MPJ /Ibis: a Flexible and Efficient Message
Passing Platform for Java

Markus Bornemann, Rob V. van Nieuwpoort, and Thilo Kielmann

Vrije Universiteit, Amsterdam, The Netherlands
http://www.cs.vu.nl/ibis

Abstract. The MPJ programming interface has been defined by the
Java Grande forum to provide MPI-like message passing for Java appli-
cations. In this paper, we present MPJ/Ibis, the first implementation of
MPJ based on our Ibis programming environment for cluster and grid
computing. By exploiting both flexibility and efficiency of Ibis, our MPJ
implementation delivers high-performance communication, while being
deployable on various platforms, from Myrinet-based clusters to grids.
We evaluated MPJ/Ibis on our DAS-2 cluster. Our results show that
MPJ/Ibis’ performance is competitive to mpiJava on Myrinet and Fast
Ethernet, and to C-based MPICH on Fast Ethernet.

1 Introduction

In recent years, Java has gained increasing interest as a platform for high perfor-
mance and Grid computing [1]. Java’s “write once, run anywhere” property has
made it attractive, especially for high-performance grid computing where many
heterogeneous platforms are used and where application portability becomes an
issue with compiled languages like C++ or Fortran.

In previous work on our Ibis programming environment [2], we showed that
parallel Java programs can run and communicate efficiently. Ibis supports object-
based communication: method invocation on remote objects and object groups,
as well as divide-and-conquer parallelism via spawned method invocations [2].
The important class of message-passing applications was not supported so far.

To enable message passing applications, the Java Grande Forum proposed
MPJ [3], the MPI language bindings to Java. So far, no implementation of MPJ
has been made available. In this paper, we present MPJ/Ibis, our implementa-
tion of MPJ on top of the Ibis platform. Being based in Ibis, MPJ/Ibis can be
deployed flexibly and efficiently, on machines ranging from clusters with local,
high-performance networks like Myrinet or Infiniband, to grid platforms in which
several, remote machines communicate across the Internet.

In this paper, we discuss our design choices for implementing the MPJ APL
As evaluation, we run both micro benchmarks and applications from the Java-
Grande benchmark suite [1]. Micro benchmarks show that on a Myrinet cluster,
MPJ/Ibis communicates slower than C-based MPICH, but outperforms MPI-
Java, an older Java wrapper for MPI. Using TCP on Fast Ethernet shows that
MPJ/Ibis is significantly faster than C-based MPICH. (Unfortunately, MPI-
Java does not run at all in this configuration.) With the JavaGrande bench-

C D
| o | {MPJ] o

IPL I

[
Infini-
! GM !!Panda!!
---l___-l___n_"a_'“’_l

Satin RepMI

Acllve

Fig. 1. Design of Ibis. The various modules can be loaded dynamically.

mark applications, MPJ/Ibis is either on-par with MPIJava or even outper-
forms it. MPJ/Ibis can thus be considered as a message-passing platform for
Java that combines competitive performance with portability ranging from high-
performance clusters to grids.

2 Related Work

Many attempts were made to bind MPI to Java. MpiJava [4] is based on wrap-
ping native methods like the MPI implementation MPICH with the Java Native
Interface (JNI). The API is modeled very closely on the MPI standard provided
by the MPI Forum. Due to limitations of the Java language (primitive type ar-
guments cannot be passed as reference), small changes to the original standard
had been made. JavaMPI [5] also uses JNI to wrap native methods to Java. It
overcomes the argument passing problems using automatically generated C-stub
functions and JNI method declarations. The MP1J [6] implementation is written
in pure Java and runs as a part of the Distributed Object Group Metacomput-
ing Architecture (DOGMA) [7]. If available on the running platform, MPIJ uses
native marshaling of primitive types instead of Java marshaling.

