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Abstract

The aim of the Albatross project is to study applications andprogramming environments
for computational grids consisting of multiple clusters that are connected by wide-area net-
works. Parallel processing on such systems is useful but challenging, given the large differ-
ences in latency and bandwidth between LANs and WANs. We provide efficient algorithms
and programming environments that exploit the hierarchical structure of wide-area clusters
to minimize communication over the WANs. In addition, we usehighly efficient local-area
communication protocols. We illustrate this approach using the Manta high-performance
Java system and the MagPIe MPI library, both of which are implemented on a collection of
four Myrinet-based clusters connected by wide-area ATM networks. Our sample applica-
tions obtain high speedups on this wide-area system.

1 Introduction

As computational grids become more widely available, it becomes feasible torun parallel ap-
plications on multiple clusters at different geographic locations. By using several clusters for
a single application, computationally challenging problems can be solvedand the available re-
sources can be used more efficiently. Wide-area cluster computing thus is a form of metacomput-
ing [6, 10]. To enable wide-area cluster computing, however, many problems have to be solved.
Foremost, a suitable software infrastructure has to be built, whichdeals with issues like secu-
rity, heterogeneity, fault tolerance, and accounting. Legion, Globus, andSNIPE are examples
of such infrastructures [8, 9, 11]. In addition, research is required on algorithms, applications,
and programming environments for wide-area systems, since their performance model is quite
different from models for local clusters.

The Distributed ASCI Supercomputer (DAS) is an experimental system that was built for
doing research on wide-area cluster computing (see Figure 1). It consistsof four Myrinet-
based cluster computers located at four Dutch universities that participate inthe ASCI research
school.1 This paper briefly describes one of the projects being done with the DAS system. The

1The ASCI research school is unrelated to, and came into existence before, the Accelerated Strategic Computing
Initiative.
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Figure 1: The wide-area DAS system.

goal of this project, calledAlbatross, is to study applications and programming environments
for wide-area cluster computers.

An assumption in our project is that computational grids will be structuredhierarchically
and will consist of local clusters connected by wide-area networks. Communication within a
cluster is fast, typically with latencies of 1-100 microseconds. Wide-area communication is
much slower, with millisecond latencies. The DAS system is one example of such a hierarchical
system. Our algorithms and programming systems exploit this hierarchical structure by reducing
the amount of communication over the wide-area links. This is similar to locality optimizations
for NUMA machines, except that the performance gap between the local and wide-areanetwork
is much larger; with a NUMA machine, the gap typically is a factor of 3–5, whereas with wide-
area clusters it often is in orders of magnitude.

Our optimized wide-area applications succeed in minimizing the communication traffic over
the wide-area links [2, 15, 20, 21, 22]. As a result, most communication of the programs is local.
Thus, it also is important to optimize intra-cluster communication over the local area network.
Our research therefore focuses on two issues:� efficient communication protocols and runtime systems for local cluster computers, and� efficient algorithms and programming environments for wide-area cluster computers.

The communication software we use is based on the Panda library [1]. Panda provides mul-
tithreading and communication primitives (point-to-point message passing, RPC, and broad-
cast) for implementing runtime systems of various parallel languages. Panda is implemented on
Myrinet using LFC [4], a highly efficient, user-space communication substrate similar to Active
Messages. For wide-area communication, Panda uses the TCP/IP protocol.

In the Albatross project, we have implemented several wide-area parallel programming sys-
tems on top of Panda. Figure 2 shows the structure of our Panda-based wide-area software.
Orca is a parallel language that provides an object-based distributed shared memory model [1].
We have implemented Orca on the wide-area DAS system and we have successfully optimized
several Orca applications [2, 20]. In order to provide the MPI message passing standard, we
have ported MPICH [12] to Panda. Our MagPIe [15] library optimizes MPI’s collective com-
munication operations for wide-area hierarchical systems. MPI applicationsthat mainly use col-
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Figure 2: Local and wide-area communication based on Panda

lective operations can be run efficiently on a wide-area system just by relinking with the Mag-
PIe library. Finally, we have implemented a high-performance wide-areaJava system, called
Manta [17, 21, 22]. The advantages of using Java for wide-area parallel programming are its
clean, object-oriented programming model, support for distributed polymorphism, security, and
garbage collection [7, 24]. In a previous status report, we focused on our Manta system [3].

In this paper, we will first use the Manta system to illustrate the research issues addressed
in the Albatross project. In Section 2, we describe the Manta system and its use for wide-area
cluster computing. In Section 3, we present the current state of our MagPIe library that allows
existing applications written in C and in Fortran using the MPI message passing interface [18]
to efficiently run on wide-area clusters.

