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ABSTRACT

A recent development in radio astronomy is to replace traditional
dishes with many small antennas. The signals are combined to form
one large, virtual telescope. The enormous data streams are cross-
correlated to filter out noise. This is especially challenging, since
the computational demands grow quadratically with the number of
data streams. Moreover, the correlator is not only computationally
intensive, but also very I/O intensive. The LOFAR telescope, for
instance, will produce over 100 terabytes per day. The future SKA
telescope will even require in the order of exaflops, and petabits/s
of I/O. A recent trend is to correlate in software instead of dedi-
cated hardware. This is done to increase flexibility and to reduce
development efforts. Examples include e-VLBI and LOFAR.

In this paper, we evaluate the correlator algorithm on multi-core
CPUs and many-core architectures, such as NVIDIA and ATIGPUs,
and the Cell/B.E. The correlator is a streaming, real-time appli-
cation, and is much more I/O intensive than applications that are
typically implemented on many-core hardware today. We compare
with the LOFAR production correlator on an IBM Blue Gene/P su-
percomputer. We investigate performance, power efficiency, and
programmability. We identify several important architectural prob-
lems which cause architectures to perform suboptimally. Our find-
ings are applicable to data-intensive applications in general.

The results show that the processing power and memory band-
width of current GPUs are highly imbalanced for correlation pur-
poses. While the production correlator on the Blue Gene/P achieves
a superb 96% of the theoretical peak performance, this is only 14%
on ATI GPUs, and 26% on NVIDIA GPUs. The Cell/B.E. pro-
cessor, in contrast, achieves an excellent 92%. We found that the
Cell/B.E. is also the most energy-efficient solution, it runs the cor-
relator 5-7 times more energy efficiently than the Blue Gene/P. The
research presented is an important pathfinder for next-generation
telescopes.
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1. INTRODUCTION
A recent development in radio astronomy is to build instruments

where traditional dishes are replaced with many small and simple
omni-directional antennas. The signals of the antennas are com-
bined to form one large virtual telescope. Examples include cur-
rent and future instruments such as LOFAR (LOw Frequency Ar-
ray) [13], MeerKAT (Karoo Array Telescope) [1], ASKAP (Aus-
tralian Square Kilometre Array Pathfinder) [7], and SKA (Square
Kilometre Array) [14]. These new generation telescopes produce
enormous data streams. The data streams from the different an-
tennas must be cross-correlated to filter out noise. The correlation
process also performs a data reduction by integrating samples over
time. The correlation step is especially challenging, since the com-
putational demands grow quadratically with the number of data
streams. The correlator is extremely demanding, since it is not only
computationally intensive, but also very data intensive. In the cur-
rent field of radio astronomy, the number of operations that has to
be performed per byte of I/O is exceptionally small. For astron-
omy, high-performance computing is of key importance. Instru-
ments like LOFAR are essentially software telescopes, requiring
massive amounts of compute power and data transport capabilities.
Future instruments, like the SKA [14], need in the order of exaflops
of computation, and petabits/s of I/O.

Traditionally, the online processing for radio-astronomy instru-
ments is done on special-purpose hardware. A relatively recent
development is the use of supercomputers [13]. Both approaches
have several important disadvantages. Special-purpose hardware
is expensive to design and manufacture and, equally important, it
is inflexible. Furthermore, the process from creating a hardware
design and translating that into a working implementation takes a
long time. Solutions that use a supercomputer (e.g., a Blue Gene/P
in the LOFAR case) are more flexible [12, 13], but are expensive
to purchase, and have high maintenance and electrical power cost.
Moreover, supercomputers are not always well-balanced for our
needs. For instance, most supercomputers feature highly efficient
double-precision operations, while single precision is sufficient for
our applications.

In this paper, we investigate the correlation algorithm on many-
core hardware, such as graphics processors (GPUs) [11] and the
Cell/B.E. [5]. In contrast to many others, we do not only use
NVIDIA GPUs, but also include ATI hardware. In addition, we



Figure 1: An extremely simplified view of LOFAR processing.

compare with the LOFAR production implementation on a Blue
Gene/P supercomputer [12]. As a reference, we also include multi-
core general-purpose processors. There are many advantages to the
use of many-core systems: it is a flexible software solution, has
lower costs in terms of purchase and maintenance, and the power
usage is significantly lower than that of a traditional supercomputer.

The correlator differs from applications that were investigated
on many-core hardware in the past, because of the correlator’s low
flop/byte ratio. In addition, it is a streaming real-time application,
so host-to-device data transfers are on the critical path. In many
other studies, these transfers are not considered.

The production correlator on the Blue Gene/P achieves 96% of
the theoretical peak performance. We demonstrate that the process-
ing power and memory bandwidth of current GPUs are highly im-
balanced for correlation purposes. This leads to suboptimal perfor-
mance. The Cell/B.E. processor, in contrast, achieves an excellent
92% efficiency. The Cell/B.E. runs the correlator 5-7 times (de-
pending on the manufacturing process of the Cell/B.E.) more en-
ergy efficiently than the Blue Gene/P. The research presented in this
paper is an important pathfinder for next-generation telescopes.

The rest of this paper is structured as follows. Section 2 explains
how the correlation algorithm works, and why it is important. In
Section 3, we describe the many-core architectures that we eval-
uate in detail, finishing with a comparison and discussion. Next,
in Section 4, we explain how we implemented the correlator algo-
rithm on each of these architectures, and describe the performance
we achieve. In Section 5, we evaluate, compare, and discuss the
results, while identifying the weak and strong points of the archi-
tectures. Section 6 discusses related work. In Section 7, we investi-
gate if our results and insights can be applied to other applications.
Additionally, we discuss scalability issues. Finally, we conclude in
Section 8.

