
Rese arch FEA TURE

computer	54 Published by the IEEE Computer Society 0018-9162/10/$26.00 © 2010 IEEE	

on such distributed systems.3 In addition, research hasn’t
adequately addressed the problems that can arise from
combining multiple unrelated systems to perform a single
distributed computation. This is a likely scenario, as many
scientific users have access to a wide variety of systems.

In itself, each cluster, grid, and cloud provides well-
defined access policies, full connectivity, and middleware
that allows easy access to all its resources. Such systems
are often largely homogeneous, offering the same software
configuration or even the same hardware on every node.
Combining several systems, however, is apt to result in a
distributed system that is heterogeneous in software, hard-
ware, and performance. This may lead to interoperability
problems. Communication problems are also probable
due to firewalls or network address translation (NAT),
or simply because the geographic distance between the
resources makes efficient communication difficult. More-
over, a combination of systems is often dynamic and faulty,
as compute resources can be added or removed or even
crash at runtime. The use of inherently heterogeneous and
unreliable resources such as desktop grids, stand-alone
machines, and mobile devices exacerbates these issues.

T
he past two decades have seen tremendous
progress in the application of high-perfor-
mance and distributed computer systems in
science and industry. Among the most widely
used systems are commodity compute clus-

ters, large-scale grid systems, and, more recently,
economically driven computational clouds and mobile
systems. In the last few years, researchers have inten-
sively studied such systems with the goal of providing
transparent and efficient computing, even on a world-
wide scale.1

Unfortunately, current practice shows that this goal re-
mains out of reach.2 For example, today’s grid systems are
mostly exploited to run coarse-grained parameter-sweep
or master-worker programs. For more complex applica-
tions, grid usage is generally limited to straightforward
scheduling systems that select a single site for execution.
This is unfortunate, as many scientific and industrial ap-
plications—including astronomy, multimedia, medical
imaging, and biobanking—would benefit from distributed
compute resources. Optical networking advances also
enable a much larger class of applications to run efficiently

The use of parallel and distributed computing systems is essential to
meet the ever-increasing computational demands of many scientific and
industrial applications. Ibis allows easy programming and deployment
of compute-intensive distributed applications, even for dynamic, faulty,
and heterogeneous environments.

	 Henri E. Bal, Jason Maassen, Rob V. van Nieuwpoort, Niels Drost,
	 Roelof Kemp, Timo van Kessel, Nick Palmer, Gosia Wrzesi ska, Thilo Kielmann,
	 Kees van Reeuwijk, Frank J. Seinstra, Ceriel J.H. Jacobs, and Kees Verstoep
	 Vrije Universiteit, Amsterdam

Real-World
Distributed
Computing
with Ibis

r8maa.indd 54 8/18/10 10:48 AM

55AUGUST 2010

that offer support for fault tolerance and malleability—
adding and removing machines on the fly—and that
automatically circumvent any connectivity problems.
The deployment system should allow for easy deploy-
ment and management of applications, irrespective of

REAL-WORLD DISTRIBUTED COMPUTING
An ad hoc collection of compute resources that

communicate with one another via some network
connection constitutes a real-world distributed
system, as shown in Figure 1. Writing applications
for such systems is notoriously difficult, as applica-
tion programmers must take into account all of the
problems described above. Deploying the applica-
tions is equally hard because each site is likely to
have its own middleware and access policies.

The uptake of high-performance distributed
computing can be enhanced if these complexities
are abstracted away by a single software system
that applies to any real-world distributed system.
Conceptually, such a system should offer two
logically independent subsystems: a programming
system, offering functionality traditionally associ-
ated with programming languages and communication
libraries; and a deployment system, offering functionality
associated with operating systems. The programming
system should allow applications to be not only effi-
cient but also robust by providing programming models

Figure 1. A “worst-case” real-world distributed system consisting
of clusters, grids, and clouds as well as desktop grids, stand-alone
machines, and mobile devices. Clusters, grids, and clouds are well-
organized subsystems that use their own middleware, programming
interfaces, access policies, and protection mechanisms.

Clouds Desktop grids

GridsClusters

Stand-alone machinesMobile devices

Figure 2. Ibis system architecture. The white boxes belong to Ibis; the gray ones represent third-party software.

r8maa.indd 55 8/18/10 10:48 AM

Rese arch Fe ature

computer	56

where they run. It should also provide support for dis-
tributed file management, user authentication, resource
management, and interoperability between different
middleware systems.

