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Abstract—Finding new pulsars has always been a challenging
problem, but this challenge is nowadays exacerbated by the
increasing data rates of modern radio telescopes. Because of these
increased data rates, traditional approaches to searching, based
on storing data for off-line processing, are becoming unfeasible.
Therefore, we propose a new pulsar searching pipeline that, by
exploiting high-performance computing techniques, is able to
process observational data in real-time. To achieve the real-time
goal we parallelized all the steps of the pipeline to run on many-
core accelerators, and used auto-tuning to adapt and optimize
the pipeline for different platforms, telescopes, and searching
parameters.

In this paper, we test our pipeline on three different platforms:
two Graphics Processing Units from AMD and NVIDIA, and
an Intel Xeon Phi. Furthermore, we test it on three different
scenarios, based on the operational parameters of three state-
of-the-art telescopes. Results show that our pipeline can adapt
to all tested platforms and scenarios, and achieves real-time
performance and linear scalability. Because power consumption
is a main concern for radio telescopes, and will be the main
bottleneck for the construction of the Square Kilometer Array, we
also measure the power consumed by our pipeline. By comparing
the results obtained on many-core accelerators with the results
obtained using a traditional multi-core CPU, we conclude that
the accelerators can provide up to a factor 8 improvement
in execution time, and up to a factor 6 reduction in power
consumption.

Index Terms—radio astronomy; pulsars; auto-tuning; acceler-
ators

I. INTRODUCTION

Among the most exciting challenges of modern radio astron-
omy is the discovery of new exotic objects like transients and
pulsars. Pulsars are massive and highly magnetized neutron
stars rapidly rotating on their axis, whose signal is received on
Earth only periodically. Their periodicity is what makes them
interesting for scientists, because it can be used to perform
experiments on gravitation that are impossible to reproduce in
a lab, but it is also what makes them more difficult to detect
than stable sources. In fact, pulsars are so difficult to discover
that since 1967, the year when the first pulsar was discovered,
only around 2,400 have been found, out of a population that
astronomers estimate being at least one order of magnitude
bigger.

The complexity of finding new pulsars lies in the need to
explore a broad three-dimensional search space, looking for
a signal with a high enough signal-to-noise ratio (SNR). The
three dimensions of the search space are: (1) the position in

the sky, (2) the distance of the pulsar from Earth, and (3) the
period. The search cannot rely on heuristics to prune the search
space, and the more fine grained and extensive it is, the better
are the chances of finding new pulsars. Increasing the number
of points explored in this search space increases the chances
of a discovery, but also boosts the computational costs of the
search. Because of the high computational cost, pulsar surveys
are traditionally performed off-line, that is the observational
data are stored and then processed and analyzed only after
the observation took place. However, the growing data rate of
modern radio telescopes is pushing this strategy to the limit,
making it increasingly more difficult to store the enormous
amount of data produced by the instruments. This problem
will only be exacerbated in the future, when telescopes like
the Square Kilometer Array (SKA) will produce data rates of
over 10 Pb/s [1] and require an exascale system for processing.

The only foreseeable solution to this problem will be to
avoid collecting the data for off-line processing, and perform
the search on-line and in real-time. Real-time surveys of
transient astronomical sources are already reality both in the
optical [2] and radio [3] domain, but the computational costs
of non-periodic transient surveys are lower than for periodic
sources like pulsars. Moreover, the most common technique
to find periodic signals is to use the Fast Fourier Transform
(FFT), but this algorithm requires the whole data set to be
available for the computation, and this is not possible in a real-
time scenario. Furthermore, processing the data in real-time is
not the only challenge: the main challenge is to process the
data in real-time and within a limited power budget. Therefore,
real-time pulsar surveys are not a reality, yet.

We propose to use many-core accelerators and modern high-
performance computing techniques to make finding pulsars
in real-time a reality. To do so, we designed and developed
a parallel pulsar searching pipeline, implemented using MPI
and OpenCL. Our pipeline can run on different many-core
accelerators, being them Graphics Processing Units (GPUs)
or the Intel Xeon Phi, and traditional multi-core CPUs, and
can be automatically tuned to adapt to a variety of telescopes
and search parameters. The contributions of this paper are:
(1) demonstrating that real-time pulsar searching is possible
for real instruments, (2) showing the performance, scalability
and power consumption of our pipeline, and (3) comparing the
use of multi-core CPUs and many-core accelerators for pulsar
searching for both performance and power consumption. We



believe that these contributions will remain relevant in the
future because pulsar searching is a memory-bound problem,
and memory bandwidth is not increasing as fast as the number
of floating-point operations per second in modern hardware.