2. CORRELATING RADIO ASTRONOMY

SIGNALS
We call a set of receivers that are grouped closely together a

station. The data streams from the different stations must be fil-
tered, delays in the signal path must be compensated for, and the
data streams from different stations must be cross-correlated. The
correlation process performs a data reduction by integrating sam-
ples over time. In this paper, we use the LOFAR telescope as an
example, but the results apply equally well to other instruments.
An overview of the processing needed for the standard imaging
pipeline of LOFAR is shown in Figure 1. The pipeline runs from
left to right. The thickness of the lines indicates the size of the data

streams. In this paper, we focus on the correlator step (the gray box
in Figure 1), because its costs grow quadratically with the num-
ber of stations. All other steps have a lower time complexity. We
choose 64 as the number of stations, since that is a realistic number
for LOFAR. Future instruments will likely have even more stations.
We call the combination of two stations a baseline. The total num-
ber of baselines is (nrStations× (nrStations+1))/2, since we
need each pair of correlations only once. This includes the auto-
correlations (the correlation of a station with itself), since we need
this later in the pipeline for calibration purposes. Although the au-
tocorrelations can be computed with fewer instructions, we ignore
this here, since the number of autocorrelations is small, and grows
linearly with the number of stations, while the number of normal
correlations grows quadratically.

Pseudo code for the algorithm is shown in Figure 2. A sample is
a (2× 32− bit) complex number that represents the amplitude and
phase of a signal at a particular time. The receivers are polarized;
they take separate samples from orthogonal (X and Y) directions.
The received signals from sky sources are so weak, that the anten-
nas mainly receive noise. To see if there is statistical coherence in
the noise, simultaneous samples of each pair of stations are corre-
lated, by multiplying the sample of one station with the complex
conjugate (i.e., the imaginary part is negated) of the sample of the
other station. To reduce the output size, the products are integrated,
by accumulating all products. Stations are also autocorrelated, i.e.,
with themselves. Both polarizations of a station A are correlated
with both polarizations of a station B, yielding correlations in XX,
XY, YX, and YY directions. The correlator is mostly multiplying
and adding complex numbers.

We can implement the correlation operation very efficiently, with
only four fma instructions, doing eight floating-point operations
in total. For each pair of stations, we have to do this four times,
once for each combination of polarizations. Thus, in total we need
32 operations and load 8 floats (32 bytes) from memory, resulting
in exactly one FLOP/byte. The number of operations that is per-
formed per byte that has to be loaded from main memory is called
the arithmetic intensity [9]. For the correlation algorithm, the arith-
metic intensity is extremely low.

An important optimization that we implemented is the reduction
of memory loads by the correlator. A sample can be used multiple
times by correlating it with the samples frommultiple other stations
in the same loop iteration. For example, a sample from station A
in the X polarization that is loaded into a register pair can be corre-
lated with the X and Y polarizations of stations B, C and D, using
it 6 times. Figure 3 shows how we correlate multiple stations at
the same time. Each square represents the XX, XY, YX, and YY



for (ch=0; ch<nrChannels; ch++)

for (station2=0; station2<nrStations; station2++)

for (station1=0; station1<=station2; station1++)

for (polarization1 = 0; polarization1 < nrPolarizations; polarization1++)

for (polarization2 = 0; polarization2 < nrPolarizations; polarization2++) {

complex float sum = 0 + i*0;

for (time=0; time < integrationTime; time++)

sum += samples[ch][station1][time][polarization1] * ~samples[ch][station2][time][polarization2];

baseline = computeBaseline(station1, station2);

correlation[baseline][ch][polarization1][polarization2] = sum;

}

Figure 2: Pseudo code for the correlation algorithm.

Figure 3: An example correlation triangle.

correlations of the stations as indicated by row and column num-
ber. The figure is triangular, because we compute the correlation of
each pair of stations only once. The squares labeled A are autocor-
relations, which could be treated specially since they require less
computations. The triangle is divided into larger tiles, in this case
2x3 tiles (the dark gray boxes), but arbitrary sizes are possible. A
tile is correlated as a unit. For example, the lower right-hand-side
rectangle correlates stations 9 and 10 with stations 0, 1, and 2.

It is important to tune the tile size to the architecture. We want
to make the tile size as large as possible, while still fitting in the
register file. This offers the highest level of data reuse. If we have
a w × h tile size, the number of operations is given by flops =
32wh. The number of bytes that has to loaded from memory is
16(w + h). The minimum number of registers that is required is
4(1+min(w, h))+8wh. This is the total number of registers, in-
cluding accumulators, while reusing registers if a value is no longer
needed (hence the min operation). However, this formula does not
count additional registers that could be needed for data prefetching,
address calculations and loop counters. The number of registers is
expressed in single-precision float registers. If an architecture has
vector registers, the result can be divided by the vector length. Ta-
ble 1 shows the properties of different tile sizes.

Despite the division of the correlation triangle in tiles, there still
is opportunity for additional data reuse between tiles. The tiles
within a row or column in the triangle still need the same samples.
Therefore, caches can increase data reuse. Because the algorithm
is extremely data intensive, the resulting optimized implementa-
tion on many-cores is typically limited by the architecture’s mem-
ory bandwidth. The memory aspects of the algorithm are twofold.
There is an algorithmic part, the tile size, which is limited by the
number of registers. The second aspect is architectural in nature:
the cache sizes, cache hierarchy and hit ratio. Together, these two
aspects dictate the memory bandwidth that is needed to keep the
ALUs busy.

tile floating point memory loads arithmetic minimum nr.
size operations (bytes) intensity registers (floats)

1x1 32 32 1.00 16
1x2 64 48 1.33 24
2x2 128 64 2.00 44
3x2 192 80 2.40 60
3x3 288 96 3.00 88
4x3 384 112 3.43 112
4x4 512 128 4.00 148

Table 1: Properties of different tile sizes.

In this paper, we focus on the maximal performance that can be
achieved with a single many-core chip. It is important to realize
that the correlator itself is trivially parallel, since tens of thousands
of frequency channels can be processed independently. This allows
us to efficiently exploit many-core hardware. We use floating point
instead of integer operations, since all architectures support this
well. Single precision floating point is accurate enough for our
purposes.

Since the code is relatively straightforward, we implemented the
performance-critical kernel in assembly on all architectures. There-
fore, this paper really compares the hardware architectures; compil-
ers do not influence the performance. Although we wrote the criti-
cal parts in assembly, the additional code was written in the natural
programming model for each architecture. Therefore, we also take
programmability into account. We do this both for the assembly
parts, and the high-level code. The first is a measure of the pro-
grammability of the hardware architecture itself. The second gives
an indication of the quality of the software stack.

