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Abstract

While Grid technologies are maturing rapidly, there still remains a shortage of real
Grid applications. One important reason is the lack of simple and high-level application
programming interfaces to the Grid, bridging the gap between existing Grid middle-
ware and application-level needs. The Grid Application Toolkit (GAT), as currently
developed by the EC-funded project GridLab [1], provides a unified, simple program-
ming interface to the Grid infrastructure, tailored to the needs of Grid application
programmers and users. In this paper, we outline a motivating use case, present the
GAT API functionality, and sketch existing bindings to programming languages and
their implementations.

1 Introduction

In Grid platforms, or Virtual Organizations (VO’s) [4], applications access a variety of more
or less heterogeneous resources. For most applications, the important resources are comput-
ers and data files. For computers, heterogeneity stems from different hardware architectures
and operating systems. Besides, the administrative autonomy of the member sites in a VO
leads to a diversity of access policies and installed middleware packages and package versions.
Unfortunately, even minor differences between versions of the same middleware package often
lead to prohibitive incompatibilities. Access to data files suffers from similar problems.

Hiding this heterogeneity and even the individual entities in favour of providing a unified
distributed computing platform is important for writing Grid-enabled applications. For
this purpose, the GridLab project [1] has been developing the Grid Application Toolkit
(GAT) [2]. The GAT’s main objective is to provide a single, easy-to-use Grid API, while
hiding the complexity and diversity of the actual Grid resources and their middleware layers.
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The GAT provides abstractions for computers, data, and application instances (jobs running
on a VO).

In this paper, we outline a motivating use case of a simple Grid-enabled application and its
required operations on Grid resources, along with GAT-based code examples (Section 2). In
Section 3, we briefly summarize the whole GAT API. Section 4 outlines the GAT architecture
and its current implementations. We conclude in Section 5.

2 A Day in the Life of a Grid-enabled Application

In this section we present a simple, but typical, Grid-enabled application. On startup, it
reads some input data from a file, then does some computation, and writes the output back
to a file. In addition, our application migrates to another machine afterwards. The input
data file is stored somewhere in the Grid, so it has to be found by the application before it
can be read. Likewise, our application has to make sure that it can find its output file again,
after having migrated to another machine. For simplicity of presentation, our application
is a toy counter: the data set consists of a single number and the “computation” merely
increments this value. Figure 1 outlines the application structure. In the following, we will
walk through the code and show how such an application can easily be written with the
GAT API.

Main

Read Data

Compute

Write Data

Lookup Logical File

Create Local Replica

Read File

Migrate Self

Write File

Create Logical File

Advertise Logical File

Self = Job Identity

Self.Migrate

Figure 1: Structure of the Grid-enabled counter application.

2.1 The Main Function

The main function implements the operation sequence from Figure 1, extended by a termi-
nation condition. For simplicity of presentation, all error handling is done here as well. The
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class MigrateApp (not shown) is a regular C++ class. Besides the application-specific code,
it contains the counter value and the GAT::Context, used for GAT operations.

int main(int argc, char *argv[]) {
try {

// initialize the GAT
GAT::Self::SetExecutionEnvironment(argc, argv);

// initialize application
bool finished = false;
MigrateApp app;

app.ReadCounter(); // read the input data
finished = app.Compute(); // increment the counter
app.WriteCounter(); // write the output data
app.MigrateSelf(); // migrate this app
app.Terminate(finished); // clean up

}
catch(GAT::Exception const &e) {

// a GAT specific error was catched
std::cerr << e.what() << std::endl; // print out error message
return e.GetResult();

}
catch(std::exception const &e) {

// a general error was catched
std::cerr << e.what() << std::endl;
return -1;

}
return 0;

}

2.2 Read Data

Reading the input data (the current counter value) involves the discovery of the input file.
For this purpose, the GAT provides the concept of logical files which are collections of
replicas. The logical files themselves are located via a registry called the AdvertService. Our
application thus first does a lookup for the logical file. It then creates a local (physical)
replica which finally gets read. Creating a local replica is beneficial in the case of large input
files. However, directly reading a remote replica would also be possible.