The remainder of this paper is organized as follows. Sec-
tion II contains an overview of the relevant literature, while
Section III introduces the basic concepts of pulsar searching,
and provides a description of our real-time pipeline and all its
computational kernels. The experiments, platforms and scenar-
ios used to evaluate our pipeline are described in Section IV,
while the experimental results are presented and analyzed in
Section V. Finally, Section VI provides a further discussion
on the results of the performed experiments, and Section VII
summarizes our conclusions.

II. RELATED WORK

As mentioned in Section I, new radio telescopes are making
real-time transients search a necessity. An example is the
Australian SKA Pathfinder (ASKAP) transient survey called
CRAFT [3]. The pipeline described in [3] is designed to
be implemented in hardware, but the paper mentions other
research groups investigating the feasibility of software or
FPGA based implementations; the paper also mentions the
possible use of GPUs to implement the transient searching
pipeline. Another real-time transient pipeline has been proto-
typed and tested at the BEST-2 radio telescope in Medicina [4].
This software transient searching pipeline is accelerated using
GPUs, and uses the dedispersion algorithm described in [5].
Our pipeline differs from these previous works in two aspects:
(1) we include a period search to also find pulsars and not only
generic transient objects, and (2) we aim to design software
that can be automatically adapted to different telescopes,
instead of being specifically tailored for just one use case.

If real-time transient surveys are a reality, real-time pulsar
surveys are much more difficult due to the period search
that can no longer be implemented using a FFT. However,
searching all the data produced by big pulsars surveys is a
challenging task even when performed off-line. In 2010, the
Einstein@Home (E@H) volunteer based distributed comput-
ing project has been used [6] to process previously collected
data, producing the discovery of a new pulsar; the E@H dis-
tributed computing project had, at the time of publication, an
aggregate computational power of 250 TFLOP/s. Additionally,
even a traditional suite like DSPSR [7], a high-performance
library that implements various algorithms used in pulsar
astronomy, is being enhanced to exploit the computational
power of many-core accelerators. Nonetheless, DSPSR does
not yet support real-time pulsar searching.

III. PULSAR SEARCHING

As introduced in Section I, there are three dimensions in
the search space of a standard pulsars survey: (1) position, (2)
distance and (3) period. To find new pulsars, all data received
by the telescope needs to be processed for all the points in
this three-dimensional search space. If there is indeed a signal
buried in the data, then this process will enhance its SNR

and make it visible. Of these three dimensions, in the rest of
this paper we will focus only on distance and period, thus
excluding the position in the sky from our discussion. The
reason for excluding this dimension is that exploring it means
to replicate the process described in this paper for multiple
input data streams, called beams. While processing multiple
beams causes a linear increase in the performance require-
ments of the search, these beams are completely independent
from each other and can thus be processed in parallel. Because
of this natural parallelism, and the fact that our pipeline can
effortlessly be replicated for multiple independent beams, we
decided to focus this paper on how to deal with distance and
period.

An overview of our pipeline is presented in Figure 1; while
this paper focuses only on our parallel implementation, general
information on pulsar searching techniques can be found
in [8] and [9]. The first step of the pipeline is dedispersion;
dedispersion, described in more detail in Section III-A, is an
algorithm used to reconstruct a signal assuming that it comes
to our planet from a specific distance. Because this distance
is one of the unknowns of the search process, the input is
processed for a certain number of trial distances. In general,
the higher the number of trial distances is, the higher is the
chance of not leaving part of the search space unaccounted
for. For each of these trial distances, dedispersion produces a
new time series.

The following step in the pipeline is a matrix transpose that
is used to rearrange the dedispersed time series in memory.
The reason for this step is that the optimal memory layout
for dedispersion is suboptimal for all the successive steps
of our pipeline. After a series of performance experiments,
we decided to add this step because the improvement in
performance caused by the new memory layout by far exceeds
the penalty of adding this step to the pipeline. Because matrix
transposition is a well studied topic, and because this step is
just an accessory part of the pipeline and not a fundamental
step of pulsar searching, it will not be discussed further in this
paper. We will, however, include this step in all performance
measurements.

The transposed time series are then processed by two
different kernels: a SNR computation and folding. The SNR
computation, described in more detail in Section III-C, is used
to analyze the dedispersed data to find non periodic sources
and pulsars that are bright enough to be detected without
a period search. The folding algorithm, described in more
detail in Section III-B, is used to perform the period search,
fundamental to discover weaker pulsars. In this stage, all the
dedispersed time series are folded modulo a period; like for
dedispersion, this is a brute-force search and a certain number
of trial periods are used. After all these stages, the input
signal has been processed for a variety of trial distances and
periods; a final SNR computation, described in more detail
in Section III-C, is performed to analyze the folded data and
identify periodic signals.