3. MANY-CORE HARDWARE
Recent many-core architectures present enormous computational

performance at very low costs. Reductions in power usage also
become increasingly important. For LOFAR, for example, a large
part of the operational costs is the electrical power consumption.
The three most energy efficient supercomputers on the Green500
list1 derive most of their computational performance from a many-
core platform (the Cell/B.E). In the remainder of this section, we
discuss several many-core architectures in detail, and conclude with
a summary and discussion of the differences that are essential for
the correlator, and for data-intensive applications in general.

3.1 General Purpose multi-core CPU
(Intel Core i7 920)

As a reference, we implemented the correlator on a multi-core
general purpose architecture. We use a quad core Intel Core i7 920
CPU (code name Nehalem) at 2.67 GHz. There is 32 KB of on-

1See http://www.green500.org.



chip L1 data cache per core, 256 KB L2 cache per core, and 8 MB
of shared L3 cache. The thermal design power (TDP) is 130 Watts.
The theoretical peak performance of the system is 85 gflops, in
single precision. The parallelism comes from four cores with two-
way hyperthreading, and a vector length of four floats, provided by
the SSE4 instruction set.

The architecture has several important drawbacks for our appli-
cation. First, there is no fused multiply-add instruction. Since the
correlator performs mostly multiplies and adds, this can cause a
performance penalty. The processor does have multiple pipelines,
and the multiply and add instructions are executed in different pipe-
lines, allowing eight flops per cycle per core.

Another problem is that SSE’s shuffle instructions to move data
around in vector registers are more limited than for instance on the
Cell/B.E. processor. This complicates an efficient implementation.
For the future Intel Larrabee GPU, and for the next generation of In-
tel processors, both a fused multiply-add instruction and improved
shuffle support has been announced.

The number of SSE registers is small (sixteen 128-bit registers),
allowing only little data reuse. This is a problem for the corre-
lator, since the tile size is limited by the number of registers. A
smaller tile size means less opportunity for data reuse, increasing
the memory bandwidth that is required.

3.2 IBM Blue Gene/P
The IBM Blue Gene/P (BG/P) [6] is the architecture that is cur-

rently used for the LOFAR correlator [13]. Four 850 MHz Pow-
erPC 450 processors are integrated on each Blue Gene/P chip. We
found that the BG/P is extremely suitable for our application, since
it is highly optimized for processing of complex numbers. The
BG/P performs all floating point operations in double precision,
which is overkill for our application. The L2 prefetch unit pre-
fetches the sample data efficiently from memory. In contrast to all
other architectures we evaluate, the problem is compute bound in-
stead of I/O bound, thanks to the BG/P’s high memory bandwidth
per operation. It is 3.5–10 times higher than for the other architec-
tures. The ratio between flops and bytes/sec of memory bandwidth
is exactly 1.0 for the BG/P.

The BG/P has a register file with 32 vector registers of width 2.
Therefore, 64 floating point numbers (with double precision) can
be kept in the register file simultaneously. This is the same amount
as on the general purpose Intel chip, but an important difference is
that the BG/P has 32 registers of width 2, compared to Intel’s 16 of
width 4. The smaller vector size reduces the amount of shuffle in-
structions needed. The BG/P is an energy efficient supercomputer.
This is accomplished by using many small, low-power chips, at a
low clock frequency. The supercomputer also has excellent I/O ca-
pabilities, there are five specialized networks for communication.

3.3 ATI 4870 GPU (RV 770)
The most high-end GPU provided by ATI (recently acquired by

AMD) is the 4870 [3]. The RV770 processor in the 4870 runs
at 750 MHz, and has a thermal design power of 160 Watts. The
RV770 chip has ten SIMD cores, each containing 16 superscalar
streaming processors. Each streaming processor has five indepen-
dent scalar ALUs. Therefore, the GPU contains 800 (10× 16 × 5)
scalar 32-bit streaming processors. The Ultra-Threaded Dispatch
Processor controls how the execution units process streams. The
theoretical peak performance is 1.2 teraflops. The 4870 has 1 GB
of GDDR5 memory with a theoretical bandwidth of 115.2 GB/s.
The board uses a PCI-express 2.0 interface for communication with
the host system. Each of the ten SIMD cores contains 16 KB of lo-
cal memory and separate L1 texture cache. The L2 cache is shared.

The maximum L1 bandwidth is 480 GB/sec. The bandwidth be-
tween the L1 and L2 Caches is 384 GB/sec. The application can
specify if a read should be cached or not. The SIMD cores can
exchange data using 16 KB of global memory.

The ATI 4870 GPU has the largest number of cores of all ar-
chitectures we evaluate (800). However, the architecture has sev-
eral important drawbacks for data-intensive applications. First, the
host-to-device bandwidth is too low. In practice, the achieved PCI-
express bandwidth is far from the theoretical limit. We will ex-
plain this in more detail in Section 4.3. The achieved bandwidth
is not enough to keep all cores busy. Second, we found that over-
lapping communication with computation by performing asynchro-
nous data transfers between the host and the device has a large im-
pact on kernel performance. We observed kernel slowdowns of a
factor of three due to transfers in the background. Third, the ar-
chitecture does not provide random write access to device memory,
but only to host memory. However, for our application which is
mostly read-performance bound, this does not have a large impact
(see Section 4.3).

3.4 NVIDIA GPU (Tesla C1060)
NVIDIA’s Tesla C1060 contains a GTX 280 GPU (code-named

GT200), is manufactured using a 65 nm process, and has 1.4 bil-
lion transistors. The device has 30 cores (called multiprocessors)
running at 1296 MHz, with 8 single precision ALUs, and one dou-
ble precision ALU per core. Current NVIDIA GPUs thus have
fewer cores than ATI GPUs, but the individual cores are faster.
The memory architecture is also quite different. NVIDIA GPUs
still use GDDR3 memory, while ATI already uses GDDR5 with the
4870 GPU. The GTX 280 in the Tesla configuration has 4 GB of
device memory, and has a thermal design power of 236 Watts. The
theoretical peak performance is 933 gflops.

The number of registers is large: there are 16384 32-bit float-
ing point registers per multiprocessor. There also is 16 KB of
shared memory per multiprocessor. This memory is shared be-
tween all threads on a multiprocessor, but not globally. There is
a total amount of 64 KB of constant memory on the chip. Finally,
texture caching hardware is available. NVIDIA only specifies that
“the cache working set for texture memory is between 6 and 8 KB
per multiprocessor” [2]. The application has some control over the
caching hardware. It is possible to specify which area of device
memory must be cached, while the shared memory is completely
managed by the application.

