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on such distributed systems.3 In addition, research hasn’t 
adequately addressed the problems that can arise from 
combining multiple unrelated systems to perform a single 
distributed computation. This is a likely scenario, as many 
scientific users have access to a wide variety of systems.

In itself, each cluster, grid, and cloud provides well-
defined access policies, full connectivity, and middleware 
that allows easy access to all its resources. Such systems 
are often largely homogeneous, offering the same software 
configuration or even the same hardware on every node. 
Combining several systems, however, is apt to result in a 
distributed system that is heterogeneous in software, hard-
ware, and performance. This may lead to interoperability 
problems. Communication problems are also probable 
due to firewalls or network address translation (NAT), 
or simply because the geographic distance between the 
resources makes efficient communication difficult. More-
over, a combination of systems is often dynamic and faulty, 
as compute resources can be added or removed or even 
crash at runtime. The use of inherently heterogeneous and 
unreliable resources such as desktop grids, stand-alone 
machines, and mobile devices exacerbates these issues.

T
he past two decades have seen tremendous 
progress in the application of high-perfor-
mance and distributed computer systems in 
science and industry. Among the most widely 
used systems are commodity compute clus-

ters, large-scale grid systems, and, more recently, 
economically driven computational clouds and mobile 
systems. In the last few years, researchers have inten-
sively studied such systems with the goal of providing 
transparent and efficient computing, even on a world-
wide scale.1

Unfortunately, current practice shows that this goal re-
mains out of reach.2 For example, today’s grid systems are 
mostly exploited to run coarse-grained parameter-sweep 
or master-worker programs. For more complex applica-
tions, grid usage is generally limited to straightforward 
scheduling systems that select a single site for execution. 
This is unfortunate, as many scientific and industrial ap-
plications—including astronomy, multimedia, medical 
imaging, and biobanking—would benefit from distributed 
compute resources. Optical networking advances also 
enable a much larger class of applications to run efficiently 

The use of parallel and distributed computing systems is essential to 
meet the ever-increasing computational demands of many scientific and 
industrial applications. Ibis allows easy programming and deployment 
of compute-intensive distributed applications, even for dynamic, faulty, 
and heterogeneous environments.
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that offer support for fault tolerance and malleability—
adding and removing machines on the fly—and that 
automatically circumvent any connectivity problems. 
The deployment system should allow for easy deploy-
ment and management of applications, irrespective of 

REAL-WORLD DISTRIBUTED COMPUTING
An ad hoc collection of compute resources that 

communicate with one another via some network 
connection constitutes a real-world distributed 
system, as shown in Figure 1. Writing applications 
for such systems is notoriously difficult, as applica-
tion programmers must take into account all of the 
problems described above. Deploying the applica-
tions is equally hard because each site is likely to 
have its own middleware and access policies.

The uptake of high-performance distributed 
computing can be enhanced if these complexities 
are abstracted away by a single software system 
that applies to any real-world distributed system. 
Conceptually, such a system should offer two 
logically independent subsystems: a programming 
system, offering functionality traditionally associ-
ated with programming languages and communication 
libraries; and a deployment system, offering functionality 
associated with operating systems. The programming 
system should allow applications to be not only effi-
cient but also robust by providing programming models 

Figure 1. A “worst-case” real-world distributed system consisting 
of clusters, grids, and clouds as well as desktop grids, stand-alone 
machines, and mobile devices. Clusters, grids, and clouds are well-
organized subsystems that use their own middleware, programming 
interfaces, access policies, and protection mechanisms.

Clouds Desktop grids

GridsClusters

Stand-alone machinesMobile devices

Figure 2. Ibis system architecture. The white boxes belong to Ibis; the gray ones represent third-party software.

r8maa.indd   55 8/18/10   10:48 AM



Rese arch Fe ature

computer	56

where they run. It should also provide support for dis-
tributed file management, user authentication, resource 
management, and interoperability between different 
middleware systems.