Within the AdvertService directory, the information can be found using a given key,
represented via the constant ADVERT PATH. The actual, local file name is represented by
DATAFILE IN. If the logical file could not be discovered, the application starts from scratch.

#define ADVERT_PATH "/ggf12-paper/migrate_app"
#define DATAFILE_IN "gat_in.dat"

void MigrateApp::ReadCounter() {
// Lookup Logical File
GAT::LogicalFile logical_file;
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if (LookUpLogicalFile(ADVERT_PATH, logical_file)) {
// create local replica, read current counter value
GAT::FileStream local_replica = CreateLocalReplica(logical_file, DATAFILE_IN);
counter = ReadCounterFromFile(local_replica);

}
else {

// No input file exists, restart from scratch
counter = 0;

}
}

2.2.1 Lookup Logical File

The AdvertService gets a table of key/value pairs for lookup and returns a list of matching
entries. In our example, we are looking for entries that have a JOBID key, and any arbitrary
value. The AdvertService does regular-expression matching, so we specify the string ”.+”
matching all entries. We could also be more selective and use the application’s own job id.
This id could be retrieved from the GAT context and is kept constant across job migrations.
As our application expects exactly one result, it takes the first list entry. After successful
lookup, we clean up the advert service database and return the created logical file.

bool MigrateApp::LookUpLogicalFile(
char const *advert_path, GAT::LogicalFile &logical_file) {

// initialise the metadata patterns in the query parameter table
GAT::Table query;
query.Add("JOBID", ".+"); // looking for arbitrary JOBID’s

// set the pwd as the advert service search root and search for
// existing entries
GAT::AdvertService advertservice(context);
advertservice.SetPWD(advert_path);

std::list<GAT::String> paths;
GAT_IGNORE_EXCEPTION(advertservice.Find(query, paths));

// the list should contain exactly one path
if (paths.size() > 0) {

// if we got a logical file, return it to the caller
advertservice.GetAdvertisable(paths.front(), logical_file);
advertservice.Delete(paths.front()); // clean up advert service
return true;

}
return false; // no input data found

}

2.2.2 Create Local Replica

Creating a local replica is simply done by calling the respective function of the logical file
object, and by constructing a local file stream to access the newly created local file.
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GAT::FileStream MigrateApp::CreateLocalReplica(
GAT::LogicalFile logical_file, char const *local_name) {

GAT::Location local_replica_location(local_name);
logical_file.Replicate(local_replica_location);
return GAT::FileStream(context, local_replica_location);

}

2.2.3 Read File

Reading the actual counter value is done using standard input operations.

int ReadCounterFromFile(GAT::FileStream data_file) {
char buffer[10];
data_file.Read(buffer, sizeof(buffer));
return atoi(buffer); // return the counter value

}

2.3 Compute

After the counter has been incremented, the return value is set to indicate the termination
condition.

bool MigrateApp::Compute() {
++counter; // do the useful work ;-)
sleep(1);

// return true, if the application should terminate
return counter > MAX_ITERATIONS;

}

2.4 Write Data

Writing the data consists of creating a file stream, writing to it, creating a logical file with
the file stream as the only physical replica, and of advertising the new logical file. We delete
the input file, because it isn’t required anymore

#define DATAFILE_OUT "gat_out.dat"
#define REPLICA_NAME "/ggf12-paper/datafile"

void MigrateApp::WriteCounter() {
// write counter to output file
GAT::FileStream output_file(context, GAT::Location(DATAFILE_OUT),

GATFileStreamMode_Write);
WriteCounterToFile(output_file, counter);
output_file.Close();

// Add the written file to a new replica and put this into the advert service
GAT::LogicalFile logical_file = CreateLogicalFile(REPLICA_NAME, DATAFILE_OUT);
AdvertiseLogicalFile(logical_file, ADVERT_PATH);

}
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2.4.1 Write File

Writing the actual counter value is done using standard output operations.

void WriteCounterToFile(GAT::FileStream data_file, int counter) {
char buffer[10];
snprintf(buffer, sizeof(buffer), "%d\n", counter);
data_file.Write(buffer, strlen(buffer));

}

2.4.2 Create Logical File

We create a new logical file using the same name for all iterations. By overwriting the
old contents (using GATLogicalFileMode Truncate), older entries of the logical file will be
removed. (The physical files remain intact.) The new output file then gets associated with
(added to) the logical file.