On both GPUs, it is possible to synchronize the threads within
a multiprocessor. With our application, we exploit this to increase
the cache hit ratio. This improves performance considerably on
NVIDIA hardware, but not on ATI hardware. When accessing de-
vice memory, it is important to make sure that simultaneous mem-
ory accesses by different threads are coalesced into a single mem-
ory transaction. In contrast to ATI hardware, NVIDIA GPUs sup-
port random write access to device memory. This allows a pro-
gramming model that is much closer to traditional models, greatly
simplifying software development. The NVIDIA GPUs suffer from
a similar problem as the ATI GPUs: the host-to-device bandwidth
is equally low.

3.5 The Cell Broadband Engine
(QS21 blade server)

The Cell Broadband Engine (Cell/B.E.) [5] is a heterogeneous
many-core processor, designed by Sony, Toshiba and IBM (STI).
The Cell/B.E. has nine cores: the Power Processing Element (PPE),
acting as a main processor, and eight Synergistic Processing El-
ements (SPEs) that provide the real processing power. All cores



feature Cell/B.E. GPUs
access times uniform non-uniform
cache sharing level single thread (SPE) all threads in a multiprocessor
access to off-chip memory not possible, only through DMA supported
memory access overlapping asynchronous DMA hardware-managed thread preemption
communication communication between SPEs through EIB independent thread blocks + shared memory within a block

Table 2: Differences between many-core memory architectures.

run at 3.2 GHz. The cores, the main memory, and the external I/O
are connected by a high-bandwidth (205 GB/s) Element Intercon-
nection Bus (EIB). The main memory has a high-bandwidth (25
GB/s), and uses XDR (Rambus). The PPE’s main role is to run the
operating system and to coordinate the SPEs. An SPE contains a
RISC-core (the Synergistic Processing Unit (SPU)), a 256KB Lo-
cal Store (LS), and a memory flow controller.

The LS is an extremely fast local memory (SRAM) for both code
and data and is managed entirely by the application with explicit
DMA transfers. The LS can be considered the SPU’s L1 cache.
The LS bandwidth is 47.7 GB/s per SPU. The Cell/B.E. has a large
number of registers: each SPU has 128, which are 128-bit (4 floats)
wide. The theoretical peak performance of one SPU is 25.6 single-
precision gflops. The SPU can dispatch two instructions in each
clock cycle using the two pipelines designated even and odd. Most
of the arithmetic instructions execute on the even pipe, while most
of the memory instructions execute on the odd pipe. We use a QS21
Cell blade with two Cell/B.E. processors and 2 GB main memory
(XDR). This is divided into 1 GB per processor. A single Cell/B.E.
in our system has a TDP of 70 W. Recently, an equally fast version
with a 50 W TDP has been announced. The 8 SPEs of a single
chip in the system have a total theoretical single-precision peak
performance of 205 gflops.

3.6 Hardware Comparison and Discussion
The memory architectures of the many-core systems are of par-

ticular interest, since our application is mostly memory-throughput
bound (as will be discussed in Section 4). Table 2 shows some key
differences of the memory architectures of the many-core systems.
Both ATI and NVIDIA GPUs have a hardware L1 and L2 cache,
where the application can control which memory area is cached,
and which is not. The GPUs also have shared memory, which is
completely managed by the application. Also, coalescing and bank
conflicts have to be taken into account, at the cost of significant
performance penalties [2]. Therefore, the memory access times are
non-uniform. The access times of the local store of the Cell/B.E.,
in contrast, are completely uniform (6 cycles). Also, each Cell/B.E.
SPE has its own private local store, there is no cache that is shared
between threads. While the GPUs can directly access device mem-
ory, the Cell/B.E. does not provide access to main memory. All
data has to be loaded and stored into the local store first. Also, the
way that is used to overlap memory accesses with computations is
different. The Cell/B.E. uses asynchronous DMA transfers, while
the GPUs use hardware-managed thread preemption to hide load
delays. Finally, the SPEs of the Cell/B.E. can communicate using
the Element Interconnection Bus, while the multiprocessors of a
GPU execute completely independently.

Table 3 shows the key properties of the different architectures we
discuss here. Note that the performance numbers indicate the theo-
retical peak. The memory bandwidths of the different architectures
show large differences. Due to the PCI-e bus, the host-to-device
bandwidth of the GPUs is low. The number of gflops per byte of
memory bandwidth gives an indication of the performance of the
memory system. A lower number means a better balance between
memory and compute performance. For the GPUs, we can split

this number into a device-to-host component and an internal com-
ponent. It is clear that the relative performance of the memory sys-
tem in the Blue Gene/P system is significant higher than that of all
the other architectures. The number of gflops that can be achieved
per Watt is an indication of the theoretical power efficiency of the
hardware. In theory, the many-core architectures are more power
efficient than general-purpose systems and the BG/P.

The Bound and Bottleneck analysis [9, 19] is a method to gain
insight into the performance that can be achieved in practice on a
particular platform. Performance is bound both by theoretical peak
performance in flops, and the product of the memory bandwidth
and the arithmetic intensity AI (the flop/byte ratio):
perfmax = min(perfpeak ,AI × memoryBandwidth). Several im-
portant assumptions are made with this method. First, it assumes
that the memory bandwidth is independent of the access pattern.
Second, it assumes a complete overlap of communication and com-
munication, i.e., all memory latencies are completely hidden. Fi-
nally, the method does not take caches into account. Therefore, if
the correlator can make effective use of the caching mechanisms,
performance can actually be better than perfmax . Nevertheless,
the perfmax gives a rough idea of the performance than can be
achieved.

With the GPUs, there are several communication steps that in-
fluence the performance. First, the data has to be transferred from
the host to the device memory. Next, the data is read from the
device memory into registers. Although the GPUs offer high in-
ternal memory bandwidths, the host-to-device bandwidth is limited
by the low PCI-express throughput (8 GB/s for PCI-e 2.0 16X). In
practice, we measured even lower throughputs. With the NVIDIA
GPU, we achieved 5.58 GB/s, and with the ATI GPU 4.62 GB/s.
For both communication steps, we can compute the arithmetic in-
tensity and the perfmax . The sample data must be loaded into the
device memory, but is then reused several times, by the different
tiles. We call the arithmetic intensity from the point of view of
the entire computation AIglobal. The number of flops in the com-
putation is the number of baselines times 32 operations, while the
number of bytes that have to be loaded in total is 16 bytes times
the number of stations. As explained in Section 2, the number of
baselines is (nrStations×(nrStations+1))/2. If we substitute
this, we find that AIglobal = nrStations + 1. Since we use 64
stations, the AIglobal is 65 in our case. The AIlocal is the arith-
metic intensity on the device itself. The value depends on the tile
size, and was described in Section 2.