To serve the vast majority of users, ranging from system 
and application-level software developers to application 
users, the subsystems should follow a layered approach, 
with programming interfaces defined at different abstrac-
tion levels, each tailored to different users’ needs.

IBIS ARCHITECTURE

Researchers are extensively studying high-performance 
and distributed computing tools and mechanisms in the 
field, but no existing single software system covers the full 
spectrum. Ibis aims to address this deficiency with an in-
tegrated system based on a straightforward, user-oriented 
philosophy: real-world distributed applications should be 
developed and compiled on a local workstation, and de-
ployed from there onto the distributed system.

This “write-and-go” philosophy requires minimal as-
sumptions about the execution environment. To enable 
applications to run in a heterogeneous system, Ibis ex-
ploits Java virtual machine technology. As Figure 2 shows, 
the Ibis system architecture follows the dual-subsystem 
approach. The programming system provides a range 
of programming models, all implemented on the same 
communication library: the Ibis Portability Layer (IPL). 
The deployment system contains a GUI and a library for 
deploying and managing applications, implemented on a 
middleware interoperability layer: the Java Grid Applica-
tion Toolkit (JavaGAT).

Ibis is modular and flexible, allowing users to select 
the functionality they require from either Ibis or other 
software. For example, applications can use the high-
level programming models and the deployment GUI, but 
they can also be implemented directly on the IPL and 
JavaGAT. Likewise, applications are free to use only one 
of the two subsystems. For example, the deployment 
system can be used to deploy C/MPI and other non-Java 
applications.

Ibis is fully open source and used in various real-world 
distributed applications such as multimedia computing, 
spectroscopic data processing (FOM Institute for Atomic 
and Molecular Physics), human brain-scan analysis (Vrije 
Universiteit Medical Center), automatic grammar learn-
ing, and many others. In addition, Ibis has been used to 
build high-level programming systems, including a work-
flow engine for astronomy applications in D-Grid (Max 
Planck Institute for Astrophysics), the GridChem gate-
way for TeraGrid, and a grid file system (University of 
Erlangen-Nürnberg). 

Ibis has also been applied to enhance existing systems 
such as ProActive (INRIA), Jylab (University of Patras), and 
the GRID superscalar framework (Barcelona Supercom-
puter Center). The “Related Work” sidebar describes some 
of these systems and how they differ from Ibis.

Ibis has won prizes in numerous international com-
petitions including the International Scalable Computing 

Related Work 

I bis provides a dual-subsystem solution for real-world dis-
tributed programming and deployment. In contrast, most 

existing systems focus on one of the two subsystems.1

ProActive,2 like Ibis, follows a logical dual-subsystem approach. 
It contains several grid programming models and provides grid 
deployment and virtualization components. Whereas the Ibis IPL is 
small and highly efficient, the core of ProActive is more heavy-
weight. ProActive further requires the user to handle all connection 
setup problems and select the appropriate middleware.

Phoenix3 consists of a general message-passing model that 
allows compute nodes to be added to and removed from a running 
application. It also deals with some of the connection setup prob-
lems solved by SmartSockets. Phoenix provides easy-to-use tools 
that handle common grid operations. However, it can’t  automati-
cally exploit different grid middleware systems simultaneously.

The GRID superscalar framework4 supports a certain degree of 
automatic grid deployment. It consists of an application program-
ming interface, a runtime system, and a grid deployment center. It 
automatically converts a sequential application composed of tasks 
into a parallel application, allowing independent tasks to be exe-
cuted on different grid resources.

The GridRPC specification5 defines an API for remote procedure 
calls in grids. Two reference implementations exist, Ninf-G and Net-
Solve/GridSolve. In contrast to the JavaGAT, the binding of grid 
middleware to application objects is entirely static.