All the pipeline’s stages, excluding the last SNR computa-
tion, are executed for every second of the observation. For the



Fig. 1. A schematic representation of the pipeline. Ellipses represent computational kernels and boxes represent data. Yellow boxes are the output.

scope of this paper, the input data are transferred to the many-
core accelerator for every second of the computation, while the
output data structures are only transferred back to the host at
the end of the search; all intermediate data structures are only
present on the accelerator. Because our parallel framework of
choice for the accelerators is OpenCL, in this paper we use the
OpenCL nomenclature; in particular, with the word work-item
we refer to a thread and with the word work-group we refer
to a block of related threads executed by the same processor.

A. Dedispersion

Traveling from their emitting source all the way to Earth,
signals are slowed down by interacting with free electrons in
the inter-stellar medium (ISM). This process affects different
frequencies of the same signal with an inverse relation: the
lower the frequency is, the more it is slowed down by the
ISM. Therefore, a delay is introduced between the time at
which the different frequencies of a same signal are received
by the telescope. The number of seconds of delay, ∆, for
a given frequency fi, and relative to the highest measured
frequency fh, is described by Equation 1; the frequency
components of the equation are measured in MHz. In this
equation, the dispersion measure (DM) represents the number
of free electrons between the pulsar and the telescope, and it
is linearly dependent with the distance between the two.

∆ ≈ 4, 150 ×DM × (
1

f2
i

− 1

f2
h

) (1)

In order to reconstruct the original signal, this delay must
be cancelled out by realigning all the different frequencies.
This process of reconstructing the original signal is repeated
for a number of DMs, each of them representing a different
trial distance in the search space; as an example, the number
of DMs that will be used in the pulsar surveys for the first
phase of the SKA [10] is between 6,000 and 16,000. The
time complexity of dedispersion is O(d×c×s) where d is the
number of trial DMs, c is the number of frequency channels
that the input is divided into, and s is the number of samples
per second. For additional details on the parallelization of this
algorithm and its performance on many-core accelerators refer
to [11].

B. Folding

In off-line pulsar searching pipelines, the period search is
performed using an FFT, and the input signal is folded only
modulo the periods identified by the search. The reason for this
is that the complexity of the FFT is lower than the complexity

of folding. However, to use the FFT for the period search
the whole observation must be available, and in a real-time
scenario there is no option but to save at most a few seconds
of data, and process them before they are replaced by new
incoming data. Because folding does not require us to save the
whole observation, and it can be performed for each second of
data without knowledge of past or future values, we decided
to use it as the algorithm for period search in our real-time
pipeline. Therefore, in our pipeline we fold all the dedispersed
time series modulo a number of trial periods; the number
of trial periods depends on the target of the observation, as
pulsar periods may range from a few milliseconds to many
seconds. The pseudocode of the folding algorithm is presented
in Algorithm 1; the time complexity of the algorithm is
O(d × p × s) where d is the number of trial DMs, p is the
number of trial periods, and s is the number of samples per
second.

Algorithm 1 Pseudocode of the folding algorithm.
for dm = 0 → d do

for period = 0 → p do
for sample = 0 → s do

bin = computeBin(period, sample)
output[dm][period][bin] += input[sample][dm]
counters[dm][period][bin] += 1

end for
output[dm][period][bin] /= counters[dm][period][bin]

end for
end for

The algorithm operates on three data structures, one input
s × d matrix, and two output d × p × b arrays, where b
is the number of bins in which a period is divided. This
algorithm can be parallelized naturally along three different,
and independent, dimensions: DMs, periods and bins. In
our parallel implementation, an OpenCL work-group is a
three-dimensional structure, in which the first dimension is
associated with the DMs, the second with the periods and
the third with the bins. Each work-item in a work-group is
thus naturally associated with a (DM, period, bin) triple and
computes the output item associated with those coordinates.
This parallelization scheme maps well to both input and output
data structures, so that all memory accesses performed by
consecutive work-items can be coalesced [12].

C. SNR Computation

In our pipeline there are two distinct kernels computing
different SNR values: the first one works on dedispersed time
series, while the second one works on folded time series. The
function of both steps is to separate the points in the search



space where only noise is present from the points where a
statistically significant signal may be present. Even if these
two kernels work on different input and output data structures,
they use the same formula for computing the SNR, so we can
discuss them together. This formula is (m−a)/r, where m is
the maximum value of the time series, a the mean and r the
root mean square.