To serve the vast majority of users, ranging from system
and application-level software developers to application
users, the subsystems should follow a layered approach,
with programming interfaces defined at different abstrac-
tion levels, each tailored to different users’ needs.

IBIS ARCHITECTURE

Researchers are extensively studying high-performance
and distributed computing tools and mechanisms in the
field, but no existing single software system covers the full
spectrum. Ibis aims to address this deficiency with an in-
tegrated system based on a straightforward, user-oriented
philosophy: real-world distributed applications should be
developed and compiled on a local workstation, and de-
ployed from there onto the distributed system.

This “write-and-go” philosophy requires minimal as-
sumptions about the execution environment. To enable
applications to run in a heterogeneous system, Ibis ex-
ploits Java virtual machine technology. As Figure 2 shows,
the Ibis system architecture follows the dual-subsystem
approach. The programming system provides a range
of programming models, all implemented on the same
communication library: the Ibis Portability Layer (IPL).
The deployment system contains a GUI and a library for
deploying and managing applications, implemented on a
middleware interoperability layer: the Java Grid Applica-
tion Toolkit (JavaGAT).

Ibis is modular and flexible, allowing users to select
the functionality they require from either Ibis or other
software. For example, applications can use the high-
level programming models and the deployment GUI, but
they can also be implemented directly on the IPL and
JavaGAT. Likewise, applications are free to use only one
of the two subsystems. For example, the deployment
system can be used to deploy C/MPI and other non-Java
applications.

Ibis is fully open source and used in various real-world
distributed applications such as multimedia computing,
spectroscopic data processing (FOM Institute for Atomic
and Molecular Physics), human brain-scan analysis (Vrije
Universiteit Medical Center), automatic grammar learn-
ing, and many others. In addition, Ibis has been used to
build high-level programming systems, including a work-
flow engine for astronomy applications in D-Grid (Max
Planck Institute for Astrophysics), the GridChem gate-
way for TeraGrid, and a grid file system (University of
Erlangen-Nürnberg).

Ibis has also been applied to enhance existing systems
such as ProActive (INRIA), Jylab (University of Patras), and
the GRID superscalar framework (Barcelona Supercom-
puter Center). The “Related Work” sidebar describes some
of these systems and how they differ from Ibis.

Ibis has won prizes in numerous international com-
petitions including the International Scalable Computing

Related Work

I bis provides a dual-subsystem solution for real-world dis-
tributed programming and deployment. In contrast, most

existing systems focus on one of the two subsystems.1

ProActive,2 like Ibis, follows a logical dual-subsystem approach.
It contains several grid programming models and provides grid
deployment and virtualization components. Whereas the Ibis IPL is
small and highly efficient, the core of ProActive is more heavy-
weight. ProActive further requires the user to handle all connection
setup problems and select the appropriate middleware.

Phoenix3 consists of a general message-passing model that
allows compute nodes to be added to and removed from a running
application. It also deals with some of the connection setup prob-
lems solved by SmartSockets. Phoenix provides easy-to-use tools
that handle common grid operations. However, it can’t automati-
cally exploit different grid middleware systems simultaneously.

The GRID superscalar framework4 supports a certain degree of
automatic grid deployment. It consists of an application program-
ming interface, a runtime system, and a grid deployment center. It
automatically converts a sequential application composed of tasks
into a parallel application, allowing independent tasks to be exe-
cuted on different grid resources.

The GridRPC specification5 defines an API for remote procedure
calls in grids. Two reference implementations exist, Ninf-G and Net-
Solve/GridSolve. In contrast to the JavaGAT, the binding of grid
middleware to application objects is entirely static.

The Open Grid Forum is currently standardizing the next-gener-
ation grid programming toolkit: a Simple API for Grid Applications
(SAGA).6 The goal is to provide a simple, uniform, standard pro-
gramming interface for distributed applications, with consistent
semantics and style for different grid functionalities. Notably,
SAGA’s Java Reference Implementation is implemented directly on
top of the JavaGAT.