The first two approaches provide fast message passing, but do not match
Java’s ”write once, run anywhere” property. JavaMPI and mpiJava are not
portable enough, since a it requires a native MPI library and the Java binding
must be compiled on the target system. MPIJ is written in Java and addresses
the conversion of primitive datatypes into byte arrays. However, it does not solve
the more general problem of Object serialization, which is a bottleneck.

MPJ [3] proposes MPI language bindings to Java. These bindings merge the
earlier proposals mentioned above. In this paper, we present MPJ/Ibis, which
is the first available implementation of MPJ. MPJ/Ibis features a pure Java
implementation, but can also use high speed networks using some native code.
Moreover, MPJ/Ibis uses Ibis’ highly efficient object serialization, greatly speed-
ing up the sending of complex data structures.

3 Ibis, Flexible and Efficient Grid Programming

Our MPJ implementation runs on top of Ibis [2]. The structure of Ibis is shown
in Figure 1. A central part of the system is the Ibis Portability Layer (IPL) which

m = sendPort.getMessage();
m.writelnt(3);
m.writelntArray(a);
m.writelntSlice(b, 0, 100);
m.writeObject(o);

m.send();

send port receive port

m = receivePort.receive();
i = m.readInt();
a=m.readIntArray();
m.readIntSlice(b, 0, 100);
o =m.readObject();

m finish();

m.finish();

Fig. 2. Send ports and receive ports.

consists of a small number of well-defined interfaces. The IPL can have different
implementations, that can be selected and loaded into the application at run
time. The IPL defines both serialization (the conversion of objects to bytes) and
communication. Ibis also provides more high-level programming models, see [2].
In this paper, we focus on the MPJ programming model.

A key problem in making Java suitable for grid programming is designing
a system that obtains high communication performance while retaining Java’s
portability. Current Java runtime environments are heavily biased to either
portability or performance. The Ibis strategy to achieve both goals simulta-
neously is to develop reasonably efficient solutions that work “anywhere”, sup-
plemented with highly optimized solutions for increased performance in special
cases. With Ibis, grid applications can run simultaneously on a variety of differ-
ent machines, using optimized software where possible (e.g., Myrinet), and using
standard software (e.g., TCP) when necessary.

3.1 Send Ports and Receive Ports

The IPL provides communication primitives using send ports and receive ports.
A careful design of these ports and primitives allows flexible communication
channels, streaming of data, efficient hardware multicast and zero-copy transfers.
The layer above the IPL creates send and receive ports, which are connected
to form a unidirectional message channel, see Figure 2. New (empty) message
objects can be requested from send ports, and data items of any type can be
inserted. Both primitive types and arbitrary objects can be written. When all
data is inserted, the send primitive can be invoked on the message.

The IPL offers two ways to receive messages. First, messages can be received
with the receive port’s blocking receive primitive (see Figure 2). It returns a
message object, from which the data can be extracted using the provided set of
read methods. Second, the receive ports can be configured to generate upcalls,
thus providing the mechanism for implicit message receipt. An important insight
is that zero-copy can be made possible in some important special cases by care-
fully designing the port interfaces. Ibis allows native implementations to support
zero-copy for array types, while only one copy is required for object types.

(Application)

MPJ collecti tion layer I;

MPJ base communication layer l;

/’é MPJ Ibis communication layer
| IPL |

Fig. 3. Design of MPJ/Ibis.

3.2 Efficient Communication

The TCP/IP Ibis implementation is using one socket per unidirectional channel
between a single send and receive port, which is kept open between individual
messages. The TCP implementation of Ibis is written in pure Java, allowing
to compile an Ibis application on a workstation, and to deploy it directly on a
grid. To speedup wide-area communication, Ibis can transparently use multiple
TCP streams in parallel for a single port. Finally, Ibis can communicate through
firewalls, even without explicitly opened ports.

The Myrinet implementation of the IPL is built on top of the native GM
library. Ibis offers highly-efficient object serialization that first serializes objects
into a set of arrays of primitive types. For each send operation, the arrays to be
sent are handed as a message fragment to GM, which sends the data out without
copying. On the receiving side, the typed fields are received into pre-allocated
buffers; no other copies need to be made.