The first SNR computation works on the dedispersed time
series, just after the transposition takes place; the input to
this kernel is a s × d matrix, and the output is an array of d
elements. The time complexity of this algorithm is O(d× s).
The second SNR computation works on the folded time series,
and differently from every other kernel of the pipeline is
only executed once at the end of the computation. The input
to this kernel is a d × p × b three-dimensional array, and
the output is a d × p matrix; the time complexity of this
algorithm is O(d × p × b). Their parallelization schemes are
also similar, with the first kernel parallelized in the DM
dimension, thus having each work-item associated with a
particular DM, and the second kernel parallelized in both DM
and period dimensions, so that each work-item is associated
with a (DM, period) pair.

D. Auto-Tuning

All the computational kernels described in this section
expose configurable parameters to the user. By configuring
these parameters the user can control various characteristics
of the kernels, such as (1) the number of work-groups and
work-items in a work-group, (2) the amount of work a single
work-item is responsible for, (3) the amount of resources
needed per work-item, (4) how programmable caches are used,
(5) vectorization and (6) loop unrolling. These parameters do
not only influence the parallelization of each kernel, but can
also affect algorithmic properties like the arithmetic intensity
(AI), i.e. the ratio between floating-point operations and bytes
accessed in global memory, of a kernel. This is important
because a higher AI is associated with higher attainable
performance [13], especially for platforms like many-core
accelerators where the gap between memory bandwidth and
peak computational performance is so wide, and even more
so for a memory-bound application like our pulsar searching
pipeline.

However, we have no a priori knowledge about how to
configure these parameters. Moreover, our goal is to execute
our pulsar searching pipeline on different platforms and in
different scenarios, without having to manually modify the
algorithms. Therefore, we rely on auto-tuning to find the
optimal configuration of each kernel’s parameters, for each
platform and on every scenario. To tune the kernels we execute
them on each platform and for all the scenarios described in
Section IV, measuring the achieved performance while varying
all their parameters. We therefore explore, for each kernel, an
optimization space that can consist of hundreds of configura-
tions, even for a single platform-scenario combination. In the
performance experiments presented in this paper we use, for
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Fig. 2. Example of auto-tuning for the dedispersion kernel.

Platform CEs GFLOP/s GB/s Watt
AMD HD7970 64× 32 3,788 264 250
NVIDIA K20 192× 13 3,519 208 225
Intel Xeon Phi 5110P 2× 60 2,022 320 225
Intel Xeon E5-2620 6× 1 192 42 95

TABLE I
CHARACTERISTICS OF THE TESTED PLATFORMS.

each kernel of the pipeline, the optimal configuration found
through the auto-tuning process.

To exemplify how much auto-tuning can affect performance,
Figure 2 shows the performance histogram of dedispersion for
one specific platform-scenario combination. What can be seen
from this example is that finding the optimal configuration of
a kernel without tuning is not trivial, because the optimum
may lie far from the majority of configurations. Moreover,
the performance obtained by using the optimal configuration
can be much higher than the performance associated with any
other configuration. An in-depth analysis of the tuning of the
dedispersion kernel used in this paper can be found in [11];
the same process described in [11] has been applied in this
paper to all the other kernels.

IV. EXPERIMENTAL SETUP

In this section we describe all the experiments that we per-
formed in this paper, providing all the necessary information
that can be used to replicate them. We first describe the factors
common to all experiments, and then provide experiment-
specific information in dedicated subsections. The many-core
accelerators that we used to test our pipeline are described
in Table I; the table provides, for each platform, the number
of OpenCL compute elements (CEs), the maximum dissipated
power, and the theoretical peak performance and memory
bandwidth. Together with the three many-core accelerators,
the two graphics processing units (GPUs) and the Xeon Phi,
we also included the characteristics of a multi-core Intel CPU,
the Xeon E5-2620, that we will use to provide a comparison
between the accelerators and a more traditional platform.

The source code1, is the same for all tested platforms,
and is implemented in C++, using MPI and OpenCL for

1https://github.com/isazi/PulsarSearch



Apertif LOFAR SKA1
Samples per Second 20,000 762 20,000
Center Frequency 1,425 MHz 142 MHz 800 MHz
Total Bandwidth 300 MHz 6.24 MHz 300 MHz
Channels 1,024 8,192 15,000
Channel Bandwidth 292 kHz 762 Hz 20 kHz
First DM 0 pc/cm3 0 pc/cm3 0 pc/cm3

DM Step 0.03 pc/cm3 0.145 pc/cm3 0.009 pc/cm3

First Period 1.6 ms 41 ms 1.6 ms
Period Step 1.3 ms 1.3 ms 1.3 ms
Bins 32 32 32

TABLE II
CHARACTERISTICS OF SCENARIOS AND SEARCH PARAMETERS.