References
1.		 I. Foster and C. Kesselman, eds., The Grid 2: Blueprint of a New

Computing Infrastructure, 2nd ed., Morgan Kaufmann, 2003.
2.		 L. Baduel et al., “Programming, Deploying, Composing, for the

Grid,” Grid Computing: Software Environments and Tools, J.C.
Cunha and O.F. Rana, eds., Springer, 2006, pp. 205-229.

3.		 K. Taura et al., “Phoenix: A Parallel Programming Model for
Accommodating Dynamically Joining/Leaving Resources,”
Proc. 9th ACM SIGPLAN Symp. Principles and Practice of Parallel
Programming (PPoPP 03), 2003, ACM Press, pp. 216-229.

4.		 R. Badia et al., “Programming Grid Applications with GRID
Superscalar,” J. Grid Computing, June 2003, pp. 151-170.

5.		 K. Seymour et al., “Overview of GridRPC: A Remote Procedure
Call API for Grid Computing,” Proc. 3rd Int’l Workshop Grid Com-
puting, LNCS 2536, Springer, 2002, pp. 274-278.

6.		 T. Goodale et al., “SAGA: A Simple API for Grid Applications,
High-Level Application Programming on the Grid,” Computa-
tional Methods in Science and Technology, vol. 12, no. 1, 2006,
pp. 7-20.

r8maa.indd 56 8/18/10 10:48 AM

57AUGUST 2010

addresses. The SmartSockets library automatically solves
such problems using existing and novel solutions, includ-
ing reverse connection setup, overlay routing, and Secure
Shell (SSH) tunneling.

SmartSockets creates an overlay network with a set
of interconnected support processes called hubs. Em-
ploying gossiping techniques, the hubs discover which
other hubs they can connect to, using SSH tunneling
if necessary. This overlay network can be used to help
solve connectivity problems or route the application’s
network traffic.

When creating a connection, SmartSockets initially tries
to set up a regular (direct) TCP connection. If this fails, it
uses the overlay network to send a request for a reverse
connection setup to the target machine. If this also fails,
the library creates a virtual connection that uses over-

lay routing. SmartSockets also handles machines with
multiple network addresses via multihoming. During
connection setup, it considers all source and target ad-
dresses. It uses heuristics to determine the combinations
most likely to work and then tries these first. Extra identity
checks in the procotol ensure that it reaches the correct
target machine. A worldwide experiment5 demonstrated
the library’s effectiveness: in 30 realistic connectivity sce-
narios, SmartSockets was always capable of establishing
a connection, while traditional sockets only worked in six
of these.

Ibis programming models

Besides the IPL, Ibis provides a range of programming
models, from low-level message passing to high-level di-
vide-and-conquer parallelism. It implements the following
programming models using the IPL:

•	 MPJ, the MPI binding for Java;
•	 Satin, a divide-and-conquer model;6
•	 RMI, object-oriented remote procedure call;
•	 group method invocation (GMI), a generalization of

RMI to group communication, including multicast and
all-to-all communication;

•	 Maestro, a fault-tolerant and self-optimizing dataflow
model;7 and

•	 Jorus, a programming model for data-parallel multi-
media applications.8

Challenge at CCGrid 2008 (for scalability), the International
Data Analysis Challenge for Finding Supernovae at IEEE
Cluster/Grid 2008 (for speed and fault tolerance), and the
Billion Triples Challenge at the 2008 International Seman-
tic Web Conference (for general innovation).

IBIS PROGRAMMING SYSTEM

The Ibis programming system provides many program-
ming models, all implemented on top of the IPL.

IPL

The IPL is a Java-based communication library that
provides robust communication and resource-tracking
mechanisms. It typically ships with the application as jar
(Java archive) files, so no additional preinstalled libraries
need be present at any destination machine.

The library provides a range of communication primi-
tives including those for point-to-point and multicast
communication. It supports streaming communication,
which is especially important in high-latency environments
as this allows overlapping of serialization, communication,
and deserialization of data. The IPL avoids copying over-
head as much as possible and uses bytecode rewriting to
generate efficient serialization and deserialization func-
tions. Consequently, it can significantly outperform Sun
remote method invocation (RMI) communication and even
C/MPI, in particular for complex data structures.4

The IPL has been designed specifically for real-world
distributed environments where resources can be added or
removed dynamically. It incorporates a mechanism, Join-
Elect-Leave (JEL), that tracks which resources are being
used and what roles they have. JEL is based on the concept
of signaling: it notifies the application or runtime system
when resources are added to or removed from the compu-
tation. To select resources with a special role, it includes
elections. JEL thus provides the building blocks for fault
tolerance and malleability by giving an up-to-date view
of available resources, allowing applications and runtime
systems to respond to changes when required.

