can be implemented using
the functionality of JEL.

Although all our current JEL implementations use gossiping and broadcast trees as a means for
information dissemination, other techniques exist. One example is the publish-subscribe model [28].
Despite the fact that information dissemination is an important part of JEL, our model offers much
more functionality to provide a full solution for the resource tracking problem. Most importantly,
further functionality includes the active creation and gathering of information regarding (local)
changes in the resource set.

All current implementations of JEL are build from the ground up, with little external depen-
dencies. However, JEL implementations could in principal interface with external systems, for
instance Grid Information Services (GIS [29]). These systems can be used both for acquiring
(monitoring) data, as well as disseminating the resulting information. One key difference
between JEL and current monitoring systems is the fact that JEL tracks resources of applica-
tions, not systems. An application crashing usually does not cause the entire system to cease
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functioning. Sole reliance of system monitoring data will therefore not detect application-level
errors.

8. CONCLUSIONS AND FUTURE WORK

With the transition from static cluster systems to dynamic environments, such as grids, clusters,
clouds, and P2P systems, fault tolerance and malleability are now essential features for applications
running in these environments. A first step in creating a fault-tolerant and malleable system is
resource tracking: the capability to track exactly which resources are part of a computation and
what roles they have. Resource tracking is an essential feature in any dynamic environment, and
should be implemented on the same level of the software hierarchy as communication primitives.

In this paper we presented JEL: a unified model for tracking resources. JEL is explicitly designed
to be scalable and flexible. Although the JEL model is simple, it supports both traditional program-
ming models like MPI and flexible grid-oriented models like Satin. JEL allows programming
models like Satin to implement both malleability and fault tolerance. With JEL as a common layer
for resource tracking, the development of programming models is simplified considerably. In the
Ibis project, we developed a number of programming models using JEL, and we continue to add
models regularly.

JEL can be used on a number of environments, ranging from clusters to highly dynamic
P2P environments. We described several implementations of JEL, including a centralized imple-
mentation that can be combined with decentralized dissemination techniques, resulting in high
performance, yet with low resource usage at the central server. Furthermore, we described several
dissemination techniques that can be used with JEL. These include a broadcast tree and gossiping-
based techniques. In addition, we showed that JEL can be implemented in a fully distributed
manner, efficiently supporting flexible programming models like Satin, and increasing fault
tolerance.

There is no single resource tracking model implementation that serves all purposes perfectly.
Depending on the circumstances and requirements of the programming model and application
a different implementation is appropriate. In a reliable cluster environment, a centralized imple-
mentation performs best. If applications are run on low bandwidth networks, the broadcast tree
dissemination technique has the benefit of using very little bandwidth. In a hostile environment,
such as desktop grids or P2P systems, a fully distributed implementation is robust against failures.
JEL explicitly supports different algorithms and implementations, making it applicable in a large
number of environments.

We evaluated JEL in a number of real-world scenarios. The scenarios include starting
2000 instances of an application, wide-area tests with new machines joining, and resources failing,
and running an application on a worldwide system, including grids, P2P systems, and cloud
computing resources. In addition to these experiments, we have won a number of international
competitions, showing the suitability of JEL for real-world applications.

The future work consists of implementing additional programming models using JEL, such as a
distributed hash table (DHT), and redesigning our implementation of the Satin divide-and-conquer
model to explicitly support low connectivity environments. In addition, we plan to implement
a fully distributed version of JEL that supports reliable joins and leaves and uniform elections.
One way of implementing this would be using Lamport clocks [16] and a distributed election
algorithm [17].
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