the parallelization. The OpenCL runtime used for the AMD
HD7970 GPU is the AMD APP SDK 2.9, the runtime used for
the NVIDIA K20 GPU is CUDA 5.5, and the runtime used for
the Intel Xeon Phi and CPU is the Intel OpenCL SDK 3.2.1;
the C++ compiler is version 4.4.6 of the GCC. The accelerators
are installed in computing nodes of the Distributed ASCI
Supercomputer 4 (DAS-4 2); the DAS-4 uses CentOS version
6 as operating system, and version 2.6.32 of the Linux kernel.
All the computing nodes are connected to power distribution
units (PDUs) that we used to monitor the power consumption
of the pipeline.

The experiments are performed in three different scenarios,
two based on telescopes of the Netherlands Institute for Radio
Astronomy (ASTRON), LOFAR [14] and the Apertif [15]
system on Westerbork, and one based on the baseline design
for the first phase of the internationally designed Square
Kilometer Array [10], SKA1. The constant parameters of
these three scenarios are listed in Table II. The first half of
the table contains the parameters that define each scenario,
while the second half contains the parameters associated with
an hypothetical pulsar survey. Using different scenarios in
the experiments is not only important to show the adapt-
ability of our pipeline to different telescopes and surveys,
but also because each different scenario stresses a different
part of the pipeline. Moreover, by using scenarios based on
the operational parameters of telescopes that are still under
development, like Apertif or the SKA1, we aim at providing
astronomers with insights into how to build the systems that
will have to process the data of these telescopes. The variable
component of each experiment will be the number of DMs and
periods used for the search. Both DMs and periods will vary
between the seven powers of 2 that range from 32 to 2,048;
thus, the total number of tested instances per experiment will
be 49 for each platform-scenario combination.

A. Pipeline Scalability

The first experiment consists in measuring the performance
of our pulsar searching pipeline. The goal of this experiment
is to test the feasibility of real-time pulsar searching, and show
the scalability of our pipeline in terms of the number of DMs
and periods. The pipeline is executed on every platform, for
each scenario and every combination of DMs and periods; each

2http://www.cs.vu.nl/das4/
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Fig. 3. Pipeline performance for the AMD HD7970, Apertif scenario.

of the pipeline’s kernels use the optimal configuration, found
through auto-tuning, for the specific test case. The metric used
to measure performance is the execution time, measured in
seconds and using software clocks, to complete the processing
of a single beam of 60 seconds.

B. Power Consumption

The second experiment consists in measuring the power
consumed by our pulsar pipeline during its execution. The goal
of this experiment is to identify the more power efficient plat-
form for real-time pulsar searching. The pipeline is executed
on every platform, for each scenario and every combination
of DMs and periods; the same optimal configurations used for
the experiment described in Section IV-A are used. Because
the granularity of the PDUs is a whole compute node, the
measured values are normalized using the power consumption
of the same node in an idle state; in this way we can take into
account just the power consumed by the pipeline. The metric
used in this experiment is the total consumed power, measured
in kW using the DAS-4 PDUs, used by the pipeline to process
a single beam of 60 seconds.

V. RESULTS

In this section, we present the results of the experiments
described in Section IV. For each experiment we first introduce
the results, and then provide an analysis of them. We conclude
each experiment with a summary of the findings.

A. Pipeline Scalability

The first experiment, described in Section IV-A, aims at
measuring the performance of the pipeline to understand the
feasibility of real-time pulsar searching and the scalability
of the pipeline in terms of DMs and periods. All figures
in this section are log-log plots and each line represents a
different number of DMs; a black line, labeled “Real-Time”,
represents the threshold over which the execution time of
the pipeline exceeds the observation time (i.e. 60 seconds)
thus breaking the real-time constraint. We start presenting the
results obtained with the first platform, the AMD HD7970
GPU.
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Fig. 5. Pipeline performance for the AMD HD7970, SKA1 scenario.

Figure 3 presents the results of the Apertif setup. In this
scenario, the pipeline achieves real-time performance in all but
one of the test cases. The pipeline scales better than linearly for
all DMs until the threshold of 256 periods, because there are
still resources available for the computation; after this point,
however, the resources available to the GPU are saturated
and the pipeline scales linearly in the number of periods.
While increasing the number of periods affects the pipeline’s
scalability, increasing the number of DMs has a lower impact
on performance. As a matter of fact, the pipeline scales better
than linearly in the number of DMs for most of the test cases,
approaching linear scalability only for the bigger ones.