A number of pure-Java IPL implementations are avail-
able using the Ibis SmartSockets library, TCP (Transmission
Control Protocol), UDP (User Datagram Protocol), and
Bluetooth. In addition, we provide implementations using
specialized non-Java libraries, such as MX (Myrinet) or MPI.
The SmartSockets, TCP, and UDP implementations also
work on the Android smartphone platform.

SmartSockets

Running a parallel application on distributed resources
is complicated due to connectivity problems that make
direct communication difficult or impossible. Incoming
traffic at a node may be restricted by a firewall or NAT. The
presence of multiple network interfaces and IP addresses
can cause addressing problems, as can private network

The IPL has been designed
specifically for real-world distributed
environments where resources can
be added or removed dynamically.

r8maa.indd 57 8/18/10 10:48 AM

Rese arch Fe ature

computer	58

technique dynamically forwards application calls on the
JavaGAT API to one or more middleware adaptors that
implement the requested functionality. Selection occurs
at runtime and uses policies and heuristics that auto-
matically select the best available middleware, enhancing
portability. If an operation fails, the intelligent-dispatch-
ing feature will automatically select and dispatch the API
call to an alternative middleware. This process continues
until a middleware successfully performs the requested
operation.

Although such flexibility comes at the cost of some run-
time overhead, this is often negligible compared to the
cost of the operations themselves. For instance, a Globus
job submission takes several seconds, while the overhead
introduced by the JavaGAT is less than 10 ms. However, the
additional semantics of the high-level API can introduce
some overhead. For instance, if a file is copied, the JavaGAT
first checks if the destination already exists or is a direc-
tory. These extra checks cost time because they require
remote operations.

The JavaGAT API isn’t the lowest common denominator
of the underlying middleware APIs. Instead, the JavaGAT
offers rich default functionality and can combine features
of multiple middleware layers with its intelligent-dispatch-
ing technique. Consider the following real code example,
which copies remote files and entire directories between
sites:

 1 import org.gridlab.gat.*;

 2 import org.gridlab.gat.io.File;

 3

 4 public class Copy {

 5 public static void main(String [] args)
 throws Exception {

 6 GATContext context = new
 GATContext();

 7 URI source = new URI(args[0]);

 8 URI dest = new URI(args[1]);

 9

10 File file = GAT.createFile(context,
 source); // Create a GAT file

11

12 file.copy(dest); // The actual file
 or directory copy

13

14 GAT.end(); // Shutdown the JavaGAT

15 }

16 }

This code is middleware independent and demonstrates
the JavaGAT API’s power; equivalent Globus code would
take hundreds of lines. The JavaGAT allows programmers

The higher-level programming models’ runtime sys-
tems exploit the IPL and JEL to address many distributed
programming difficulties. A good example is Satin, which
uses JEL resource-tracking mechanisms to make applica-
tions malleable and fault tolerant. For example, Satin can
reexecute subtasks if a processor crashes. Also, it can dy-
namically schedule subtasks on new machines that become
available during the computation, and it can migrate sub-
tasks if machines leave the computation. Satin’s scheduler
also does locality optimizations: divide-and-conquer pro-
grams are inherently hierarchical and can therefore be
mapped efficiently onto a hierarchical wide-area system
such as a grid. Likewise, the scheduler does latency hiding;
if it needs to retrieve new jobs from distant machines, it will
do that asynchronously, without blocking.6

Satin thus makes these problems transparent to the user
and application. Applications written with a lower-level
programming model like the IPL must deal with such prob-
lems explicitly, but Ibis gives them the necessary low-level
mechanisms to do so.

IBIS DEPLOYMENT SYSTEM

The Ibis deployment system consists of a software stack
and a graphical user interface for deploying and manag-
ing applications. The GUI is implemented on top of the
JavaGAT.