For both ATI and NVIDIA hardware, the perfmax ,global is 65 ×
8.0 = 520 gflops, if we use the theoretical PCI-e 2.0 16X band-
width of 8 GB/s. If we look at the PCI-e bandwidth that is achieved
in practice (4.62 and 5.58 GB/s respectively), the GPUs have a
perfmax ,global of only 300 gflops for ATI, and 363 gflops for NVIDIA.
Since there is no data reuse between the computations of differ-
ent frequency channels, this is a realistic upper bound for the per-
formance that can be achieved, assuming there is no performance
penalty for overlapping device computation with the host-to-device
transfers. We conclude that due to the low PCI-e bandwidth, only a
small fraction of the theoretical peak performance can be reached,
even if the kernel itself has ideal performance. In the following



Architecture Intel Core i7 IBM Blue Gene/P ATI 4870 NVIDIA Tesla C1060 STI Cell/B.E.
cores x FPUs per core 4x4 4x2 160x5 30x8 8x4
operations per cycle per FPU 2 2 2 2 2
Clock frequency (GHz) 2.67 0.850 0.75 1.296 3.2
gflops per chip 85 13.6 1200 936 204.8

registers per core x register width 16x4 64x2 1024x4 2048x1 128x4
total L1 data cache size per chip (KB) 32 128 undisclosed undisclosed 2048
total L1 cache bandwidth (GB/s) undisclosed 54.4 480 undisclosed 409.6
total device RAM bandwidth (GB/s) n.a. n.a. 115.2 102 n.a.
total host RAM bandwidth (GB/s) 25.6 13.6 8.0 8.0 25.8

Process Technology (nm) 45 90 55 65 65
TDP (W) 130 24 160 236 70
gflops / Watt (based on TDP) 0.65 0.57 7.50 3.97 2.93

gflops/device bandwidth (gflops / GB/s) n.a. n.a. 10.4 9.2 n.a.
gflops/host bandwidth (gflops / GB/s) 3.3 1.0 150 117 7.9

Table 3: Properties of the different many-core hardware platforms. For the Cell/B.E., we consider the local store to be L1 cache.

sections we will evaluate the performance we achieve with the cor-
relator in detail, while comparing to perfmax .

4. CORRELATOR IMPLEMENTATION

AND PERFORMANCE
This section describes the implementation of the correlator on

the different architectures. We evaluate the performance in detail.
For comparison reasons, we use the performance per chip for each
architecture. We also calculate the achieved memory bandwidths
for all architectures in the same way. We know the number of bytes
that has to be loaded by the kernel, depending on the tile size that is
used. We divide this by the execution time of the kernel to calculate
the bandwidth. Thanks to data reuse with caches and local stores,
the achieved bandwidth can be higher than the memory bandwidth.

4.1 General Purpose multi-core CPU
(Intel Core i7 920)

We use the SSE3 instruction set to exploit vector parallelism.
Due to the limited shuffle instructions, computing the correlations
of the four polarizations within a vector is inefficient. We achieve
only a speedup of a factor of 2.8 compared to a version without
SSE3. We found that, unlike on the other platforms, computing
four samples with subsequent time stamps in a vector works better.
The use of SSE3 improves the performance by a factor of 3.6 in this
case. In addition, we use multiple threads to utilize all four cores.
To benefit from hyperthreading, we need twice as many threads
as cores (i.e., 8 in our case). Using more threads does not help.
Hyperthreading increases performance by 6%. The most efficient
version uses a tile size of 2× 2. Larger tile sizes are inefficient due
to the small SSE3 register file. We achieve a performance of 48.0
gflops, 67% of the peak, while using 73% of the peak bandwidth.

4.2 IBM Blue Gene/P
The LOFAR production correlator is implemented on the Blue

Gene/P platform. We use it as the reference for performance com-
parisons. The (assembly) code hides load and instruction latencies,
issues concurrent floating point, integer, and load/store instructions,
and uses the L2 prefetch buffers in the most optimal way. We use
a cell size of 2×2, since this offers the highest level of reuse, while
still fitting in the register file. The performance we achieve with
this version is 13.1 gflops per chip, 96% of the theoretical peak
performance. The problem is compute bound, and not I/O bound,
thanks to the high memory bandwidth per flop, as is shown in Ta-
ble 3. For more information, we refer to [12].

4.3 ATI 4870 GPU (RV 770)
ATI offers two separate programming models, at different ab-

straction levels. The low-level programming model is called the
“Compute Abstraction Layer” (CAL). CAL provides communica-
tion primitives and an intermediate assembly language, allowing
fine-tuning of device performance. For high-level programming,
ATI adopted Brook, which was originally developed at Stanford [4].
ATI’s extended version is called Brook+ [3]. We implemented the
correlator both with Brook+ and with CAL.

With both Brook+ and CAL, the programmer has to do the vec-
torization, unlike with NVIDIA GPUs. CAL provides a feature
called swizzling, which is used to select parts of vector registers in
arithmetic operations. We found this improves readability of the
code significantly. Unlike the other architectures, the ATI GPUs are
not well documented. Essential information, such as the number of
registers, cache sizes, and memory architecture is missing, making
it hard to write optimized code. Although the situation improved
recently, the documentation is still inadequate. Moreover, the pro-
gramming tools are insufficient. The high-level Brook+ model does
not achieve acceptable performance for our application. The low-
level CAL model does, but it is difficult to use.

Synchronizning the threads within a multiprocessor can increase
the cache hit ratio, by ensuring that threads that access the same
samples are scheduled at roughly the same time. With NVIDIA
hardware, this leads to a considerable performance improvement
(see Section 4.4). However, although the ATI hardware can syn-
chronize the threads within a multiprocessor, we could not achieve
performance increases this way.