In the LOFAR scenario, presented in Figure 4, performance
requirements are lower, and the pipeline satisfies the real-time
constraint in all test cases. In fact, even the biggest of test
cases, the 2, 048×2, 048 case, is 7 times faster than real-time.
Achieving faster than real-time performance means that the
pipeline can scale to even bigger search spaces, or process
the data streams associated with multiple beams. Therefore,
it would be possible to process 7 beams per GPU and still
satisfy the real-time constraint even for the biggest of test
cases. Furthermore, the pipeline scales better than linearly in
both the number of DMs and periods.

Figure 5 introduces the results for the most computationally
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Fig. 6. Pipeline performance for the NVIDIA K20, Apertif scenario.
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Fig. 7. Pipeline performance for the NVIDIA K20, LOFAR scenario.

challenging scenario, SKA1; one of the data points, the one
associated with the 2, 048 × 2, 048 case, is missing due to
the platform’s memory limitations. In this scenario, most of
the test cases satisfy the real-time constraint, but only up to
512 DMs. After this point, all results lie over the real-time
threshold; in correspondence with the bigger computed test
case, the pipeline is 2.4 times slower than real-time. If in the
LOFAR scenario better than real-time results indicated that
the pipeline could scale to even bigger search spaces, pulsar
surveys in the SKA1 scenario would have to be distributed:
this can be done by replicating the data streams to multiple
accelerators, and executing the pipeline on subsets of the
global search space. However, better than linear scalability is
achieved in both the number of DMs and periods also for the
SKA1 scenario.

The second platform we tested is the NVIDIA K20 GPU;
Figure 6 presents the results of the Apertif scenario. Like for
the previous platform, we notice that almost all test cases
satisfy the real-time constraint. The pipeline’s execution time
is higher on the K20 than on the HD7970, but the scalability is
better. In fact, while scalability in both dimensions is better or
close to linear, the figure shows that this platform scales more
smoothly than the previous one in the number of periods.

While in the Apertif scenario we can identify differences in
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how the two GPUs scale, Figure 7 shows that results in the
LOFAR scenario are almost identical. The real-time constraint
is satisfied for all test cases, and in the biggest one the pipeline
is 4.7 times faster than real-time. The pipeline scales better
than linearly in the number of periods, and linearly or better
in the number of DMs.

The SKA1 scenario is presented in Figure 8, and the first
noticeable result is that most of the test cases do not satisfy
the real-time constraint. In fact, starting from 256 DMs, no
line lies below the real-time threshold. The presence of some
lines below the threshold suggests that SKA1 pulsar surveys
will have to be distributed among multiple K20 GPUs in the
DM dimension. Although it is not always possible for the K20
to satisfy the real-time constraint in this scenario, the achieved
scalability is better than linear in both the number of DMs and
periods.

The last accelerator we tested is the Intel Xeon Phi. Figure 9
shows the performance results for this accelerator in the
Apertif scenario. Most of the test cases still lie below the
real-time threshold, but the number of instances that do not
satisfy this requirement is higher than for the GPUs, with the
biggest test cases executing 4.9 times slower than real-time.
The execution time, compared with the GPUs, is also higher
for all test cases. The pipeline’s scalability is better than or
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equal to linear, and the observed trend is similar to the one of
the NVIDIA GPU.

The results for the LOFAR scenario are presented in Fig-
ure 10. In this scenario, as seen for the other platforms, all
test cases satisfy the real-time constraint, even if performance
is lower on the Phi than on the GPUs; the biggest test case is
2.2 times faster than real-time. Scalability in both the number
of DMs and periods is better than linear.

Results for the last scenario, SKA1, are presented in Fig-
ure 11. Performance obtained in this scenario by the Xeon Phi
is too low to satisfy the real-time constraint in any of the test
cases, with the biggest one resulting 14 times slower than real-
time, and the smallest one still 1.4 times slower. Achieving
real-time performance in this scenario, even if theoretically
possible by computing different DMs on different Xeon Phis,
would require too many devices to be feasible in practice. Like
for the other platforms, scalability in both the number of DMs
and periods is better than linear in this scenario.

To summarize the results of this experiment, all platforms
achieve linear or better than linear scalability in all scenarios
in both the number of DMs and periods. The performance
achieved by each platform is, however, different, with the
HD7970 GPU resulting the fastest among the platforms we
tested; both GPUs performed better than the Xeon Phi in all
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Fig. 12. Total consumed power, 2, 048× 2, 048 case.

scenarios. Although the scenarios are different in their perfor-
mance requirements, the results of this experiment show that
our pipeline would be able to satisfy the real-time requirement
for all of them by distributing the pipeline over multiple many-
core accelerators where performance on a single accelerator
would not be enough. Therefore, we can conclude that real-
time pulsar searching could already be a reality for current
radio telescopes, and it will enable future telescopes to perform
bigger and more accurate surveys.