2 The Manta system

Manta is a high-performance Java system. Unlike most other Java implementations, it uses a
native compiler that generates executable code rather than byte code. An important advantage of
Manta is its highly efficient implementation of Remote Method Invocation. Manta implements
both Sun’s original RMI model and the JavaParty model [19] which is somewhat more flexible
and easier to use for parallel programming. We use RMI for communication both within a
cluster and between clusters, so its performance is crucial. Other RMI implementations (e.g., the
Sun JDK) have large software overheads, mainly due to slow serialization and communication
protocols. With Manta, all serialization routines are generated by the compiler, so no runtime
inspection (reflection) is necessary. Manta uses its own, light-weight RMI protocol, written
in C. Finally, Manta is implemented on top of highly efficient communication layers (Panda and
LFC), whereas other RMI implementations use TCP/IP. As a result, the null latency of Manta’s
RMI over Myrinet is less than 40 microseconds, 35 times faster than the JDK[17]. Manta
obtains a throughput close to 50 Mbyte/sec over Myrinet.

The most difficult issue in the design of Manta is how to interoperatewith other Java im-
plementations (JVMs). To solve this problem, a Manta node can also communicate through a
JDK-compliant RMI protocol. Thus, two Manta nodes communicate through Manta’s own fast
RMI protocol, while communication with non-Manta JVMs follows the standard protocol. A
related problem is that Manta nodes must be able to exchange byte codes withother Java nodes,
because RMIs in Java are polymorphic [23]. (The parameters or result value of an RMI may be
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of a subclass of the class specified in the declaration, and this subclass may not yet be present at
the sending or receiving machine.) To support polymorphic RMIs, Manta is able to accept byte
codes from JVMs; this byte code is compiled during runtime to object code, which is linked
into the executable program using thedlopen() dynamic linking interface. A more detailed
description of these techniques is given in [17].

2.1 Wide-area computing in Java

We have implemented Manta on the wide-area DAS system, to create an environment for exper-
imental research on wide-area parallel programming. DAS consists of four clusters, located at
four Dutch universities. The cluster at the Vrije Universiteit has 128processors, the other clus-
ters have 24 nodes each. Each node contains a 200 MHz Pentium Pro and has 64-128 MByte
memory. The machines run RedHat Linux 5.2.The nodes within each cluster areconnected by
Myrinet [5]. The four clusters are fully connected through dedicated 6 Mbit/sec wide-area ATM
links (cf. Fig. 1). The DAS system is described in more detail onhttp://www.cs.vu.nl/das/ .

The Manta system on wide-area DAS uses one dedicated gateway machine per cluster. The
gateways implement the Panda library, but (unlike normal nodes) support communication over
both Myrinet and ATM, using LFC and TCP/IP respectively (see Fig. 2). Since the Manta RMI
protocol is implemented on top of Panda, the RMI protocol does not haveto be aware of the
different underlying communication protocols. Manta exposes the hierarchical structure of the
wide-area system to the application in order to allow application-level optimizations.

The null latency of Manta RMI over the wide-area ATM network is at most 5.6 msec
(between the clusters at VU Amsterdam and TU Delft). The measured throughput is 0.55
MByte/sec. The latency and throughput over ATM are roughly two orders of magnitude worse
than those over Myrinet, making parallel processing a challenging task.

2.2 Application experience

So far, we have implemented four parallel applications in Java and optimized them for wide-area
systems. The applications are: Successive Overrelaxation (SOR), the All-pairs Shortest Paths
problem (ASP), the Traveling Salesperson Problem (TSP), and Iterative Deepening A* (IDA*).
The applications and the optimizations are described in [21, 22]. The performance results (taken
from [22]) are shown in Figure 3. For each application, we implemented two versions: one
targeted at single-cluster systems (called “non-optimized” below), and one specially optimized
for multiple clusters. The figure shows the speedups (relative to a sequential Java program) from
left to right, on a single cluster of 16 nodes, on four clusters with 16 nodes each non-optimized
and optimized, and on a single cluster of 64 nodes. A comparison of the third and fourth bar
for each application (except for ASP) shows that the speedups on 4 ATM-connected clusters
of 16 nodes are close to those on a 64-node Myrinet cluster. With ASP,the optimization still
improved the speedup substantially. As Figure 3 shows, we succeeded in reducing the impact
of communication overhead over the wide-area network. The figure also shows that significant
gains can be obtained by running the applications on multiple 16-nodeclusters instead on a
single 16-node cluster.