JavaGAT

Writing distributed applications using existing mid-
dleware APIs is a daunting task. APIs change frequently
and are often incomplete and too low-level.9 The JavaGAT
provides a high-level API that facilitates development of
complex applications. This API is object oriented and
offers high-level primitives for access to the distributed
system, independent of the middleware that implements
this functionality. The primitives provide access to remote
data, start remote jobs, and support monitoring, steering,
user authentication, resource management, and storing of
application-specific data. The JavaGAT uses an extensible
architecture, wherein adaptors (plugins) provide access to
the different types of middleware.

The JavaGAT also uses intelligent dispatching to integrate
multiple middleware systems with different and incom-
plete functionality into a single, consistent system. This

The JavaGAT uses intelligent
dispatching to integrate multiple
middleware systems with different
and incomplete functionality into a
single, consistent system.

r8maa.indd 58 8/18/10 10:48 AM

59AUGUST 2010

user can add resources to a running application by simply
providing contact information such as a host address and
user credentials. This information can be reused in later
experiments.

APPLICATION EXAMPLE:
MULTIMEDIA CONTENT ANALYSIS

We illustrate Ibis with an application that performs real-
time recognition of everyday objects. Images produced by
a camera are processed by an advanced algorithm that
extracts feature vectors from the video data, which de-
scribe local properties like color and shape. To recognize
an object, the application compares the object’s feature
vectors to ones stored earlier and annotated with a name.

As this is a compute-intensive problem with soft real-
time constraints, a large distributed system performs the
analysis.8 A data-parallel application running on a single
site processes a single video frame. Calculations over con-
secutive frames are distributed over different sites in a
task-parallel manner.

The initial application was written in C++/MPI, using
TCP and SSH tunnels for wide-area communication. This
program used manual deployment, was vulnerable to
connectivity problems and partial failures (each caus-
ing the entire application to fail), and was frustrating
to write and maintain on heterogeneous hardware and
middleware. Step by step, we replaced all its components
with an implementation in Java and Ibis. With the new
program, the IbisDeploy GUI makes deployment easy,
SmartSockets automatically corrects the connectivity
problems, and the JavaGAT accommodates the middle-
ware heterogeneity. We provided robustness by adding
fault tolerance and malleability support to the application
using the IPL-provided mechanisms.

The resulting application is compiled on a desktop ma-
chine and easily deployed onto a distributed system. It
concurrently uses up to 20 clusters, commonly employ-
ing a total of 500 to 800 cores, and a mix of different
middleware. The application even runs on the Android
smartphone platform, allowing distributed object recogni-
tion from mobile devices.

EXPERIMENTAL EVALUATION

To evaluate Ibis’s functionality and performance, we
carried out a series of experiments with the multimedia

to ignore system-level peculiarities and instead focus on
domain-specific problems.

The JavaGAT doesn’t provide a new user/key manage-
ment infrastructure. Rather, its security interface provides
generic functionality to store and manage security in-
formation such as usernames and passwords. Also, the
JavaGAT provides a mechanism to restrict the availability
of security information to certain middleware systems or
remote machines. Currently, the JavaGAT supports many
different middleware systems such as Globus, UNICORE
(Uniform Interface to Computing Resources), gLite, PBS
(Portable Batch System), SGE (Sun Grid Engine), KOALA
(a co-allocating grid scheduler), SSH, GridSAM, Amazon
EC2 (Elastic Compute Cloud), ProActive, GridFTP, HTTP,
SMB (Server Message Block)/CIFS (Common Internet File
System), and Zorilla.

Zorilla

Most existing middleware APIs lack coscheduling
capabilities and don’t support fault tolerance and malle-
ability. To overcome these problems, Ibis provides Zorilla,
a lightweight P2P middleware that runs on any real-world
distributed system. In contrast to traditional middleware,
Zorilla has no central components and is easy to set up
and maintain. It supports fault tolerance and malleability
by implementing all functionality using P2P techniques.
If resources used by an application are removed or fail,
Zorilla can automatically find replacement resources. It
was specifically designed to easily combine resources in
multiple administrative domains.