B. Power Consumption

In this section we present the results of the experiment
described in Section IV-B. Due to space limitations, we will
not present the results for all the test cases like we did in
Section V-A, but use a specific test case to highlight the
results. The test case we selected is the biggest one, with
2,048 DMs and periods. We believe that it makes sense to
use this particular test case because we know, from the results
previously presented, that it is the test case with the higher
execution time in each of the scenarios. Therefore, even if
not representative of every other test case, it still provides an
upper bound on the power consumed by the pipeline running
on our three many-core platforms.

The results are presented in Figure 12; because the AMD
HD7970 was not able to execute this test case in the SKA1
scenario due to memory limitations, the value is missing from
the figure. However, the almost identical results obtained by
the two GPUs in the Apertif and LOFAR scenarios let us
believe that the total power consumption would be similar
also for the SKA1 scenario. The two GPUs require 15 and
1.2 kW to execute the pipeline for the Apertif and LOFAR
scenario, respectively. Because we know from Section V-A
that the execution time of the two platforms is different, we
can conclude that the energy per second consumed by the
K20 is lower than the energy per second consumed by the
HD7970. It is also clear, from these results, that the more
computationally expensive the scenario is, the more power is
required for the computation, which is what we expect.

The Xeon Phi consumes more total power executing the
pipeline, but this is caused only by the higher execution times
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and not by a higher amount of energy consumed per second.
In fact, the Xeon Phi is the accelerator that, per second,
consumes less energy to execute the pulsar searching pipeline.
Comparing the power consumption between the GPUs and
the Phi, the Phi uses only between 1.2 and 1.8 more power to
complete the execution of the pipeline, while being on average
2.5 times slower than the GPUs.

To summarize the results of this experiment, the power
required during the execution of the pipeline is, in all cases,
sensibly lower than the thermal design power of the accelera-
tors. Among the GPUs, the K20 is less power hungry than the
HD7970, but because of the higher execution time requires the
same total power as the AMD GPU to execute the pipeline.
The accelerator that consumes less energy per second is the
Xeon Phi, however the performance gap between it and the
GPUs is too wide and this platform ends up consuming more
power, in total, than the other two accelerators.

VI. DISCUSSION

In this section we provide further analysis of the results
presented in Section V, and introduce additional data to
complement the experiments already presented. We start by
analyzing the differences between the three scenarios that we
used for our experiments. Figure 13 provides a breakdown
of the percentage of time spent on each of the pipeline
stages during the execution; for simplicity, and due to space
limitations, we only show the biggest test case. The first result
is that, of all of the pipeline stages, only three determine the
total execution time: input handling, dedispersion and folding.
All the other kernels (i.e. the transpose and the two SNR com-
putations) combined, account only for few percentage points
of the total execution time. Therefore, any future performance
improvement of this pipeline will have to focus on the three
main stages.

Another interesting result is that the relative impact of the
three main components of the pipeline on the total execution
time differs by scenario, but not so much by platform. In
fact, we can see the same pattern for each platform: in the
Apertif scenario folding dominates performance, while han-
dling and transferring the input to the accelerator determines
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performance for the LOFAR scenario, and dedispersion is the
main contributor to the SKA1 execution time. These different
scenarios were chosen because, for their characteristics, they
would stress different aspects of the pipeline, however they
are modeled on the operational parameters of real telescopes,
showing that different instruments require focus on different
stages of the same pipeline. In this context, we believe that
having a pipeline where each kernel can be tuned and opti-
mized automatically for each particular scenario is extremely
important to perform real-time pulsar surveys.

Figure 13 provides also an explanation for the scalability
trends observed in Section V-A. In the Apertif scenario,
performance results for all three platforms showed that the
pipeline scaled better than or close to linearly in the number
of DMs, but only linearly in the number of periods, and this
is because folding dominates performance in this scenario.
Similarly, the pipeline scales better than linearly in the number
of periods for both LOFAR and SKA1 because folding is
not the main performance driver in these scenarios. Because
input handling dominates the LOFAR scenario, the pipeline
scales better than linearly in both dimensions, but will scale
linearly with an even bigger DM space. As for the SKA1
scenario, it will also approach linear scalability with more
DMs to search, as dedispersion is the main factor affecting
the pipeline’s performance in this scenario.