4 MPJ/Ibis

MPJ/Ibis is written completely in Java on top of the Ibis Portability Layer. It
matches the MPJ specification mentioned in [3]. The architecture of MPJ/Ibis,
shown in Figure 3, is divided into three layers. The Communication Layer
provides the low level communication operations. The MPJObject class stores
MPJ/Ibis messages and the information needed to identify them, ie. tag and
context id. To avoid serialization overhead the MPJObject is not sent directly,
but is split into a header and a data part. When header and message arrive at the
destination, MPJ/Ibis decides either to put the message directly into the receive
buffer or into a queue, where the retrieved message waits for further processing.
The Base Communication Layer takes care of the basic sending and receiving
operations in the MPJ specification. It includes the blocking and nonblocking
send and receive operations and the various test and wait statements. It is also
responsible for group and communicator management. The Collective Commu-
nication Layer implements the collective operations on top of the Base Commu-
nication Layer. The algorithms realizing the collectives are shown in table 1.

Table 1. Algorithms used in MPJ to implement the collective operations.

Collective Operation|Algorithm
allgather double ring
allgatherv ring

alltoall flat tree
alltoallv flat tree
barrier flat tree
broadcast binomial tree
gather flat tree
gatherv flat tree
reduce binomial tree
reduceScatter phase 1:reduce; phase 2: scatterv
scan flat tree
scatter flat tree
scatterv flat tree

4.1 MPJ/Ibis Implementation

MPJ/Ibis tries to avoid expensive operations like buffer copying, serialization
and threads where it is possible. On the sender side, MPJ/Ibis analyses the
message to find out if there is a need to copy it into a temporary buffer. This
is necessary when using displacements, for example. If no copy is required, the
message will be written directly to the Ibis send port.

On the receiver side MPJ/Ibis has to decide to which communicator the
message is targeted. The receive operation uses a blocking downcall receive to the
Ibis receive port, where it waits for a message to arrive. When the message header
comes in MPJ/Ibis determines if this message was expected. If it was not (a rare
event), the whole message including the header will be packed into a MPJObject
and then moved into a queue, copying then is mandatory. Otherwise MPJ/Ibis
decides either to receive the message directly into the user’s receive buffer or into
a temporary buffer from where it will be copied to it’s final destination (when
displacements are used, for instance). There is no need to use threads for the
blocking send and receive operations in MPJ/Ibis, which saves a lot of processor
time. In many simple but often occurring cases zero-copying is possible as well.
MPJ supports non-blocking communication operations, such as isend and irecv.
These are built on top of the blocking operations using Java threads.

4.2 Open Issues

Since Java provides derived datatypes natively there is no real need to implement
derived datatypes in MPJ/Ibis. Nevertheless contiguous derived datatypes are
supported by MPJ/Ibis to achieve the functionality of the reduce operations
MINLOC and MAXLOC, which need at least a pair of values inside a given
one-dimensional array. At the moment MPJ supports one-dimensional arrays.
Multidimensional arrays can be sent as an object. In place receive is not possible
in this case. MPJ/Ibis supports creating and splitting of new communicators,
but intercommunication is not implemented yet. At this moment, MPJ/Ibis does
not support virtual topologies.

Table 2. Low-level performance. Latencies in microseconds, throughputs in MByte/s.

network / Myrinet Fast Ethernet
implementation latency|array object latency|array object
throughput|throughput throughput|throughput

MPICH / C 22 178 N.A. 1269 10.6 N.A.
mpiJava / SUN JVM[[84 86 1.2 N.A. [N.A. N.A.
mpiJava / IBM JVM||41 178 2.7 N.A. |N.A. N.A.