To create a resource pool, a Zorilla daemon process
must be started on each participating machine. Also, each
machine must receive the address of at least one other
machine to set up a connection. Jobs can be submitted to
Zorilla using the JavaGAT or, alternatively, using a com-
mand-line interface. Zorilla then allocates the requested
number of resources and schedules the application, taking
user-defined requirements like memory size into account.
The combination of virtualization and P2P techniques thus
makes it very easy to deploy applications with Zorilla.

IbisDeploy

Many applications use the same deployment process.
Therefore, IbisDeploy provides a simple and generic API
and GUI that can automatically perform commonly used
deployment scenarios. For example, when a distributed
Ibis application is running, IbisDeploy starts the Smart-
Sockets hub network automatically. It also automatically
uploads the program codes, libraries, and input files (pre-
staging) and automatically downloads the output files
(poststaging).

The IbisDeploy GUI, shown in Figure 3, lets a user start,
monitor, and stop applications in an intuitive manner and
run multiple distributed applications concurrently. The

IbisDeploy provides a simple
and generic API and GUI that can
automatically perform commonly
used deployment scenarios.

r8maa.indd 59 8/18/10 10:48 AM

Rese arch Fe ature

computer	60

for task-parallel processing of subsequent images.
We used IbisDeploy to start a client on a local machine

and to deploy four data-parallel multimedia servers, each
on a different DAS-3 cluster (using 64 machines in total).
All code was implemented in Java/Ibis, compiled on the
client machine, and deployed directly from there. No ap-
plication software or libraries were initially installed on
any other machine.

Using a single multimedia server resulted in a process-
ing rate of approximately 1.2 frames per second. The
simultaneous use of two and four clusters led to linear
speedups at the client side of 2.5 and 5 frames per second,
respectively. Adding additional clusters such as an EC2
cloud, a local desktop grid, and a local stand-alone ma-
chine improved the frame rate even further. We thereby
obtained a worldwide system using a variety of grid mid-
dleware—Globus, Zorilla, and SSH—simultaneously from
within a single application.

The SmartSockets hub network circumvented a range
of connectivity problems between the sites. Many sites
have a firewall, and the Japan and Australia clusters can
only be reached using SSH tunnels. In addition, almost all
of the applied resources have more than one IP address.

application (see www.cs.vu.nl/ibis/demos.html for a video
demonstration). We used the Distributed ASCI Supercom-
puter 3 (DAS-3), a five-cluster distributed grid system in
the Netherlands; additional clusters in Chicago, Japan (the
Chiba and Tsukuba InTrigger sites), and Sydney; the US East
Amazon EC2 cloud system; and a desktop grid and single
stand-alone machine, both in Amsterdam. Together, these
machines comprised a real-world distributed system.

We first compared the performance of Java/Ibis and
C++/MPI implementations of the data-parallel process-
ing of a single video frame. On a single machine the Java
program is about 12 percent slower than the C++ version,
which is within acceptable limits for a “compile once, run
everywhere” application executing inside a virtual ma-
chine. On an 80-node DAS-3 cluster with the Myri-10G
(Myricom 10-Gbit Ethernet) local network, the Java/Ibis and
C++/MPI programs have very similar speedup (scalability)
and communication overheads.

In the distributed version of our application, the data-
parallel analysis is wrapped in a multimedia server. Client
applications can upload an image or video frame to such a
server and receive back a recognition result. When multiple
servers are available, a client can use these simultaneously

Figure 3. The IbisDeploy GUI lets users load applications and resources (top middle) and keep track of running processes (bottom
half). The top left of the figure shows the locations of available resources; the top right shows the SmartSockets network consisting of
hubs and compute nodes. A video presentation is available at www.cs.vu.nl/ibis/demos.html.

r8maa.indd 60 8/18/10 10:48 AM

61AUGUST 2010

I
bis drastically reduces the effort needed to create
and deploy applications for real-world distributed
systems that consist of ad hoc combinations of
clusters, grids, clouds, desktop grids, stand-alone
machines, and even mobile devices. To achieve this,

it integrates solutions to many fundamental distributed
computing problems in a single modular programming
and deployment system, written entirely in Java.

