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Abstract

The aim of the Albatross project is to study applications predjramming environments
for computational grids consisting of multiple clusteratthre connected by wide-area net-
works. Parallel processing on such systems is useful bliecdiging, given the large differ-
ences in latency and bandwidth between LANs and WANs. Weigecfficient algorithms
and programming environments that exploit the hierardlstacture of wide-area clusters
to minimize communication over the WANSs. In addition, we bsghly efficient local-area
communication protocols. We illustrate this approach gighre Manta high-performance
Java system and the MagPle MPI library, both of which are @mgnted on a collection of
four Myrinet-based clusters connected by wide-area ATMvosets. Our sample applica-
tions obtain high speedups on this wide-area system.

1 Introduction

As computational grids become more widely available, it becomes feasiblm toarallel ap-
plications on multiple clusters at different geographic locations. &ggiseveral clusters for
a single application, computationally challenging problems can be saivédhe available re-
sources can be used more efficiently. Wide-area cluster computing thusns affmetacomput-
ing [6, 10]. To enable wide-area cluster computing, however, manygmbhave to be solved.
Foremost, a suitable software infrastructure has to be built, wdeeths with issues like secu-
rity, heterogeneity, fault tolerance, and accounting. Legion, GlobusS&HBE are examples
of such infrastructures [8, 9, 11]. In addition, research is requiredgoritims, applications,
and programming environments for wide-area systems, since their parice model is quite
different from models for local clusters.

The Distributed ASCI Supercomputer (DAS) is an experimental systatmwhs built for
doing research on wide-area cluster computing (see Figure 1). It coobikisr Myrinet-
based cluster computers located at four Dutch universities that participghie ASCI research
school* This paper briefly describes one of the projects being done with the P#t8ra. The

1The ASCI research school is unrelated to, and came intoeexistbefore, the Accelerated Strategic Computing
Initiative.
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Figure 1: The wide-area DAS system.

goal of this project, calledlbatross, is to study applications and programming environments
for wide-area cluster computers.

An assumption in our project is that computational grids will bectmedhierarchically
and will consist of local clusters connected by wide-area networks. Coneation within a
cluster is fast, typically with latencies of 1-100 microseconds. Wide-argammication is
much slower, with millisecond latencies. The DAS system is one exanfiplech a hierarchical
system. Our algorithms and programming systems exploit this leldcad structure by reducing
the amount of communication over the wide-area links. This is sinolérdality optimizations
for NUMA machines, except that the performance gap between the local and wideetxeak
is much larger; with a NUMA machine, the gap typically is a factor of 3—5grehs with wide-
area clusters it often is in orders of magnitude.

Our optimized wide-area applications succeed in minimizing the commumdeditfic over
the wide-area links [2, 15, 20, 21, 22]. As a result, most commupicatithe programsis local.
Thus, it also is important to optimize intra-cluster communicatioer akre local area network.
Our research therefore focuses on two issues:

¢ efficient communication protocols and runtime systems for local clustepuaters, and
o efficient algorithms and programming environments for wide-area clustepeters.

The communication software we use is based on the Panda library [1aRaavides mul-
tithreading and communication primitives (point-to-point messaagsipg, RPC, and broad-
cast) for implementing runtime systems of various parallel languagedafaimplemented on
Myrinet using LFC [4], a highly efficient, user-space communicatiorssakbe similar to Active
Messages. For wide-area communication, Panda uses the TCP/IP protocol.

In the Albatross project, we have implemented several wide-area paraiigbonming sys-
tems on top of Panda. Figure 2 shows the structure of our Panda-badedneh software.
Orca is a parallel language that provides an object-based distributed shemrastymmodel [1].
We have implemented Orca on the wide-area DAS system and we have sutgegdiolized
several Orca applications [2, 20]. In order to provide the MPI messagsiny standard, we
have ported MPICH [12] to Panda. Our MagPle [15] library optimized'8/&bllective com-
munication operations for wide-area hierarchical systems. MPI| applicdtiansiainly use col-
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Figure 2: Local and wide-area communication based on Panda

lective operations can be run efficiently on a wide-area system just byirgjimkth the Mag-
Ple library. Finally, we have implemented a high-performance wide-2aea system, called
Manta [17, 21, 22]. The advantages of using Java for wide-area paralgigonming are its
clean, object-oriented programming model, support for distributgdpmphism, security, and
garbage collection [7, 24]. In a previous status report, we focusedioklanta system [3].

In this paper, we will first use the Manta system to illustrate theassh issues addressed
in the Albatross project. In Section 2, we describe the Manta systentsandd for wide-area
cluster computing. In Section 3, we present the current state of our MdigRiry that allows
existing applications written in C and in Fortran using the MPI mesgagsing interface [18]
to efficiently run on wide-area clusters.