Figure 14 provides the speedup achieved by our pipeline
on many-core accelerators, compared with the same pipeline
tuned and running on a multi-core CPU, the Intel Xeon E5-
2620; the characteristic of this platform are also presented in
Table I. Also for this experiment, only the biggest test case is
presented. The achieved speedup ranges between 1.2 and 8.3,
with the highest speedup achieved in the SKA1 scenario, and
the lowest one in the LOFAR scenario. This result is useful
to highlight how many-core accelerators contribute to achieve
real-time performance in pulsar searching, especially in the
context of future telescopes like the SKA. Achieving high-
performance means also that less hardware is necessary to
process the same amount of data, lowering the costs associated
with maintaining and operating the systems used for this task.
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Even if higher speedups are possible for individual kernels
(e.g. for dedispersion [11]), obtaining higher speedups is more
difficult for the pipeline as a whole as performance is always
determined by the slowest kernel.

By analyzing Figure 15 it can be seen that many-core ac-
celerators also require less power than using CPU. Comparing
Figure 14 and 15 we see that the GPUs reduce their advantage
over the multi-core CPU, as their energy consumption is much
higher, although they are still 1.8–5.9 more power efficient.
While the GPUs reduce their gain over the CPU when power
consumption is taken into account, the Xeon Phi maintains
its advantage, and achieves the same power efficiency and
speedup when compared to the tested CPU. This is because
the measured energy consumed per second while executing
the platform is almost the same for the two Intel devices, but
the execution time is lower for the Phi. Overall, many-core
accelerators are a viable platform for the execution of a real-
time pulsar searching pipeline, both from performance and
energy efficiency perspectives.

These results can also be used to estimate the number
of accelerators that we would need today to build a pulsar
searching system for the first phase of the SKA. From the
SKA1 baseline design [10] we know that, in the operational
mode that we used for our experiments, a pulsar survey will
explore a search space of 2,222 beams and 16,113 DMs;
using the best performing accelerator, the AMD HD7970, we
would need 63 GPUs per beam to dedisperse all the DMs
and search to up to 2,048 periods. Therefore, the total number
of GPUs to process all beams would be nearly 140,000, and
this would require more than 30 MW of power just for pulsar
searching. However, the number of GPUs necessary could be
reduced down to only 20 per beam by having the input already
available in the accelerator memory, without having to transfer
it just for this pipeline. In this case, the total number of GPUs
would be reduced to less than 44,500 and the power required
for the search to 9.5 MW. Future improvements in the power
efficiency of many-core accelerators will help reduce even
more the power budget for the SKA.



VII. CONCLUSIONS

In this paper we introduced a new pulsar searching pipeline.
All the stages of this pipeline are parallel, implemented using
OpenCL, and can run on a variety of many-core accelerators.
We use OpenCL to achieve code portability between different
platforms, but we also provide adaptability to different tele-
scopes and search parameters. To adapt the code, we exploit
auto-tuning, finding the optimal configuration for each of the
pipeline kernels in every specific scenario. The pipeline can
also be distributed over multiple nodes using MPI, thus further
increasing its scalability.

The main contribution of this paper is to show the feasibility
of a real-time pulsar searching pipeline, as new radio tele-
scopes will force a shift from the traditional off-line processing
to a more challenging real-time scenario, and we showed in
this paper that this is possible even using currently available
hardware. We showed in Section V-A that, in different scenar-
ios and using different platforms for its execution, our pipeline
is able to process data in real-time, i.e. to process one second
of input data in less than one second. In cases where we
cannot show real-time performance using a single accelerator,
we have the possibility to distribute the search over multiple
nodes, thus satisfying the real-time constraint.

The pulsar pipeline introduced in this paper does not only
achieve real-time performance, but shows linear or better
than linear scalability in all search dimensions: number of
DMs and periods. This is another important result, because it
allows astronomers to easily predict the number of accelerators
needed for a specific search, and to minimize the number
of necessary accelerators. This allows for smaller and less
expensive systems, and it helps keeping under control the
power required to operate them.

In Section VI we showed that using many-core accelerators
provides good speedup over multi-core CPUs, with GPUs
being 2–8 times faster than an Intel Xeon CPU. Not only
are many-core accelerators faster than a traditional CPU in
executing our pulsar searching pipeline, but they also consume
1.8–5.9 less power in our tested scenarios, another character-
istic that makes these platforms the most suitable for pulsar
searching in the SKA era.

In the future, we plan to test our proposed pipeline on
newer many-core accelerators. In particular, we are interested
in measuring the impact that the introduction of 3D stacked
memory will have on this pipeline, considering that all its most
time consuming algorithms are memory-bound. Furthermore,
we plan to add the possibility to perform acceleration search,
thus being able to more easily detect pulsars in binary systems.
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