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Abstract

Divide-and-conquer is a well-suited program-
ming paradigm for parallel Grid applications.
Our Satin system efficiently schedules the fine-
grained tasks of a divide-and-conquer applica-
tion across multiple clusters in a grid. To accom-
modate long-running applications, we present
a fault-tolerance mechanism for Satin that has
negligible overhead during normal execution,
while minimizing the amount of redundant work
done after a crash of one or more nodes. We
study the impact of our fault-tolerance mecha-
nism on application efficiency, both on the Dutch
DAS-2 system and using the European testbed
of the EC-funded project GridLab.

1 Introduction

Parallel applications are being executed on in-
creasingly large and complex systems like com-
putational grids [1, 4, 24]. In large-scale grids,
the probability of a failure is much greater than
in traditional parallel systems [15]. Therefore,
fault tolerance is becoming a crucial area in grid
computing.

In this paper, we propose a fault-tolerance
mechanism for divide-and-conquer applications.
Divide-and-conquer parallelism is a popular and
effective paradigm for writing parallel grid ap-
plications [5, 24]. Exploiting the structure of
the divide-and-conquer applications allowed us
to create a mechanism that has smaller overhead
and is simpler to implement than more general

techniques such as checkpointing.

Divide-and-conquer programs are a general-
ization of the popular master/worker paradigm.
They operate by recursively dividing a problem
into subproblems, until they become trivial to
solve, and then combining their results. Such
programs can be run efficiently in parallel [8].
Also, because of their hierarchical structure, they
can be run efficiently on hierarchical grids [24].
An example of a divide-and-conquer system de-
signed for grids is Satin [22], which we use as an
experimental platform for our research. Satin
is implemented on top of our Java-based grid
programming platform Ibis [12, 23]. In Satin,
each processor maintains a work queue contain-
ing jobs (i.e., subproblems) that still need to
be executed. The system load is balanced by a
special, grid-aware version of work stealing that
overlaps local steals with remote ones [22]. Satin
is implemented entirely in Java and can run effi-
ciently in distributed, heterogeneous, wide-area
environments [24], making it an excellent plat-
form for parallel grid applications.

The divide-and-conquer paradigm has several
advantages when implementing fault tolerance.
There is no notion of global state in a divide-and-
conquer application: function execution does not
have side-effects and the result of a function de-
pends only on its input parameters. Function
execution will always produce the same outputs
if given the same inputs, a property known as
referential transparency [11]. So, the work lost
in a crash of a processor can be redone at any
time during execution of the application.



Therefore, it is possible to create a fault-
tolerance mechanism based on redoing the work
lost by processor crashes. Such a mechanism can
have very low overhead, as no synchronization
between processes is needed and no data needs
to be stored on stable storage. Several such tech-
niques have been proposed [5, 7, 14, 18]. How-
ever, the common problem of those techniques is
redundant computation — work done by live (i.e.,
still working) processors that has to be discarded
and redone as a result of crashes.

The main contribution of this paper is a
novel fault-tolerance mechanism for divide-and-
conquer applications that avoids redundant com-
putations by storing partial results in a global
(replicated) table. These results can later be
reused, thereby minimizing the amount of work
lost as a result of a crash. The execution time
overhead of our mechanism is close to zero. Our
mechanism can handle crashes of multiple pro-
cessors or entire clusters at the same time. Tt
can also handle crashes of the root node that ini-
tially started the parallel computation. We have
evaluated the performance of our mechanism on
the Dutch wide-area Distributed ASCI Super-
computer 2 (DAS-2), and on the heterogeneous
testbed of the European GridLab [2] project. In
this experiment, we ran a fault-tolerant parallel
application simultaneously on five different par-
allel machines distributed over Europe.

The rest of this paper is organized as follows:
in Section 2, we discuss related work. In Sec-
tion 3, we present our fault-tolerance mechanism,
discuss its correctness and describe its implemen-
tation. We present the results of the performance
evaluation of our system in Section 4. We con-
clude in Section 5.