GAT::LogicalFile MigrateApp::CreateLogicalFile(
char const *replica_name, char const *output_file_name) {

// create a new logical file, overwrite existing
GAT::LogicalFile logical_file(context, GAT::Location(replica_name),

GATLogicalFileMode_Truncate);

// associate physical file with logical file
GAT::File output_file(context, GAT::Location(output_file_name));
logical_file.AddFile(output_file);

return logical_file;
}

2.4.3 Advertise Logical File

For advertising the logical file, we first have to construct a table with the meta data under
which the logical file can later be found. This is the key JOBID with the value determined
by the job id of the current application, as it can be retrieved via the GAT context object
and GAT::Self. The advert path is used to select the directory inside the AdvertService.

void MigrateApp::AdvertiseLogicalFile(
GAT::LogicalFile logical_file, char const *advert_path) {

// use the job id as additional metadata for the advertised data
GAT::Job self_job(GAT::Self::GetJob(context));
GAT::Table metadata;
metadata.Add("JOBID", self_job.GetJobID().GetBuffer());

// advertise the logical file
GAT::AdvertService advertservice(context);
advertservice.Add(logical_file, metadata, advert_path);

}
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2.5 Migrate Self

For migration we first build a table, containing key/value pairs describing suitable machines
to migrate to. Then, the table is used for building a HardwareResourceDescription object,
using which a ResourceBroker can find suitable machines in our virtual organization. The
resource broker returns a list of matching machines from which we simply select the first
one. We extract the own job environment from GAT::Self and migrate the running job to
the chosen machine.

void MigrateApp::MigrateSelf() {
// build a table with requirements for the migration target machine
GAT::Table hardware_requirements;
hardware_requirements.Add("operating_system", ...);

GAT::HardwareResourceDescription hr(hardware_requirements);
GAT::ResourceBroker rb(context, "GGF12 demo VO");
std::list<HardwareResource> resources = rb.FindResources(hr);

// get own job object and migrate it to a machine found by the resource broker
GAT::Job self(GAT::Self::GetJob(context));
self.Migrate(resources.front());

}

2.6 Terminate

The purpose of the Terminate method is to clean up the used Grid resources, namely the
logical file and the physical input file. We leave the output file on purpose. Please note that
the advert service entry has already been deleted in the LookUpLogicalFile method.

void MigrateApp::Terminate(bool finished) {
GAT::LogicalFile logical_file(context, GAT::Location(REPLICA_NAME));
GAT::File input_file(context, GAT::Location(DATAFILE_IN));

// remove file from replica catalog
logical_file.RemoveFile(input_file);

// delete physical input file
input_file.Delete();

if (finished) {
// clean up replica set, when finished
logical_file.RemoveFile(GAT::File(context, GAT::Location(DATAFILE_OUT)));
logical_file.Remove();

}
}
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3 Summary of the GAT API

The sample application has demonstrated the use of the GAT API. However, it does not
touch all its aspects and functionalities. In this section, we will summarize the whole GAT
API which is organized in so-called subsystems. More detailed API descriptions can be found
in [2, 3].

GAT Base Subsystem
The GAT base subsystem defines general objects and methods, supporting interaction with
the GAT engine.

GAT::Object Is inherited by all other objects of the API;
provides common functionality.

GAT::Self Represents the running job.
GAT::Context Represents the current execution environment.
GAT::Status Used for error handling.
GAT::Exception

Data Management Subsystem
The data management subsystem covers three areas: interprocess communication, remote
file access, and file management.

GAT::Endpoint, Used to establish a connection between two applications
GAT::Pipe and to transfer information over this connection.

GAT::File, Used to access and operate on remote files using
GAT::FileStream a file format-independent protocol.

GAT::LogicalFile Management of and access to replica sets on the Grid.