The architecture also does not provide random write access to
device memory. The kernel output can be written to at most 8 out-
put registers (each 4 floats wide). The hardware stores these to
predetermined locations in device memory. When using the output
registers, at most 32 floating point values can be stored. This ef-
fectively limits the tile size to 2 × 2. Random write access to host

memory is provided. The correlator reduces the data by a large
amount, and the results are never reused by the kernel. Therefore,
they can be directly streamed to host memory.

The theoretical operations/byte ratio of the ATI 4870 architecture
is 10.4 for device memory (see Table 3). In order to achieve this
ratio with our application, a minimal tile size of 10 × 10 would be
needed. This would require at least 822 registers per thread. This
is unfeasible, so we cannot achieve the peak performance. Data
sharing between tiles using the hardware caches could improve this
situation.

The best performing implementation streams the result data di-
rectly to host memory, and uses a tile size of 4x3, thanks to the large
number of registers. The kernel itself achieves 297 gflops, which



is 25% of the theoretical peak performance. The achieved device
memory bandwidth is 81 GB/s, which is 70% of the theoretical
maximum. Thanks to the large tile size, the cache hit ratio is 47%.
As is shown in Table 1, the arithmetic intensity with this tile size is
3.43. Therefore, perfmax = min(1200 , 3 .43 × 115 .2 ) = 395 .
We achieve 75% of this, because the memory bandwidth that is
achieved in practice is significantly lower than the theoretical band-
width of 115.2 GB/s.

If we also take the host-to-device transfers into account, per-
formance becomes much worse. We found that the host-to-device
throughput is only 4.62 GB/s in practice, although the theoretical
PCI-e bus bandwidth is 8 GB/s. The transfer can be done asyn-
chronously, overlapping the computation with host-to-device com-
munication. However, we discovered that the performance of the
compute kernel decreases significantly if transfers are performed
concurrently. For the 4 × 3 case, the compute kernel becomes 3.0
times slower, which can be fully attributed to the decrease of device
memory throughput. Due to the low I/O performance, we achieve
only 171 gflops, 14% of the theoretical peak. This is 57% of the
perfmax ,global of 300 gflops that we calculated in Section 3.6.

4.4 NVIDIA GPU (Tesla C1060)
NVIDIA’s programming model is called Cuda [2]. Cuda is rel-

atively high-level, and achieves good performance. However, the
programmer still has to think about many details such as memory
coalescing, the texture cache, etc. An advantage of NVIDIA hard-
ware and Cuda is that the application does not have to do vectoriza-
tion. This is thanks to the fact that all cores have their own address
generation units. All data parallelism is expressed by using threads.

The correlator uses 128-bit reads to load a complex sample with
two polarizations with one instruction. Since random write access
to device memory is supported (unlike with the ATI hardware), we
can simply store the output correlations to device memory. We use
the texture cache to speed-up access to the sample data. We do
not use it for the output data, since that is written only once, and
never read back by the kernel. With Cuda, threads within a thread
block can be synchronized. We exploit this feature to let the threads
that access the same samples run in lock step. This way, we pay
a small synchronization overhead, but we can increase the cache
hit ratio significantly. We found that this optimization improved
performance by a factor of 2.0.

We also investigated the use of the per-multiprocessor shared
memory as an application-managed cache. Others report good re-
sults with this approach [16]. However, we found that, for our ap-
plication, the use of shared memory only led to performance degra-
dation.

The best performing implementation uses a tile size of 3x2. The
optimal tile size is influenced by the way the available registers are
used. The register file is a shared resource. A smaller tile size
means less register usage, which allows the use of more concurrent
threads, hiding load delays. On NVIDIA hardware, we found that
the using a relatively small tile size and many threads increases
performance.

The kernel itself, without host-to-device communication achieves
285 gflops, which is 31% of the theoretical peak performance. The
achieved device memory bandwidth is 110 GB/s, which is 108% of
the theoretical maximum. We can reach more than 100% because
we include data reuse. The performance we get with the correla-
tor is significantly improved thanks to this data reuse, which we
achieve by exploiting the texture cache. The advantage is large,
because separate bandwidth tests show that the theoretical band-
width cannot be reached in practice. Even in the most optimal
case, only 71% (72 GB/s) of the theoretical maximum can be ob-

tained. The arithmetic intensity with this tile size is 2.4. We can use
this to calculate the maximal performance without communication.
perfmax = min(966 , 2 .4 × 102 ) = 245 gflops. In practice, the
performance is better than that: we achieve 116% of this, thanks to
the efficient texture cache.

If we include communication, the performance drops by 15%,
and we only get 243 gflops. Just like with the ATI hardware, this is
caused by the low PCI-e bandwidth. With NVIDIA hardware and
our data-intensive kernel, we do see significant performance gains
by using asynchronous I/O. With synchronous I/O, we achieve only
153 gflops. Therefore, the use of asynchronous I/O is essential. In
Section 3.6, we calculated that the perfmax ,global for our hardware
is 363 gflops. In practice, we achieve 67% of this limit due to the
external I/O problems.

4.5 The Cell Broadband Engine
(QS21 blade server)

The basic Cell/B.E. programming is based on multi-threading:
the PPE spawns threads that execute asynchronously on SPEs. The
SPEs can communicate with other SPEs and the PPE, using mech-
anisms like signals and mailboxes for synchronization and small
amounts of data, or DMA transfers for larger data. With the Cell/B.E.
it is important to exploit all levels of parallelism. Applications deal
with task and data parallelism across multiple SPEs, vector par-
allelism inside the SPEs, and double or triple-buffering for DMA
transfers [5]. The Cell/B.E. can be programmed in C or C++, while
using intrinsics to exploit vector parallelism.

The large number of registers (128 times 4 floats) allows a big
tile size of 4 × 3, leading to a lot of data reuse. We exploit the
vector parallelism of the Cell/B.E. by computing the four polariza-
tion combinations in parallel. We found that this performs better
than vectorizing over the integration time. This is thanks to the
Cell/B.E.’s excellent support for shuffling data around in the vector
registers. The shuffle instruction is executed in the odd pipeline,
while the arithmetic is executed in the even pipeline, allowing them
to overlap.