2 Related work

The most popular fault-tolerance mechanism is
rollback recovery, which comes in two flavours:
checkpoint-based and log-based [13]. With check-
pointing, the state of the application is pe-
riodically saved on stable storage, usually a
hard disk. After a crash, the application is
restarted from the last checkpoint rather than

from the beginning [3]. Checkpointing is used in
grid computing by systems such as Condor [19]
and Cactus [1]. Log-based techniques combine
checkpointing with logging of nondeterministic
events [13]. Message logging is a special case of
log-based recovery scheme in which all nonde-
terministic events are modeled as a message re-
ceipt. During recovery, the logged events are re-
played to the recovering process in their original
order. Log-based recovery enables the applica-
tion to recover beyond its most recent checkpoint
and therefore is especially attractive to appli-
cations frequently communicating with outside
world which cannot be rolled back. One of the
disadvantages of rollback recovery is its execu-
tion time overhead, even if there are no crashes.
For checkpointing, the main source of this over-
head is writing the state of the process to sta-
ble storage. This overhead might be reduced
by using concurrent checkpointing [20] and in-
cremental checkpointing [16]. With log-based
techniques, copying messages increase commu-
nication latency. For systems that implement
stable storage by a filesystem available through
the network, communication bandwidth required
for the application doubles, as each message has
to be sent also to the stable storage. Another
problem of most rollback-recovery schemes is the
complexity of the crash recovery procedure, es-
pecially in dynamic and heterogeneous grid en-
vironments where rescheduling the job and re-
trieving and transferring the checkpoint data be-
tween nodes is non-trivial. The main advan-
tage of checkpointing is that it is a very general
technique which can be applied to any type of
parallel applications. The approach we present
in this paper is less general, it only applies to
divide-and-conquer and master-worker applica-
tions, but it has zero overhead when no crashes
occur.

Several fault-tolerance mechanisms have been
designed specifically for divide-and-conquer ap-
plications. One example is used in DIB [14],
which, like Satin, uses divide-and-conquer par-
allelism and work stealing. In DIB, when a pro-
cessor runs out of work, it issues a steal request,
but in the mean time it starts redoing (unfin-



ished) work that was stolen from it earlier. This
approach is robust since crashes can be han-
dled even without being detected. However, this
strategy can lead to much redundant computa-
tion. One example is the ancestral-chain prob-
lem: if P1 gives work to P2, which in turn gives
some of it to P3, and P3 crashes, both P1 and
P2 will redo the stolen work, so the work stolen
by P3 will be redone twice. Another problem
concerns orphan jobs, which are stolen from a
crashed processor. Such a job is computed, but
its result cannot be returned to the job’s owner
since the owner has crashed. The result must
therefore be discarded. The same job will be
done again while redoing the work given to the
crashed processor. Therefore, like in the case of
ancestral chains, part of the work will be done
twice by live processors. Satin’s fault tolerance
algorithm is designed to solve both aforemen-
tioned problems.

Another approach based on redoing work was
proposed by Lin and Keller [18]. When a crash
of a processor is detected, the jobs stolen by it
are redone by the owners of those jobs, i.e., the
processors from whom the jobs were stolen. Or-
phan jobs are handled as follows. Each job con-
tains not only the identifier of its parent pro-
cessor (from which the job was stolen), but also
the identifier of its grandparent processor (from
which the parent processor stole the ancestor of
our job). When the parent processor crashes,
the orphan job is passed after completion to the
grandparent processor which in turn passes it to
the processor which is redoing the work lost in
the crash. The result of an orphan job can thus
be reused. However, if both parent and grand-
parent processor crash, the orphan job cannot
be reused anymore. More levels could be used,
but that requires storing more data (identifiers).
Also, the result of an orphan job is passed to the
grandparent processor only after the execution
of this job is completed, which may occur a long
time after the crash. By that time, some other
processor may have already started or even com-
pleted redoing the same job. Our experiments
show that such situations occur often. There-
fore, although this mechanism tries to reuse or-

phan jobs, the amount of redundant work is still
high. The algorithm we propose does not suffer
from this problem, because it notifies the grand-
parent of the orphan job immediately after the
crash of the parent.