The Open Grid Forum is currently standardizing the next-gener-
ation grid programming toolkit: a Simple API for Grid Applications 
(SAGA).6 The goal is to provide a simple, uniform, standard pro-
gramming interface for distributed applications, with consistent 
semantics and style for different grid functionalities. Notably, 
SAGA’s Java Reference Implementation is implemented directly on 
top of the JavaGAT.
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addresses. The SmartSockets library automatically solves 
such problems using existing and novel solutions, includ-
ing reverse connection setup, overlay routing, and Secure 
Shell (SSH) tunneling.

SmartSockets creates an overlay network with a set 
of interconnected support processes called hubs. Em-
ploying gossiping techniques, the hubs discover which 
other hubs they can connect to, using SSH tunneling 
if necessary. This overlay network can be used to help 
solve connectivity problems or route the application’s 
network traffic.

When creating a connection, SmartSockets initially tries 
to set up a regular (direct) TCP connection. If this fails, it 
uses the overlay network to send a request for a reverse 
connection setup to the target machine. If this also fails, 
the library creates a virtual connection that uses over-

lay routing. SmartSockets also handles machines with 
multiple network addresses via multihoming. During 
connection setup, it considers all source and target ad-
dresses. It uses heuristics to determine the combinations 
most likely to work and then tries these first. Extra identity 
checks in the procotol ensure that it reaches the correct 
target machine. A worldwide experiment5 demonstrated 
the library’s effectiveness: in 30 realistic connectivity sce-
narios, SmartSockets was always capable of establishing 
a connection, while traditional sockets only worked in six 
of these.

Ibis programming models

Besides the IPL, Ibis provides a range of programming 
models, from low-level message passing to high-level di-
vide-and-conquer parallelism. It implements the following 
programming models using the IPL:

•	 MPJ, the MPI binding for Java; 
•	 Satin, a divide-and-conquer model;6 
•	 RMI, object-oriented remote procedure call; 
•	 group method invocation (GMI), a generalization of 

RMI to group communication, including multicast and 
all-to-all communication; 

•	 Maestro, a fault-tolerant and self-optimizing dataflow 
model;7 and

•	 Jorus, a programming model for data-parallel multi-
media applications.8 

Challenge at CCGrid 2008 (for scalability), the International 
Data Analysis Challenge for Finding Supernovae at IEEE 
Cluster/Grid 2008 (for speed and fault tolerance), and the 
Billion Triples Challenge at the 2008 International Seman-
tic Web Conference (for general innovation).

IBIS PROGRAMMING SYSTEM

The Ibis programming system provides many program-
ming models, all implemented on top of the IPL.

IPL 

The IPL is a Java-based communication library that 
provides robust communication and resource-tracking 
mechanisms. It typically ships with the application as jar 
(Java archive) files, so no additional preinstalled libraries 
need be present at any destination machine.

The library provides a range of communication primi-
tives including those for point-to-point and multicast 
communication. It supports streaming communication, 
which is especially important in high-latency environments 
as this allows overlapping of serialization, communication, 
and deserialization of data. The IPL avoids copying over-
head as much as possible and uses bytecode rewriting to 
generate efficient serialization and deserialization func-
tions. Consequently, it can significantly outperform Sun 
remote method invocation (RMI) communication and even 
C/MPI, in particular for complex data structures.4

The IPL has been designed specifically for real-world 
distributed environments where resources can be added or 
removed dynamically. It incorporates a mechanism, Join-
Elect-Leave (JEL), that tracks which resources are being 
used and what roles they have. JEL is based on the concept 
of signaling: it notifies the application or runtime system 
when resources are added to or removed from the compu-
tation. To select resources with a special role, it includes 
elections. JEL thus provides the building blocks for fault 
tolerance and malleability by giving an up-to-date view 
of available resources, allowing applications and runtime 
systems to respond to changes when required.