We identified a minor performance problem with the pipelines of
the Cell/B.E. Regrettably, there is no (auto)increment instruction in
the odd pipeline. Therefore, loop counters and address calculations
have to be performed on the critical path, in the even pipeline. In
the time it takes to increment a simple loop counter, four multiply-
adds, or 8 flops could have been performed. To circumvent this,
we performed loop unrolling in our kernels. This solves the perfor-
mance problem, but has the unwanted side effect that it uses local
store memory, which is better used as data cache.

A distinctive property of the architecture is that cache transfers
are explicitly managed by the application, using DMA. This is un-
like other architectures, where caches work transparently. By di-
viding the integration time into smaller intervals, we can keep the
sample data for all stations in the local store. Because of this,
we have to load and store the correlations to main memory several
times, since the sub-results have to be accumulated. We overlap
communication with computation, by using multiple buffers. For
the sample data we use double buffering. Since the correlations are
both read and written, we use triple buffering in this case. Thanks
to the explicit cache, the correlator implementation fetches each
sample from main memory only exactly once. Although issuing
explicit DMA commands complicates programming, for our appli-
cation this is not problematic.

Due to the high memory bandwidth and the ability to reuse data,
we achieve 187 gflops, including all memory I/O. This is 92% of
the peak performance on one chip. If we use both chips in the cell
blade, the performance drops only with a small amount, and we still



Figure 4: Achieved performance on the different platforms.

achieve 91% (373 gflops) of the peak performance. Even though
the memory bandwidth per operation of the Cell/B.E. is eight times
lower than that of the BG/P, we still achieve excellent performance,
thanks to the high data reuse factor.

5. COMPARISON AND EVALUATION
Figure 4 shows the performance on all architectures we eval-

uated. The NVIDIA GPU achieves the highest absolute perfor-
mance. Nevertheless, the GPU efficiencies are much lower than on
the other platforms. The Cell/B.E. achieves the highest efficiency
of all many-core architectures, close to that of the BG/P. Although
the theoretical peak performance of the Cell/B.E. is 4.6 times lower
than the NVIDIA chip, the absolute performance is only slightly
less. If both chips in the QS21 blade are used, the Cell/B.E. also
has the highest absolute performance. For the GPUs, it is possible
to use more than one chip as well. This can be done in the form of
multiple PCI-e cards, or with two chips on a single card, as is done
with the ATI 4870x2 device. However, we found that this does
not help, since the performance is already limited by the low PCI-e
throughput, and the chips have to share this resource. The graph
indeed shows that the host-to-device I/O has a large impact on the
GPU performance, even when using one chip. With the Cell/B.E.,
the I/O (from main memory to the Local Store) only has a very
small impact. Table 4 presents the details.

The results show that the Cell/B.E. is about five times more en-
ergy efficient than the BG/P. This is not a fair comparison, since
the BG/P includes a lot of network hardware on chip, while the
other architectures do not offer this. Nevertheless, it is clear that
the Cell/B.E. is significantly more efficient. A 45 nm version of
the Cell/B.E. has been announced for early 2009. With this ver-
sion, which has identical performance, but reduces the TDP to
about 50W, the Cell/B.E. even is seven times more efficient than
the BG/P. The 65 nm version of the Cell/B.E. already is about
2.5 times more energy efficient than the GPUs. The fact that the
three most energy efficient supercomputers on the Green500 list2

are based on the Cell/B.E. supports our findings. The Green500 list
also specifies the achieved power efficiency for entire supercom-
puters, i.e. including memory, chipsets, networking hardware, etc.
PowerXCell-based systems achieve 0.54 glops/W, while the Blue
Gene/P is less power efficient, and achieves 0.37 gflops/W. Sys-

2See http://www.green500.org.

tems based on general-purpose CPUs only achieve 0.27 gflops/W.
The performance gap between assembly and a high-level pro-

gramming language is quite different for the different platforms.
It also depends on how much the compiler is helped by manually
unrolling loops, eliminating common sub-expressions, the use of
register variables, etc., up to a level that the C code becomes al-
most as low-level as assembly code. The difference varies between
only a few percent to a factor of 10.

For the BG/P, the performance from compiled C++ code was by
far not sufficient. The assembly version hides load and instruction
latencies, issues concurrent floating point, integer, and load/store
instructions, and uses the L2 prefetch buffers in the most optimal
way. The resulting code is approximately 10 times faster than C++
code. For both the Cell/B.E. and the Intel core i7, we found that
high-level code in C or C++ in combination with the use of in-
trinsics to manually describe the SIMD parallelism yields accept-
able performance compared to optimized assembly code. Thus, the
programmer specifies which instructions have to be used, but can
typically leave the instruction scheduling and register allocation to
the compiler. On NVIDIA hardware, the high-level Cuda model
delivers excellent performance, as long as the programmer helps
by using SIMD data types for loads and stores, and separate lo-
cal variables for values that should be kept in registers. With ATI
hardware, this is different. We found that the high-level Brook+
model does not achieve acceptable performance compared to hand-
written CAL code. Manually written assembly is more than three
times faster. Also, the Brook+ documentation is insufficient.

In Table 5 we summarize the architectural strengths and weak-
nesses that we identified. Although we focus on the correlator ap-
plication in this paper, the results are applicable to applications with
low flop/byte ratios in general.

6. RELATED WORK
Intel’s 80-core Terascale Processor [10] was the first generally

programmable microprocessor to break the teraflop barrier. It has
a good flop/Watt ratio, making it an interesting candidate for future
correlators.

Intel’s Larrabee [15] (to be released) is another promising archi-
tecture. Larrabee will be a hybrid between a GPU and a multi-core
CPU. It will be compatible with the x86 architecture, but will have
4-way simultaneous multi-threading, 512-bit wide vector units, shuf-
fle and multiply-add instructions, and special texturing hardware.



Intel IBM ATI NVIDIA STI
Architecture Core i7 BG/P 4870 Tesla C1060 Cell

measured gflops 48.0 13.1 171 243 187
achieved efficiency 67% 96% 14% 26% 92%

measured bandwidth (GB/s) 18.6 6.6 47 94 49.5
bandwidth efficiency 73% 48% 41% 93% 192%
achieved gflops/Watt 0.37 0.54 1.07 1.00 2.67

Table 4: Measured performance of the different many-core hardware platforms.

Intel Core i7 920 IBM Blue Gene/P ATI 4870 NVIDIA Tesla C1060 STI Cell/B.E.