2 TheMantasystem

Manta is a high-performance Java system. Unlike most other Javarimaptations, it uses a
native compiler that generates executable code rather than byte code. Areintjpditantage of
Manta is its highly efficient implementation of Remote Method InvocatManta implements
both Sun’s original RMI model and the JavaParty model [19] which msesghat more flexible
and easier to use for parallel programming. We use RMI for communicatitn within a
cluster and between clusters, so its performance is crucial. Other RMI impiatioess (e.g., the
Sun JDK) have large software overheads, mainly due to slow seriatizatid communication
protocols. With Manta, all serialization routines are generated by the ¢&mgd no runtime
inspection (reflection) is necessary. Manta uses its own, light-weight ;Rdocol, written
in C. Finally, Manta is implemented on top of highly efficient communaatayers (Panda and
LFC), whereas other RMI implementations use TCP/IP. As a result,uthé&atency of Manta’'s
RMI over Myrinet is less than 40 microseconds, 35 times faster than the[IDK Manta
obtains a throughput close to 50 Mbyte/sec over Myrinet.

The most difficult issue in the design of Manta is how to interopenatie other Java im-
plementations (JVMs). To solve this problem, a Manta node can also ooioate through a
JDK-compliant RMI protocol. Thus, two Manta hodes communicate tfinddanta’s own fast
RMI protocol, while communication with non-Manta JVMs followsetktandard protocol. A
related problem is that Manta nodes must be able to exchange byte codetheitiava nodes,
because RMIs in Java are polymorphic [23]. (The parameters or resudt ¥Bhn RMI may be



of a subclass of the class specified in the declaration, and this subclasstyay®present at
the sending or receiving machine.) To support polymorphic RMIs, Blanable to accept byte
codes from JVMs; this byte code is compiled during runtime to objedecwhich is linked
into the executable program using tdl®pen() dynamic linking interface. A more detailed
description of these techniques is given in [17].

2.1 Wide-area computing in Java

We have implemented Manta on the wide-area DAS system, to create an ersfiidonexper-
imental research on wide-area parallel programming. DAS consists of faterdulocated at
four Dutch universities. The cluster at the Vrije Universiteit has p2&gessors, the other clus-
ters have 24 nodes each. Each node contains a 200 MHz Pentium Pro and 2&8s\éByie
memory. The machines run RedHat Linux 5.2.The nodes within each clusteoramected by
Myrinet [5]. The four clusters are fully connected through dedicated @/t wide-area ATM
links (cf. Fig. 1). The DAS system is described in more detaihtp: //www.cs.vu.nl/das/.

The Manta system on wide-area DAS uses one dedicated gateway machine perThéster
gateways implement the Panda library, but (unlike normal nodespsupgmmunication over
both Myrinet and ATM, using LFC and TCP/IP respectively (see Fig. RicéSthe Manta RMI
protocol is implemented on top of Panda, the RMI protocol does not tealse aware of the
different underlying communication protocols. Manta exposes thaiuieical structure of the
wide-area system to the application in order to allow application-leehigations.

The null latency of Manta RMI over the wide-area ATM network is at most fhsec
(between the clusters at VU Amsterdam and TU Delft). The measured through@ib5
MByte/sec. The latency and throughput over ATM are roughly two ordemsagnitude worse
than those over Myrinet, making parallel processing a challenging task.

2.2 Application experience

So far, we have implemented four parallel applications in Java and agtiitihem for wide-area
systems. The applications are: Successive Overrelaxation (SOR), thairdIShortest Paths
problem (ASP), the Traveling Salesperson Problem (TSP), and lieigepening A* (IDA*).
The applications and the optimizations are described in [21, 22]. Tlerpgnce results (taken
from [22]) are shown in Figure 3. For each application, we implementedvievsions: one
targeted at single-cluster systems (called “non-optimized” below), andpmugadly optimized
for multiple clusters. The figure shows the speedups (relativeeqaesntial Java program) from
left to right, on a single cluster of 16 nodes, on four clusters w@tmddes each non-optimized
and optimized, and on a single cluster of 64 nodes. A comparison of itideatind fourth bar
for each application (except for ASP) shows that the speedups on 4 ATMectathclusters
of 16 nodes are close to those on a 64-node Myrinet cluster. With thBR)ptimization still
improved the speedup substantially. As Figure 3 shows, we succeedsdlicing the impact
of communication overhead over the wide-area network. The figure alsesghatsignificant
gains can be obtained by running the applications on multiple 16-oldéers instead on a
single 16-node cluster.