A number of pure-Java IPL implementations are avail-
able using the Ibis SmartSockets library, TCP (Transmission 
Control Protocol), UDP (User Datagram Protocol), and 
Bluetooth. In addition, we provide implementations using 
specialized non-Java libraries, such as MX (Myrinet) or MPI. 
The SmartSockets, TCP, and UDP implementations also 
work on the Android smartphone platform.

SmartSockets

Running a parallel application on distributed resources 
is complicated due to connectivity problems that make 
direct communication difficult or impossible. Incoming 
traffic at a node may be restricted by a firewall or NAT. The 
presence of multiple network interfaces and IP addresses 
can cause addressing problems, as can private network 

The IPL has been designed 
specifically for real-world distributed 
environments where resources can 
be added or removed dynamically.
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technique dynamically forwards application calls on the 
JavaGAT API to one or more middleware adaptors that 
implement the requested functionality. Selection occurs 
at runtime and uses policies and heuristics that auto-
matically select the best available middleware, enhancing 
portability. If an operation fails, the intelligent-dispatch-
ing feature will automatically select and dispatch the API 
call to an alternative middleware. This process continues 
until a middleware successfully performs the requested 
operation.

Although such flexibility comes at the cost of some run-
time overhead, this is often negligible compared to the 
cost of the operations themselves. For instance, a Globus 
job submission takes several seconds, while the overhead 
introduced by the JavaGAT is less than 10 ms. However, the 
additional semantics of the high-level API can introduce 
some overhead. For instance, if a file is copied, the JavaGAT 
first checks if the destination already exists or is a direc-
tory. These extra checks cost time because they require 
remote operations.

The JavaGAT API isn’t the lowest common denominator 
of the underlying middleware APIs. Instead, the JavaGAT 
offers rich default functionality and can combine features 
of multiple middleware layers with its intelligent-dispatch-
ing technique. Consider the following real code example, 
which copies remote files and entire directories between 
sites:

 1 import org.gridlab.gat.*; 

 2 import org.gridlab.gat.io.File; 

 3   

 4 public class Copy { 

 5   public static void main(String [] args) 
     throws Exception { 

 6     GATContext context = new        
       GATContext(); 

 7     URI source = new URI(args[0]); 

 8     URI dest = new URI(args[1]); 

 9

10     File file = GAT.createFile(context,  
       source); // Create a GAT file

11 

12     file.copy(dest); // The actual file    
       or directory copy

13

14     GAT.end(); // Shutdown the JavaGAT

15   } 

16 } 

This code is middleware independent and demonstrates 
the JavaGAT API’s power; equivalent Globus code would 
take hundreds of lines. The JavaGAT allows programmers 

The higher-level programming models’ runtime sys-
tems exploit the IPL and JEL to address many distributed 
programming difficulties. A good example is Satin, which 
uses JEL resource-tracking mechanisms to make applica-
tions malleable and fault tolerant. For example, Satin can 
reexecute subtasks if a processor crashes. Also, it can dy-
namically schedule subtasks on new machines that become 
available during the computation, and it can migrate sub-
tasks if machines leave the computation. Satin’s scheduler 
also does locality optimizations: divide-and-conquer pro-
grams are inherently hierarchical and can therefore be 
mapped efficiently onto a hierarchical wide-area system 
such as a grid. Likewise, the scheduler does latency hiding; 
if it needs to retrieve new jobs from distant machines, it will 
do that asynchronously, without blocking.6

Satin thus makes these problems transparent to the user 
and application. Applications written with a lower-level 
programming model like the IPL must deal with such prob-
lems explicitly, but Ibis gives them the necessary low-level 
mechanisms to do so. 

IBIS DEPLOYMENT SYSTEM

The Ibis deployment system consists of a software stack 
and a graphical user interface for deploying and manag-
ing applications. The GUI is implemented on top of the 
JavaGAT.