+ well-known + L2 prefetch unit works well + largest number of cores + random write access + explicit cache
+ high memory bandwidth + swizzling support + Cuda is high-level + random write access

+ shuffle capabilities
+ power efficiency

- few registers - everything double precision - low PCI-e bandwidth - low PCI-e bandwidth - multiple parallelism levels
- no fma - expensive - transfer slows down kernel - no increment in odd pipe
- limited shuffling - no random write access

- CAL is low-level
- bad Brook+ performance
- not well documented

Table 5: Strengths and weaknesses of the different platforms for data-intensive applications.

Larrabee will use in-order execution, and will have coherent caches.
Unlike current GPUs, but similar to the Cell/B.E., Larrabee will
have a ring bus for communication between cores and for memory
transactions.

Another interesting architecture to implement correlators are FP-
GAs [8]. LOFAR’s on-station correlators are also implemented
with FPGAs. Solutions with FPGAs combine good performance
with flexibility. A disadvantage is that FPGAs are relatively dif-
ficult to program efficiently. Also, we want to run more than just
the correlator on our hardware. LOFAR is the first of a new gen-
eration of software telescopes, and how the processing is done best
is still the topic of research, both in astronomy and computer sci-
ence. We perform the initial processing steps on FPGAs already,
but find that this solution is not flexible enough for the rest of the
pipeline. For LOFAR, currently twelve different processing pipe-
lines are planned. For example, we would like to do the calibration
of the instrument and pulsar detection online on the same hardware,
before storing the data to disk. We even need to support multiple
different observations simultaneously. All these issues together re-
quire enormous flexibility from the processing solution. Therefore,
we restrict us to many-cores, and leave application-specific instruc-
tions and FPGAs as future work. Once the processing pipelines are
fully understood, future instruments, such as the SKA, will likely
use ASICs.

Williams et al. [18] describe an auto-tuning framework for multi-
cores. The framework can automatically perform different low-
level optimizations to increase performance. However, GPUs are
not considered in this framework. We performed all optimizations
manually, which is possible in our case, since the algorithm is rela-
tively straightforward. More important, we found that in our case,
algorithmic changes are required to achieve good performance. Ex-
amples include the use of different tile sizes, and vectorizing over
the different polarizations instead of the inner time loop.

A software-managed cache is used on the Cell/B.E. processor.
GPUs typically have a small amount of shared memory that can
be used in a similar way [16]. An important difference is that in
the Cell/B.E. the memory is private for a thread, while with GPUs
all threads on a multiprocessor share the memory. The available
memory per thread is also much smaller. We applied the technique
described in [16], but found it did not increase performance for our
application.

7. DISCUSSION
A key application characteristic of the correlator is that it is ex-

tremely regular. This means that we know exactly which memory is
referenced at what time. In this paper, we explained that this prop-
erty makes many optimizations possible. We also implemented
several other signal-processing algorithms we did not discuss here,
albeit not on all many-core architectures. Most of our conclusions
hold for all (data-intensive) applications. However, this paper does
not compare the ability of the architectures to cope with unpre-

dictable memory access patterns. We know, for example, that a
particular radio-astronomy imaging algorithm (W-projection) ex-
hibits random memory access, and as a result performs poorly on
at least some of these architectures, and probably all [17]. Also,
the software-manged cache of the Cell/B.E. is less effective here,
since the programmer cannot predict the accesses in advance. For-
tunately, not all applications behave so unpredictably. In general,
we advocate that the focus for optimizations for many-core archi-
tectures should be on memory bandwidth, access patterns, and ef-
ficient use of the caches, even at the cost of increased synchroniza-
tion and extra computation.

In this paper, we focus on the maximal performance that can be
achieved with a single many-core chip. An exiting result we present
here is that even extremely data-intensive applications, such as the
correlator, can perform well on many-core architectures, in partic-
ular on the Cell/B.E.. These results allows us to move forward, and
bring up the question of scalability: can we scale the results to a
full system that processes all telescope data? In this context, it is
important to emphasize that the correlator itself is trivially paral-
lel, since tens of thousands of frequency channels can be processed
independently. However, in case of an FX correlator, a major data
exchange is necessary prior to correlation: each input contains all
frequency channels of a single receiver, but the correlator requires
a single frequency channel of all receivers. We implemented this
for the LOFAR correlator on the 3-D torus of the Blue Gene/P,
where we exchange all data asynchronously. Although an efficient
implementation is complex, the time required for this exchange is
small compared to the time to correlate the data. Moreover, the data
rates grow linearly with the number of receivers, while the com-
pute time of the correlator algorithm grows quadratically. We also
experimented on a PC cluster with a Myrinet switch, which was
able to handle the all-to-all exchange at the required data rates. On



the Blue Gene/P, we can scale the application to more than 10.000
cores. For more information, we refer to [13, 12].

8. CONCLUSIONS
Current and future telescopes have high computational and I/O

demands. Therefore, we evaluated the performance of the extremely
data-intensive correlator algorithm on today’s many-core architec-
tures. This research is an important pathfinder for future radio-
astronomy instruments. The algorithm is simple, we can therefore
afford to optimize and analyze the performance by hand, even if
this requires assembly, application-managed caches, etc. The per-
formance of compiler-generated code is thus not an issue: we truly
compared the architectural performance.

Compared to the BG/P, many-core architectures have a signif-
icantly lower memory bandwidth per operation. Minimizing the
number of memory loads per operation is of key importance. We
do this by extensively optimizing the algorithm for each architec-
ture. This includes making optimal use of caches and registers. A
high memory bandwidth per flop is not strictly necessary, as long
as the architecture allows efficient data reuse. This can be achieved
through caches, local stores and registers.

Only two architectures perform well with our application. The
BG/P supercomputer achieves high efficiencies thanks to the high
memory bandwidth per FLOP. The Cell/B.E. also performs excel-
lently, even though its memory bandwidth per operation is eight
times lower. We achieve this by exploiting the application-managed
cache and the large number of registers, optimally reusing all sam-
ple data. The Cell/B.E. is about five to seven times more energy
efficient than the BG/P, if we do not take the network hardware into
account.

It is clear that application-level control of cache behavior (either
through explicit DMA or thread synchronization) has a substantial
performance benefit, and is of key importance for data intensive
high-performance computing. The results also demonstrated that,
for data-intensive applications, the recent trend of increasing the
number of cores does not work if I/O is not scaled accordingly.
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