The likely best-known family of divide-and-
conquer systems is the C-based Cilk [8] (for
shared-memory machines), and its extensions
CilkNOW [7] (for networks of workstations), and
Atlas [5]. The latter has been designed with
heterogeneity and fault tolerance in mind, but
aims only at moderate performance. Its fault-
tolerance mechanism is also based on redoing
the work. The problem of orphan jobs is not
addressed in Atlas.

Fault-tolerance mechanisms have also been
proposed for other, similar programming mod-
els, such as master-worker. In the master-worker
paradigm, all jobs are spawned by a single pro-
cess, called the master, and distributed among
other processes, called workers. The master-
worker model can be viewed as a special case
of the divide-and-conquer programming style (it
is thus less expressive than divide-and-conquer).
Therefore, similarly to the divide-and-conquer
model, fault tolerance in master-worker systems
can be provided by redoing the work lost in a
crash. Since only the master processor spawns
work and collects results, there is no orphan
jobs problem, as long as the master stays alive.
Crashes of the master need to be handled sepa-
rately. An example of a system that adopts this
fault-tolerance approach is MW [17]. MW is a
programming framework which provides an APIT
for implementing grid-enabled master-worker ap-
plications. It also defines an Infrastructure Pro-
gramming Interface (IPI) such that it can be
ported to use various grid software toolkits.
Charlotte [6] introduces a fault-tolerance mech-
anism called eager scheduling. It reschedules a
task to idle processors as long as the task’s result
has not been returned. Crashes can be handled
without the need of detecting them. Assigning
a single task to multiple processors also guaran-
tees that a slow processor will not slow down the
progress of the whole application. Satin tries to
avoid this duplicate work altogether.



0. if (the naster crashed)
el ect a new naster

1. forall (job stolen by a crashed processor)
put job back in the work queue

2. forall (descendant of any job
stolen froma crashed processor)
if (descendant is finished)
store the descendant’s result
in the global result table
el se abort the descendant

3. if (the old master crashed
and | amthe new naster)
restart the application

Figure 1: The crash recovery procedure for a live
processor

3 Fault tolerance using a global
result table

Like other fault-tolerance algorithms for divide-
and-conquer applications, our approach is based
on redoing work lost in crashes. The novelty of
our approach, however, is the elimination of a
common problem of other solutions — redundant
computation, that is, losing and redoing work
done by a live processor as a result of a crash of
another processor. This happens in case of or-
phan jobs (jobs stolen from crashed processors).
With the existing algorithms discussed in Sec-
tion 2, the processor which has finished working
on an orphan job must discard the result of this
job, because it does not know where to return
that result to.

To eliminate the problem of orphan jobs, we
use a global result table — a concept similar to a
transposition table [10] used in game solving en-
vironments or the table used in tabled execution
of logic programs [21]. It is a table accessible
to all processors in which results of jobs can be
stored. We use this table during the crash recov-
ery procedure for storing the (partial) results of
orphan jobs so that other processors can reuse
those results. Jobs stored in the table are iden-
tified by their parameters.

The global result table is replicated on all pro-

cessors. Lookups in the table are local opera-

tions, and are therefore cheap. The replicas of
the table do not have to be strongly consistent
(if a processor does not find a job, it can always
recompute it), so updates of the table are propa-
gated to other processors asynchronously. Also,
updates are infrequent, since we do not store all
jobs in the global result table, but only orphan
jobs in the system; these are less than 19 of all
jobs. Finally, for many applications, the amount
of data that needs to be broadcast for each job
(the parameters and the result) is small — a few
bytes. Therefore, the overhead by using the ta-
ble is small. We will show this experimentally in
Section 4.1.

We assume a fail-stop failure model, that is, if
a processor fails, it will no longer transmit any
valid messages. If a processor comes back after a
crash, it receives a new processor identifier and
is treated as a new processor. We also assume
reliable communication. The crashes of proces-
sors are detected by the communication layer.
The crashes do not have to be detected immedi-
ately after they occur, but they must be detected
eventually.