Resource Management Subsystem
The resource management subsystem deals with Grid (compute) resources. It provides func-
tions for both resource discovery and job management. The complete scheme for job descrip-
tions within GAT is designed to support mappings to the job description languages typically
used on Grids.

GAT::Job Represents an instance of a GAT job, used to control job
status and query job properties.

GAT::ResourceBroker Used to control job submission process on the Grid; main
object for resource discovery.

GAT::Resource Any hardware or software resource on the Grid.
GAT::Reservation Represents a resource reservation for job submission.

Event and Monitoring Subsystem
The event and monitoring subsystem allows applications to send and receive events, such as
events generated by a Grid monitoring service. The programming model for this subsystem
is based on subscriptions and callbacks. The application can subscribe to events of a certain
type or “metric”, and register callbacks to handle incoming events of this type. It can also
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create its own events with self-defined metrics, which makes those events available for other
applications on the Grid.

GAT::Metric Description of the event to be handled.
GAT::Request Description of a request for information or a request for

operation.
GAT::MetricEvent Represents the event which is passed to an application.

Information Management Subsystem
The GAT’s connection to a generic Grid information system is the information management
subsystem which is represented primarily by the GAT::AdvertService object. Such a service
is a persistent, external repository for any information which may be useful outside the ap-
plication itself. It helps to transfer information across job life times and process boundaries,
from one application to another.

GAT::AdvertService Represents a hierarchical, remote information namespace,
where GAT::Object ’s may be stored. Provides a means for
annotating the stored GAT::Object ’s with arbitrary meta
data, which may be used to discover those objects later.

Utility Subsystem
The GAT API contains a number of classes providing general, convenience, and/or utility-
oriented methods. The implementation of this subsystem is highly language-dependent and
uses language-specific data structures wherever possible. One example:

• The C API provides GATList, GATTable and several string-related utility functions.

• The C++ API uses the std::list<>, std::map<> and std::string templates.

• The Python API exposes these objects as lists ([...]) and dictionaries ({...}).

• The Java API uses java.util.List and java.util.Map from the standard collection frame-
work.

4 GAT Architecture and Implementations

This section briefly outlines the GAT architecture and its current implementations. A more
detailed presentation can be found in [2]. Figure 2 shows the GAT architecture. It mainly
distinguishes between user space and capability space. In user space runs the application code
that has been programmed using the GAT API. The GAT engine is a lightweight layer that
dispatches GAT API calls to service invocations via GAT adaptors. Adaptors are specific
to given services and hide all service-specific details from the GAT. A GAT engine typically
loads adaptors dynamically at runtime, whenever a certain service is needed. The GAT
functionality is grouped into various, so-called subsystems (see Section 3). An engine may
load multiple adaptors implementing the same subsystem at the same time. For example,
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one adaptor can give access to a local file system while another one gives access to files via
GridFTP [5], and a third one is using a replica catalog [7].

While application and GAT together run in user space, the services are executed in the
capability space, which can be distributed across the machines of a VO, including the one
running the application. The capability space consists of the resources themselves, and the
middleware providing services to access them.

Application

Application Layer

GAT Layer

U
ser S

pace
C

apability S
pace

GAT API

GAT Engine

GAT Adaptors

Globus 4.z

Unicore

Globus 2.x

Globus 3.y Sun Grid Engine Services
GridLab

Figure 2: The GAT framework software architecture.

The GAT API has been designed using an object-based approach, trying to avoid de-
pendencies on any specific language binding [3]. However, for each supported application
programming language, a complete GAT layer has to be provided, consisting of API, engine,
and adaptors. In this section, we briefly describe the current GAT implementations. Besides,
we are planning to add further languages, like Fortran 90, Perl, command line shells, etc.