JavaGAT

Writing distributed applications using existing mid-
dleware APIs is a daunting task. APIs change frequently 
and are often incomplete and too low-level.9 The JavaGAT 
provides a high-level API that facilitates development of 
complex applications. This API is object oriented and 
offers high-level primitives for access to the distributed 
system, independent of the middleware that implements 
this functionality. The primitives provide access to remote 
data, start remote jobs, and support monitoring, steering, 
user authentication, resource management, and storing of 
application-specific data. The JavaGAT uses an extensible 
architecture, wherein adaptors (plugins) provide access to 
the different types of middleware.

The JavaGAT also uses intelligent dispatching to integrate 
multiple middleware systems with different and incom-
plete functionality into a single, consistent system. This 

The JavaGAT uses intelligent 
dispatching to integrate multiple 
middleware systems with different 
and incomplete functionality into a 
single, consistent system.
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user can add resources to a running application by simply 
providing contact information such as a host address and 
user credentials. This information can be reused in later 
experiments.

APPLICATION EXAMPLE:  
MULTIMEDIA CONTENT ANALYSIS

We illustrate Ibis with an application that performs real-
time recognition of everyday objects. Images produced by 
a camera are processed by an advanced algorithm that 
extracts feature vectors from the video data, which de-
scribe local properties like color and shape. To recognize 
an object, the application compares the object’s feature 
vectors to ones stored earlier and annotated with a name. 

As this is a compute-intensive problem with soft real-
time constraints, a large distributed system performs the 
analysis.8 A data-parallel application running on a single 
site processes a single video frame. Calculations over con-
secutive frames are distributed over different sites in a 
task-parallel manner.

The initial application was written in C++/MPI, using 
TCP and SSH tunnels for wide-area communication. This 
program used manual deployment, was vulnerable to 
connectivity problems and partial failures (each caus-
ing the entire application to fail), and was frustrating 
to write and maintain on heterogeneous hardware and 
middleware. Step by step, we replaced all its components 
with an implementation in Java and Ibis. With the new 
program, the IbisDeploy GUI makes deployment easy, 
SmartSockets automatically corrects the connectivity 
problems, and the JavaGAT accommodates the middle-
ware heterogeneity. We provided robustness by adding 
fault tolerance and malleability support to the application 
using the IPL-provided mechanisms.

The resulting application is compiled on a desktop ma-
chine and easily deployed onto a distributed system. It 
concurrently uses up to 20 clusters, commonly employ-
ing a total of 500 to 800 cores, and a mix of different 
middleware. The application even runs on the Android 
smartphone platform, allowing distributed object recogni-
tion from mobile devices.

EXPERIMENTAL EVALUATION

To evaluate Ibis’s functionality and performance, we 
carried out a series of experiments with the multimedia 

to ignore system-level peculiarities and instead focus on 
domain-specific problems.

The JavaGAT doesn’t provide a new user/key manage-
ment infrastructure. Rather, its security interface provides 
generic functionality to store and manage security in-
formation such as usernames and passwords. Also, the 
JavaGAT provides a mechanism to restrict the availability 
of security information to certain middleware systems or 
remote machines. Currently, the JavaGAT supports many 
different middleware systems such as Globus, UNICORE 
(Uniform Interface to Computing Resources), gLite, PBS 
(Portable Batch System), SGE (Sun Grid Engine), KOALA 
(a co-allocating grid scheduler), SSH, GridSAM, Amazon 
EC2 (Elastic Compute Cloud), ProActive, GridFTP, HTTP, 
SMB (Server Message Block)/CIFS (Common Internet File 
System), and Zorilla.

Zorilla

Most existing middleware APIs lack coscheduling 
capabilities and don’t support fault tolerance and malle-
ability. To overcome these problems, Ibis provides Zorilla, 
a lightweight P2P middleware that runs on any real-world 
distributed system. In contrast to traditional middleware, 
Zorilla has no central components and is easy to set up 
and maintain. It supports fault tolerance and malleability 
by implementing all functionality using P2P techniques. 
If resources used by an application are removed or fail, 
Zorilla can automatically find replacement resources. It 
was specifically designed to easily combine resources in 
multiple administrative domains.