An important lesson learned from Ibis is that resource-
tracking functionality is as essential as communication
functionality. While communication is among the basic
capabilities of any distributed programming system, Ibis
is one of the few systems that support resource tracking
to implement fault tolerance and malleability. A second
important lesson is that direct, two-way connectivity
is rare in a real-world distributed system. However,
SmartSockets achieves this in a transparent manner.
Another lesson is that, for portability, it’s not advisable
to implement applications using one particular middle-
ware system but to use a middleware-independent API,
such as the JavaGAT, instead. Ibis also tries to make dis-
tributed programming easier by providing high-level
programming models on top of these mechanisms. Satin,
for example, makes fault tolerance and malleability
transparent and automatically performs locality and
latency-hiding optimizations.

Ibis can be downloaded for free at www.cs.vu.nl/ibis.

References
	 1.	 I. Foster, C. Kesselman, and S. Tuecke, “The Anatomy of

the Grid: Enabling Scalable Virtual Organizations,” Int’l J.
High-Performance Computing Applications, Aug. 2001, pp.
200-222.

	 2.	 D. Butler, “The Petaflop Challenge,” Nature, 5 July 2007,
pp. 6-7.

	 3.	 K. Verstoep et al., “Experiences with Fine-Grained Distrib-
uted Supercomputing on a 10G Testbed,” Proc. 2008 8th
IEEE Int’l Symp. Cluster Computing and the Grid (CCGrid
08), IEEE CS Press, 2008, pp. 376-383.

	 4.	 R.V. van Nieuwpoort et al., “Ibis: A Flexible and Efficient
Java-Based Grid Programming Environment,” Concurrency
and Computation: Practice and Experience, June 2005, pp.
1079-1107.

	 5.	 J. Maassen and H.E. Bal, “SmartSockets: Solving the Con-
nectivity Problems in Grid Computing,” Proc. 16th Int’l
Symp. High Performance Distributed Computing (HPDC
07), ACM Press, 2007, pp. 1-10.

	 6. 	 R.V. van Nieuwpoort et al., “Satin: A High-Level and Effi-
cient Grid Programming Model,” ACM Trans. Programming
Languages and Systems, Mar. 2010, article no. 9.

	 7.	 C. van Reeuwijk, “Maestro: A Self-Organizing Peer-to-Peer
Dataflow Framework Using Reinforcement Learning,”
Proc. 18th ACM Int’l Symp. High Performance Distributed
Computing (HPDC 09), ACM Press, 2009, pp. 187-196.

	 8.	 F.J. Seinstra et al., “High-Performance Distributed Video
Content Analysis with Parallel-Horus,” IEEE MultiMedia,
Oct. 2007, pp. 64-75.

SmartSockets automatically selected the appropriate ad-
dresses when two sites communicated. Without it, only
the DAS-3, desktop grid, and stand-alone machine would
have been reachable.

To test Ibis’s fault-tolerance mechanisms, we conducted
an experiment in which an entire multimedia server
crashed. The resource-tracking system noticed this crash
and signaled the application. The client then removed the
crashed server from the list of available servers. The ap-
plication continued to run, with the client forwarding video
frames to the remaining servers.

We also accessed the multimedia servers from an HTC
T-Mobile G1 smartphone, which used Ibis to upload pic-
tures taken with the phone’s camera and receive back a
recognition result. Running the full application on the
smartphone itself isn’t possible due to CPU and memory
limitations. Using the multimedia servers, however, the
phone obtained a result in about three seconds. This
clearly shows Ibis’s potential to open up mobile comput-
ing to compute-intensive applications. Using IbisDeploy, it’s
even possible to deploy the entire distributed application
from the smartphone itself.

OPEN PROBLEMS AND FUTURE WORK

The Ibis programming subsystem is mostly useful for
applications written in Java or languages that compile to
Java source code or bytecode. Java applications can use
non-Java libraries through the Java Native Interface and
invoke non-Java executables with the Process.exec method.
Theoretically, non-Java applications could also use the IPL
through the JNI, but this is complicated. Despite these re-
strictions, many applications have been programmed on
top of Ibis. In addition, the Ibis deployment subsystem has
been used to deploy both Java and non-Java applications.
We’re currently researching how to integrate support for ac-
celerators like GPUs, which requires access to non-Java code.

In addition, existing high-level programming models
don’t cover all application domains, leaving some appli-
cations to use the IPL directly because they must address
locality optimizations, fault tolerance, or malleability
themselves. We’re thus developing more flexible runtime
support in Ibis for a broader range of high-level program-
ming models.