4.1 C Implementation

The currently most advanced version of the GAT is implemented in the C programming
language, mainly for portability reasons. The default installation of the C GAT engine
includes a full set of adaptors to machine-local resources. Additionally, many adaptors to
Globus V2.4, Globus V3.2 and to different Gridlab services are available. Not only the
GAT engine, which exposes the C-interface to the GAT API (see Section 3), but also the
corresponding adaptors are written in C.
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The C GAT engine consists of three logical parts. The GAT API functions map calls
made by the application to the corresponding, adaptor-provided functionality. The adaptor
management subsystem is responsible for loading available adaptors, managing their lifetime,
and maintaining a capability registry that allows a GAT API subsystem to select the right
adaptor. Each loaded adaptor registers its capabilities (groups of related functionality)
with the capability registry. Every capability has a set of meta data attached (so-called
“preferences”), allowing further control within the adaptor selection. The utility objects and
functions provide utility functions for data structures (e.g., for lists and tables), as well as
error handling and reporting.

The GAT engine exposes two different interfaces, the GAT API exposed to the applicaton,
and the CPI (the Capability Provider Interface) to the adaptors. The CPI mirrors most of
the GAT API functionality. It is the key for enabling dynamic adaptor binding. Every
adaptor is a runtime library, and gets dynamically loaded at application startup time, based
on given configuration information. Since the GAT engine is able to load several adaptors
providing the same CPI, it has to negotiate with the existing adaptors to select the right
one to serve a given API call.

4.2 C++ Implementation

Based on the existing C implementation, providing GAT functionality for C++ applications
is easy. In fact, our C++ GAT merely defines a truly object-oriented API. Its classes are
merely a wrapper to the C GAT engine. Therefore, all the existing C adaptors may be
reused. The C++ binding allows to write code in a very clean and concise way.

4.3 Python Implementation

For providing access to the GAT API from within a scripting language, we have implemented
an object-oriented GAT interface in Python. This is useful for rapid prototyping, as in other
scripting environments, where a dynamic language binding is a useful alternative. Like with
C++, the Python GAT is implemented as a wrapper around the C implementation.

4.4 Java Implementation

We are currently implementing a Java GAT. Java has several properties making it attractive
for Grid computing, notably it’s “write-once, run anywhere” portability. Java code can run
without recompilation on any Grid site that has a JVM installed. Like with C++, the Java
GAT is truly object-oriented; Java’s exception handling mechanism considerably simplifies
error-handling code.

The structure of the Java GAT closely resembles that of the C GAT. There is the Java
GAT API for applications, mirrored by a CPI for adaptors. The Java GAT engine implements
the dispatching of API calls to the adaptors. Although it would be possible to re-use adaptors
written for the C GAT via the Java Native Interface (JNI), we chose to pursue a pure Java
implementation to retain Java’s portability. This way, applications only need the GAT
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library (a jar file) and the adaptors (also jar files). No recompilation or configuration is
necessary. We currently have adaptors for local operations and for the GridLab services.

An interesting property of the Java GAT is that it uses late binding: the actual adaptor
to execute a GAT operation is selected only when the operation is invoked, and not when
the corresponding GAT object is created. Late binding is slightly more robust and flexible
than static binding. For example, if a file is to be copied from site A to the sites B and C,
different transfer mechanisms can be used for the transfer from A to B and for the transfer
A to C. For example, the first transfer could use the GridLab Data-Movement service, while
the second uses GridFTP. Late binding also simplifies adaptor writing. For example, a file
adaptor might only support a highly optimized implementation of file.copy, but no file.delete
operation. The Java GAT engine will automatically fall back to another adaptor that can
do the delete. This feature is convenient, as many Grid services do not provide the complete
functionality that is offered by the GAT API. The Java GAT will then automatically use
multiple services to implement the functionality of a single GAT object.

5 Conclusion

While a variety of Grid technologies are currently maturing, applications are still lacking
simple and high-level programming interfaces. In this paper, we have demonstrated a simple,
Grid-enabled application and its required, Grid-related operations. We have shown how the
GAT API can provide a suitable platform for such applications. The GAT API has been
designed to be simple and independent of both programming languages and Grid middleware
systems. We expect the API to evolve along with the progress being made with GGF’s SAGA
research group [6].

Currently, the GAT has been implemented for C, C++, Python, and Java. Further
languages bindings are under way. Currently available adaptors use local resouces, Globus
2.4 or 3.2, Unicore, as well as GridLab’s services for data management, resource brokering and
information management. The GAT API and its implementations are open-source software.
They can be downloaded from www.gridlab.org.
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