To obtain this good performance, we had to optimize the applications in various ways. Sev-
eral applications (SOR and ASP) require asynchronous communication to overlap wide-area
communication with computations. Java’s RMI, however, is synchronous. To solve this prob-
lem, we had to invoke the wide-area RMIs from a separate thread, allowing the computation
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Figure 3: Speedups of four Java applications on different cluster configurations.

thread to continue. For local RMIs over Myrinet, thread-switching overheadoutweighs the per-
formance gains. We therefore only optimized the inter-cluster RMIs and not the intra-cluster
RMIs, although this was awkward to express in the program. Another limitation of RMI is
the lack of a broadcast primitive. For performance reasons, ASP requires broadcasting, so we
implemented broadcasting on top of RMI; again, this was awkward to express. For TSP and
IDA*, the hardest problem was to find a work distribution scheme that minimized wide-area
communication while still avoiding load imbalances. The schemes we used (job queues and
work stealing) were easy to express in Java.

3 The MagPIe library

The collective operations as defined by the MPI standard [18] describe an important set of com-
munication patterns occuring between groups of processes. Frequently used examples are the
broadcast, barrier, and reduce operations. Our MagPIe library [15, 16] implements MPI’s collec-
tive operations with optimizations for wide area systems (grids). Existing parallel MPI applica-
tions can be run on grid platforms using MagPIe by relinking the programs with our library. No
change in application code is necessary. MagPIe is independent of the underlying MPI platform.
Its source code can be downloaded from our project WWW site.

MagPIe’s basic idea is to adapt MPI’s collective algorithms to the hierarchical shape of
grid-based systems. Our hierarchical collective algorithms speed up collective completion time
by reducing the utilization of the slow wide-area links to the necessary minimum. MagPIe
has a simple API through which the underlying grid computing platform (Panda, in our case)
provides the information about the number of clusters in use, and whichprocess is located in
which cluster.

MagPIe deals with two basic cases, namelyasymmetrical operations having a dedicatedroot
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(a) symmetrical operation (b) asymmetrical operation

Figure 4: MagPIe’s wide-area optimized communication graphs

process, andsymmetrical operations without a root. Broadcast is an example of an asymmetrical
operation, whereas barrier is symmetrical. Figure 4 shows MagPIe’s communication graphs for
both cases. In each cluster, a so-calledcoordinator node is identified that communicates with
its cluster-local peer processes, as well as with the other coordinators. In the case of asymmet-
rical operations, the root process acts as coordinator of its cluster. MagPIe ensures that each
sender-receiver path contains at most one wide-area link and that each data item is sent at most
once to each receiving cluster. This is achieved by restricting wide-area communication to co-
ordinator nodes which are communicating using flat tree/graph shapes. Inside clusters, MagPIe
uses binomial trees to and from the coordinator nodes. We have shown in[15, 16] that Mag-
PIe significantly reduces the completion times of individual collective operations as well as that
of parallel applications, compared to grid-unaware collective algorithms. Actual performance
improvements depend on the number of clusters and on WAN latency/bandwidth. In our ex-
periments, MagPIe’s operations completed up to 8 times faster than the ones implemented by
MPICH [12].

MagPIe’s algorithms as described so far work quite well with short and medium sized mes-
sages. However, with long messages, utilization of the available wide-area bandwidth needs to
be improved. The reason is that while sending a long message over a low-bandwidth link, the
other wide-area links are idle. A solution to this problem is to splitlong messages into small
segments which can be sent in parallel over multiple wide-area links. We have shown in [13]
that this technique significantly improves MagPIe’s algorithms.

Optimizing message segment sizes and communication tree shapes for collective operations
needs detailed performance data for sending and receiving individual messages.In order to
collect this data, we have developed theMPI LogP Benchmark [14]. Its source code is also
available from our project WWW site.

4 Conclusions

The work on the Albatross project has shown that it is feasible to run parallel applications ef-
ficiently on multiple cluster computers connected by wide-area networks as they are found in
computational grids. It is important to exploit the hierarchical structure of such wide-area clus-
ters and to minimize the amount of communication over the WAN (or to overlap the commu-
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nication with computation). For many parallel applications, the overhead of wide-area com-
munication can be made sufficiently small. As a result, optimizing local-area communication
also becomes important. In our research, we combine efficient local communication software
with application-level wide-area optimizations. In this paper, we firstapplied this strategy to
Java. We briefly described an efficient implementation of Java RMI and we discussed optimiza-
tions for several applications. In other papers, we described similar experiences with different
programming systems and their applications [2, 15, 20]. Also, we performed a sensitivity anal-
ysis [20] on a wide-area emulation system, showing that many optimized applications can even
tolerate very high latencies and low bandwidths.

Our current work in the Albatross project continues the development ofprogramming sup-
port that eases wide-area parallel programming. However, many of the application-level opti-
mizations we implemented for Java and other languages are complicated to express. For MPI,
our MagPIe library already is an important step forward, as it hides the wide-area optimization
inside a library. We currently investigate the adaptation of MagPIe todynamically changing
performance data [25]. We furthermore study the integration of MPI’s collective operations
into Java’s object-oriented model. Finally, we are extending our workto other communication
paradigms.
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