Ibis IPL / SUN JVM]|[56 80 4.8 146 11.2 3.0

Ibis IPL / IBM JVM ||46 128 12.8 144 11.2 4.4

MPJ / SUN JVM 98 80 4.6 172 11.2 3.0

MPJ / IBM JVM 58 128 12.4 162 11.2 4.4

5 Ewvaluation

We evaluated MPJ/Ibis on the DAS-2 cluster in Amsterdam, which consists of
72 Dual Pentium-IIT nodes with 1 GByte RAM, connected by Myrinet and Fast
Ethernet. The operating system is Red Hat Enterprise Linux with kernel 2.4.

5.1 Low-Level Benchmarks

Table 2 shows low-level benchmark numbers for the IPL, MPJ/Ibis, MPICH
and mpiJava. For the Java measurements, we used two different JVMs, one
from Sun and one from IBM, both in version 1.4.2. For C, we used MPICH/GM
for Myrinet and MPICH/P4 for Fast Ethernet. MpiJava uses MPICH/GM, we
were unable to run it with MPICH/P4. First, we measured the roundtrip latency
by sending one byte back and forth. On Myrinet, Java has considerably higher
latencies than C. This is partly caused by switching from Java to C using the
JNI. On Fast Ethernet MPJ is faster than MPICH/P4 (the latency is more than
7 times lower). In this case, only Java code is used, the JNT is not involved.

Next, we measured the throughput for 64 KByte arrays of doubles. The data
is received in preallocated arrays, no new objects are allocated and no garbage
collection is done by the JVM. The numbers show that the IBM JVM is much
faster than the SUN JVM in this case, because the SUN JVM makes a copy of
the array when going through the JNI. This almost halves the throughput. When
we compare the mpiJava results on the IBM JVM and Myrinet with MPICH,
we see that performance is the same. Ibis and MPJ are somewhat slower, but
still achieve 128 MByte/s. On Fast Ethernet, all Java implementations are able
to fill the network. MPICH /P4 is marginally slower.

Finally, we use a throughput test that sends binary trees of 1023 nodes, with
four integer values payload per node. We show the throughput of the payload.
In reality, more data is sent, such as type information and the structure of the
tree (pointers to the left and right children). The tree is reconstructed at the
receiving side, in newly allocated objects. It is not possible to express this test in
C in this way. Ibis and MPJ are much more efficient than mpiJava when sending
objects, resulting in a 4.5 times higher throughput, thanks to Ibis’ highly efficient
serialization implementation. This result is significant, because in Java programs
typically send complex graphs of objects.

ASP Molecular Dynamics

60 MPI GM —— 60 - MPJ GM —+—
MPJ TCP - % MPJ TCP —%-— s
50 MPlJava GM - 50 I MPIJava GM -3 -
perfect - perfect P
o 40 o 40 X,
o 30 ® 30 B} T
20 20
10 A 10
10 20 30 40 50 60 10 20 30 40 50 60
CPUs CPUs
MonteCarlo RayTracer
8 T T T T
MPJ GM —+— 60 | MPJ GM —+— *
71 MPJ TCP -~ 1 - MPJ TCP - gz
MPlJava GM - _A— 50 1 MPIJava GM -3
6 perfect perfect
K
Eg / g 40
3]./ B /
& o 30 T
& 4 / o) X
8 B o 2
B R A RO S
2 Hrg Ko o 10
1
10 20 30 40 50 60 10 20 30 40 50 60
CPUs CPUs

Fig. 4. Speedup of MPJ/Ibis and MPIJava applications.

5.2 Application Performance

Figure 4 shows the speedups achieved with three applications from the Java
Grande MPJ benchmarks using the Sun JVM (we found that mpiJava is unstable
in combination with the IBM JVM). We also show an additional application,
ASP, which is not part of the Java Grande set.

ASP All-pairs Shortest Paths (ASP) computes the shortest path between
any two nodes of a given 5952-node graph. In ASP one machine broadcasts an
array of data each iteration. Both the MPJ/Ibis and mpiJava obtain excellent
speedups, but MPJ/Ibis scales better to larger number of CPUs.