To create a resource pool, a Zorilla daemon process 
must be started on each participating machine. Also, each 
machine must receive the address of at least one other 
machine to set up a connection. Jobs can be submitted to 
Zorilla using the JavaGAT or, alternatively, using a com-
mand-line interface. Zorilla then allocates the requested 
number of resources and schedules the application, taking 
user-defined requirements like memory size into account. 
The combination of virtualization and P2P techniques thus 
makes it very easy to deploy applications with Zorilla.

IbisDeploy

Many applications use the same deployment process. 
Therefore, IbisDeploy provides a simple and generic API 
and GUI that can automatically perform commonly used 
deployment scenarios. For example, when a distributed 
Ibis application is running, IbisDeploy starts the Smart-
Sockets hub network automatically. It also automatically 
uploads the program codes, libraries, and input files (pre-
staging) and automatically downloads the output files 
(poststaging). 

The IbisDeploy GUI, shown in Figure 3, lets a user start, 
monitor, and stop applications in an intuitive manner and 
run multiple distributed applications concurrently. The 

IbisDeploy provides a simple 
and generic API and GUI that can 
automatically perform commonly 
used deployment scenarios.
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for task-parallel processing of subsequent images.
We used IbisDeploy to start a client on a local machine 

and to deploy four data-parallel multimedia servers, each 
on a different DAS-3 cluster (using 64 machines in total). 
All code was implemented in Java/Ibis, compiled on the 
client machine, and deployed directly from there. No ap-
plication software or libraries were initially installed on 
any other machine.

Using a single multimedia server resulted in a process-
ing rate of approximately 1.2 frames per second. The 
simultaneous use of two and four clusters led to linear 
speedups at the client side of 2.5 and 5 frames per second, 
respectively. Adding additional clusters such as an EC2 
cloud, a local desktop grid, and a local stand-alone ma-
chine improved the frame rate even further. We thereby 
obtained a worldwide system using a variety of grid mid-
dleware—Globus, Zorilla, and SSH—simultaneously from 
within a single application.

The SmartSockets hub network circumvented a range 
of connectivity problems between the sites. Many sites 
have a firewall, and the Japan and Australia clusters can 
only be reached using SSH tunnels. In addition, almost all 
of the applied resources have more than one IP address. 

application (see www.cs.vu.nl/ibis/demos.html for a video 
demonstration). We used the Distributed ASCI Supercom-
puter 3 (DAS-3), a five-cluster distributed grid system in 
the Netherlands; additional clusters in Chicago, Japan (the 
Chiba and Tsukuba InTrigger sites), and Sydney; the US East 
Amazon EC2 cloud system; and a desktop grid and single 
stand-alone machine, both in Amsterdam. Together, these 
machines comprised a real-world distributed system.

We first compared the performance of Java/Ibis and 
C++/MPI implementations of the data-parallel process-
ing of a single video frame. On a single machine the Java 
program is about 12 percent slower than the C++ version, 
which is within acceptable limits for a “compile once, run 
everywhere” application executing inside a virtual ma-
chine. On an 80-node DAS-3 cluster with the Myri-10G 
(Myricom 10-Gbit Ethernet) local network, the Java/Ibis and 
C++/MPI programs have very similar speedup (scalability) 
and communication overheads.

In the distributed version of our application, the data-
parallel analysis is wrapped in a multimedia server. Client 
applications can upload an image or video frame to such a 
server and receive back a recognition result. When multiple 
servers are available, a client can use these simultaneously 

Figure 3. The IbisDeploy GUI lets users load applications and resources (top middle) and keep track of running processes (bottom 
half). The top left of the figure shows the locations of available resources; the top right shows the SmartSockets network consisting of 
hubs and compute nodes. A video presentation is available at www.cs.vu.nl/ibis/demos.html.

r8maa.indd   60 8/18/10   10:48 AM



61AUGUST 2010

I
bis drastically reduces the effort needed to create 
and deploy applications for real-world distributed 
systems that consist of ad hoc combinations of 
clusters, grids, clouds, desktop grids, stand-alone 
machines, and even mobile devices. To achieve this, 

it integrates solutions to many fundamental distributed 
computing problems in a single modular programming 
and deployment system, written entirely in Java. 