Finally, the interoperability layer (JavaGAT) introduces
some runtime overhead. In practice, this overhead is in-
significant except for operations that provide additional
semantics such as remote error checks. More importantly,
the JavaGAT’s intelligent-dispatching technique leads to
more complex error reporting and debugging if opera-
tions fail. Instead of a single error message, the user now
gets one error message per middleware layer that the Ja-
vaGAT attempted to use. Visual debugging and profiling
tools should be developed to help the user address these
problems.

r8maa.indd 61 8/18/10 10:48 AM

Rese arch Fe ature

computer	62

—George Orwell, “Why I Write” (1947)

All writers are vain,
sel� sh and lazy.

(except ours!)

“
”

The world-renowned IEEE Computer Society Press is currently
seeking authors. The CS Press publishes, promotes, and
distributes a wide variety of authoritative computer science
and engineering texts. It offers authors the prestige of the
IEEE Computer Society imprint, combined with the worldwide
sales and marketing power of our partner, the scientifi c and
technical publisher Wiley & Sons.

For more information contact Kate Guillemette,
Product Development Editor, at kguillemette@computer.org.

www.computer.org/cspress

Nick Palmer is a PhD student in the Department of Computer
Science at Vrije Universiteit. Contact him at palmer@cs.vu.nl.

Gosia Wrzesinska is a senior software engineer at VectorWise,
where she works on high-performance query processing for
database engines, and received a PhD in computer science
from Vrije Universiteit. Contact her at gosia@vectorwise.com.

Thilo Kielmann is an associate professor in the Department of
Computer Science at Vrije Universiteit and a steering group
member of the Open Grid Forum and Gridforum Nederland.
Contact him at kielmann@cs.vu.nl.

Kees van Reeuwijk is a postdoctoral researcher in the Depart-
ment of Computer Science at Vrije Universiteit. Contact him
at reeuwijk@cs.vu.nl.

Frank J. Seinstra is an assistant professor in the Department
of Computer Science at Vrije Universiteit. Contact him at
fjseins@cs.vu.nl.

Ceriel J.H. Jacobs is a scientific programmer in the Department
of Computer Science at Vrije Universiteit and the maintainer
of the Ibis software. Contact him at ceriel@cs.vu.nl.

Kees Verstoep is a scientific programmer in the Department
of Computer Science at Vrije Universiteit. Contact him at
versto@cs.vu.nl.

	 Selected CS articles and columns are available for free at
	 http://ComputingNow.computer.org.

	 9.	 R. Medeiros et al., “Faults in Grids: Why Are They So Bad
and What Can Be Done About It?” Proc. 4th Int’l Workshop
Grid Computing (GRID 03), IEEE CS Press, 2003, pp. 18-24.

	10.	 R.V. van Nieuwpoort, T. Kielmann, and H.E. Bal, “User-
Friendly and Reliable Grid Computing Based on Imperfect
Middleware,” Proc. 2007 ACM/IEEE Conf. Supercomputing
(SC 07), ACM Press, 2007, article no. 34.

Henri E. Bal is a full professor in the Department of Computer
Science, where he heads the High Performance Distributed
Systems research group, at Vrije Universiteit, Amsterdam,
the Netherlands. Contact him at bal@cs.vu.nl.

Jason Maassen is a postdoctoral researcher in the Depart-
ment of Computer Science at Vrije Universiteit and one of
the original designers of the IPL and SmartSockets. Contact
him at jason@cs.vu.nl.

Rob V. van Nieuwpoort is a postdoctoral researcher in the
Department of Computer Science at Vrije Universiteit and
ASTRON (Netherlands Institute for Radio Astronomy) and one
of the original designers of the IPL and the JavaGAT. Contact
him at rob@cs.vu.nl.

Niels Drost is a postdoctoral researcher in the Department
of Computer Science at Vrije Universiteit and the original
designer of Zorilla. Contact him at niels@cs.vu.nl.

Roelof Kemp is a PhD student in the Department of Computer
Science at Vrije Universiteit. Contact him at rkemp@cs.vu.nl.

Timo van Kessel is a PhD student in the Department of Com-
puter Science at Vrije Universiteit. Contact him at timo@cs.vu.nl.

´

r8maa.indd 62 8/18/10 10:48 AM