MolDyn is an N-body code. For each iteration, six reduce-to-all summation
operations update the atoms. We enlarged the problem size to 19 (27436 parti-
cles). Both MPJ/Ibis and mpiJava perform well on this application. Only on 64
machines, mpiJava slightly outperforms MPJ/Ibis.

The MonteCarlo application is a financial simulation. Each node generates
an array of Vector objects. These arrays of complex objects are sent to CPU 0
by individual messages. We cannot make the problem larger than size B due to
memory constraints. With this problem size, neither mpiJava nor MPJ/Ibis scale
well. However, MPJ/Ibis clearly is more efficient: it outperforms mpiJava with
more than a factor of two, thanks to Ibis’ highly efficient serialization mechanism.

Ray Tracer renders a scene of 64 spheres. Each node calculates a checksum
over its part of the scene, and a reduce operation is used to combine these
checksums into a single value. The machines send the rendered pixels to machine
0 by individual messages. We enlarged the problem to an image of 2000x2000
pixels. MPJ/Ibis and mpiJava perform almost perfectly on this application.

The measurements in this section show that MPJ/Ibis achieves similar per-
formance as mpiJava. In one case (MonteCarlo), MPJ/Ibis outperforms mpiJava
by a large margin. The results indicate that the flexibility provided by the MPJ
implementation on top of Ibis does not come with a performance penalty.

6 Conclusions

We presented MPJ/Ibis, our implementation of the Java language binding of
MPI. Our implementation is based on our Ibis grid programming environment.
Putting a message-passing layer like MPJ on top of Ibis provides an efficient
environment, allowing message-passing applications in Java. Ibis’ flexibility then
allows to run these applications on clusters and on grids, without recompilation,
merely by loading the respective communication substrate at run time.

We have evaluated MPJ /Ibis using micro benchmarks and applications from
the JavaGrande benchmark suite. Our results show that MPJ/Ibis shows com-
petitive or better performance than MPIJava, an older MPI language binding.
Comparing to C-based MPICH, MPJ/Ibis is somewhat slower using Myrinet,
but outperforms its competitor when using TCP/IP over Fast Ethernet.

To summarize, MPJ/Ibis can be considered as a message-passing platform
for Java that combines competitive performance with portability ranging from
high-performance clusters to grids. We are currently investigating the use of both
MPJ and shared-object communication, paralleling single-sided communication
as introduced in MPI-2.

References

1. The JavaGrande Forum: www.javagrande.org (1999)

2. van Nieuwpoort, R.V., Maassen, J., Hofman, R., Kielmann, T., Bal, H.E.: Ibis: an
Efficient Java-based Grid Programming Environment. In: Joint ACM Java Grande
- ISCOPE 2002 Conference, Seattle, Washington, USA (2002) 18-27

3. Carpenter, B., Getov, V., Judd, G., Skjellum, A., Fox, G.: MPJ: MPI-like Message
Passing for Java. Concurrency: Practice and Experience 12 (2000) 1019-1038

4. Baker, M., Carpenter, B., Fox, G., Ko, S.H., Lim, S.: mpiJava: An Object-Oriented
Java interface to MPI. In: Intl. Workshop on Java for Parallel and Distributed
Computing, IPPS/SPDP, LNCS, Springer Verlag, Heidelberg, Germany (1999)

5. Mintchev, S., Getov, V.: Towards portable message passing in Java: Binding MPI.
In: Recent Advances in PVM and MPI. Number 1332 in Lecture Notes in Computer
Science (LNCS), Springer-Verlag (1997) 135-142

6. Judd, G., Clement, M., Snell, Q., Getov, V.: Design issues for efficient implemen-
tation of mpi in java. In: ACM 1999 Java Grande Conference. (1999) 58-65

7. Judd, G., Clement, M., Snell, Q.: DOGMA: Distributed Object Group Metacom-
puting Architecture. Concurrency: Practice and Experience 10 (1998) 977-983