An important lesson learned from Ibis is that resource-
tracking functionality is as essential as communication 
functionality. While communication is among the basic 
capabilities of any distributed programming system, Ibis 
is one of the few systems that support resource tracking 
to implement fault tolerance and malleability. A second 
important lesson is that direct, two-way connectivity 
is rare in a real-world distributed system. However, 
SmartSockets achieves this in a transparent manner. 
Another lesson is that, for portability, it’s not advisable 
to implement applications using one particular middle-
ware system but to use a middleware-independent API, 
such as the JavaGAT, instead. Ibis also tries to make dis-
tributed programming easier by providing high-level 
programming models on top of these mechanisms. Satin, 
for example, makes fault tolerance and malleability 
transparent and automatically performs locality and 
latency-hiding optimizations. 

Ibis can be downloaded for free at www.cs.vu.nl/ibis. 
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SmartSockets automatically selected the appropriate ad-
dresses when two sites communicated. Without it, only 
the DAS-3, desktop grid, and stand-alone machine would 
have been reachable.

To test Ibis’s fault-tolerance mechanisms, we conducted 
an experiment in which an entire multimedia server 
crashed. The resource-tracking system noticed this crash 
and signaled the application. The client then removed the 
crashed server from the list of available servers. The ap-
plication continued to run, with the client forwarding video 
frames to the remaining servers.

We also accessed the multimedia servers from an HTC 
T-Mobile G1 smartphone, which used Ibis to upload pic-
tures taken with the phone’s camera and receive back a 
recognition result. Running the full application on the 
smartphone itself isn’t possible due to CPU and memory 
limitations. Using the multimedia servers, however, the 
phone obtained a result in about three seconds. This 
clearly shows Ibis’s potential to open up mobile comput-
ing to compute-intensive applications. Using IbisDeploy, it’s 
even possible to deploy the entire distributed application 
from the smartphone itself.

OPEN PROBLEMS AND FUTURE WORK

The Ibis programming subsystem is mostly useful for 
applications written in Java or languages that compile to 
Java source code or bytecode. Java applications can use 
non-Java libraries through the Java Native Interface and 
invoke non-Java executables with the Process.exec method. 
Theoretically, non-Java applications could also use the IPL 
through the JNI, but this is complicated. Despite these re-
strictions, many applications have been programmed on 
top of Ibis. In addition, the Ibis deployment subsystem has 
been used to deploy both Java and non-Java applications. 
We’re currently researching how to integrate support for ac-
celerators like GPUs, which requires access to non-Java code.

In addition, existing high-level programming models 
don’t cover all application domains, leaving some appli-
cations to use the IPL directly because they must address 
locality optimizations, fault tolerance, or malleability 
themselves. We’re thus developing more flexible runtime 
support in Ibis for a broader range of high-level program-
ming models.

Finally, the interoperability layer (JavaGAT) introduces 
some runtime overhead. In practice, this overhead is in-
significant except for operations that provide additional 
semantics such as remote error checks. More importantly, 
the JavaGAT’s intelligent-dispatching technique leads to 
more complex error reporting and debugging if opera-
tions fail. Instead of a single error message, the user now 
gets one error message per middleware layer that the Ja-
vaGAT attempted to use. Visual debugging and profiling 
tools should be developed to help the user address these 
problems.
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—George Orwell, “Why I Write” (1947)

All writers are vain, 
sel� sh and lazy.

(except ours!)

“
”
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technical publisher Wiley & Sons.
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www.computer.org/cspress
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