To obtain this good performance, we had to optimize the applicatiorarious ways. Sev-
eral applications (SOR and ASP) require asynchronous communicatioret@pwide-area
communication with computations. Java’s RMI, however, is synchusndo solve this prob-
lem, we had to invoke the wide-area RMIs from a separate thread, allotvngamputation
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Figure 3: Speedups of four Java applications on different cluster emafigns.

thread to continue. For local RMIs over Myrinet, thread-switching overbeadeighs the per-
formance gains. We therefore only optimized the inter-cluster RMIs amdhe intra-cluster
RMls, although this was awkward to express in the program. Anothefation of RMI is
the lack of a broadcast primitive. For performance reasons, ASP requiraddarsting, so we
implemented broadcasting on top of RMI; again, this was awkward to expfes TSP and
IDA*, the hardest problem was to find a work distribution scheme thaimized wide-area
communication while still avoiding load imbalances. The schemes we jsed|(eues and
work stealing) were easy to express in Java.

3 TheMagPlelibrary

The collective operations as defined by the MPI standard [18] describe antanpset of com-
munication patterns occuring between groups of processes. Frequentlyxasagles are the
broadcast, barrier, and reduce operations. Our MagPle library [15, p&nnents MPI's collec-
tive operations with optimizations for wide area systems (gridsistiag parallel MPI applica-
tions can be run on grid platforms using MagPle by relinking thgpmms with our library. No
change in application code is necessary. MagPle is independent of the imgi&tBi platform.
Its source code can be downloaded from our project WWW site.

MagPle’s basic idea is to adapt MPI's collective algorithms to the hieieatbhape of
grid-based systems. Our hierarchical collective algorithms speed up aaleotnpletion time
by reducing the utilization of the slow wide-area links to the necessamjmmam. MagPle
has a simple API through which the underlying grid computing ptatf (Panda, in our case)
provides the information about the number of clusters in use, and vgnaxdess is located in
which cluster.

MagPle deals with two basic cases, hanmasymmetrical operationshaving a dedicatexbot
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Figure 4: MagPle’s wide-area optimized communication graphs

process, angymmetrical operationswithout a root. Broadcast is an example of an asymmetrical
operation, whereas barrier is symmetrical. Figure 4 shows MagPle’s coitettion graphs for
both cases. In each cluster, a so-cattedrdinator node is identified that communicates with
its cluster-local peer processes, as well as with the other coordinatohe tase of asymmet-
rical operations, the root process acts as coordinator of its cluster. ElagBures that each
sender-receiver path contains at most one wide-area link and that each data getraisnsost
once to each receiving cluster. This is achieved by restricting wide-area cdoation to co-
ordinator nodes which are communicating using flat tree/graph shapete thssters, MagPle
uses binomial trees to and from the coordinator nodes. We have shdid/, ih6] that Mag-
Ple significantly reduces the completion times of individual collectjperations as well as that
of parallel applications, compared to grid-unaware collective algorithhesual performance
improvements depend on the number of clusters and on WAN latency/bahdviidour ex-
periments, MagPle’s operations completed up to 8 times faster than thengplesniented by
MPICH [12].

MagPle’s algorithms as described so far work quite well with short andumresized mes-
sages. However, with long messages, utilization of the available wabekamdwidth needs to
be improved. The reason is that while sending a long message overtalmwidth link, the
other wide-area links are idle. A solution to this problem is to dplig messages into small
segments which can be sent in parallel over multiple wide-area links. Wediewn in [13]
that this technique significantly improves MagPle’s algorithms.

Optimizing message segment sizes and communication tree shapes for abeetigtions
needs detailed performance data for sending and receiving individual messagesler to
collect this data, we have developed #@! LogP Benchmark [14]. Its source code is also
available from our project WWW site.

4 Conclusions

The work on the Albatross project has shown that it is feasible to anallel applications ef-
ficiently on multiple cluster computers connected by wide-area networksegsatk found in
computational grids. It is important to exploit the hierarchicalduite of such wide-area clus-
ters and to minimize the amount of communication over the WAN (or tolapeghe commu-



nication with computation). For many parallel applications, the overhéadde-area com-
munication can be made sufficiently small. As a result, optimizing loed-aommunication
also becomes important. In our research, we combine efficient local communisaftware

with application-level wide-area optimizations. In this paper, we &mtlied this strategy to
Java. We briefly described an efficient implementation of Java RMI and wesdsdwptimiza-
tions for several applications. In other papers, we described simil@riexgges with different
programming systems and their applications [2, 15, 20]. Also, wepedd a sensitivity anal-
ysis [20] on a wide-area emulation system, showing that many optimizgitaiions can even
tolerate very high latencies and low bandwidths.

Our current work in the Albatross project continues the developmemtagframming sup-
port that eases wide-area parallel programming. However, many of the ajgplitatel opti-
mizations we implemented for Java and other languages are complicated ésexipor MPI,
our MagPle library already is an important step forward, as it hides tbe-afea optimization
inside a library. We currently investigate the adaptation of MagPldyttamically changing
performance data [25]. We furthermore study the integration of' $Allective operations
into Java’s object-oriented model. Finally, we are extending our wmwther communication
paradigms.
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