3.1 The algorithm

To be able to redo jobs lost in crashes, each pro-
cessor maintains a list of jobs stolen from it. For
each job, the processor ID of the thief is stored
along with all the information needed to restart
the job. When a crash of one or more processors
is detected, each live processor executes a crash
recovery procedure summarized in Figure 1.

In step 1 of this procedure, the list of stolen
jobs is searched for jobs stolen by crashed proces-
sors. Such jobs are put back in the work queues
of their owners, so they will eventually be recom-
puted. Each job reinserted into a work queue
after a crash is marked as redone. The descen-
dants of a redone job (i.e., children, grandchil-
dren, etc.) are also marked as redone when they
are spawned. Before a processor starts comput-
ing a redone job, it first performs a lookup in
the global result table, because the result of this
job might already be stored there, as explained
below.



In step 2 of Figure 1, the results of orphan
jobs are stored in the global result table, so that
they can be found and reused by other processors
redoing the jobs’ parents. To be more specific,
instead of waiting until an orphan job is finished
and then storing this job’s result, we store the
results of those parts (subjobs) of the orphan
jobs that are already finished at the moment of
the crash. We adopted this approach, because
computing the whole orphan subtree might take
much time and in the meantime some other pro-
cessor may start working on the same subtree.
In that case, the result stored in the table will
not be used and the orphan job will be computed
twice. Our experiments have shown that this sit-
uation is very common.

If the master crashes (i.e., the processor which
spawned the job which is the root of the job tree),
the remaining live processors elect a new master
(step 0 in Figure 1). Afterwards, the crash re-
covery procedure proceeds normally. At the end
of the procedure, the new master restarts the ap-
plication (step 3 in Figure 1). The information
needed to restart the application is replicated on
all processors. The new run of the application
will reuse the results stored in the global result
table during the crash recovery procedure.

As an example, consider the computation tree
shown in Figure 2 (a). The regions delimited
by plain lines show how the computation is di-
vided among the processors. When processor 2
crashes all the jobs computed by it are lost (jobs
2, 5, 10, 11, 16, 17, 22, 23). When processor 1
detects the crash, it searches its list of stolen jobs
and discovers that job 2 was stolen by a crashed
processor. Processor 1 reinserts job 2 into its
work queue. Job 4 is an orphan (its parent, job
2, was computed on a crashed machine), so the
already completed jobs 9 and 15 are stored in
the global result table. Next, the whole orphan
subtree (jobs 4, 8, 9, 14, 15, 20 and 21 in Fig-
ure 2 (a)) is removed from the system (aborted).
After the crash recovery procedure, the compu-
tation tree will look as in Figure 2 (b). We dis-
cuss the correctness of our algorithm in the ap-
pendix.

It may seem that by aborting unfinished jobs,

we lose much work. However, as we already ex-
plained above, computing the whole orphan sub-
tree and only then storing it in the table would
lead to much bigger loss of work, because in the
meantime some other processor is likely to start
working on the same subtree. In that case the
result in the table will not be used and the whole
subtree will be computed twice. Besides, the
amount of work we actually lose by aborting is
small. Most of the unfinished jobs in the system
are those which are waiting for results of their
subjobs (jobs 4, 8, 14 in Figure 2 (a)). Those
jobs are internal nodes of the computation tree.
The bulk of the computation, however, is typi-
cally done in the leaf nodes. Other aborted jobs
are those which were spawned but no processor
has started working on them yet (job 20 in Fig-
ure 2 (a)). In that case, only a small amount of
work, for spawning jobs, is wasted within the
runtime system. No application-level work is
lost.

Additionally, during normal execution, when
a result of a stolen job is returned to the job’s
owner, it is also stored in the global table. This
approach prevents that a job done by one proces-
sor is lost in a crash of another processor. This
can happen when the result of a job is sent back
to a processor which will crash afterwards. Our
approach adds only a small performance penalty,
since the cost of storing a job in the replicated
table is not much higher than the cost of sending
it to another processor. The former needs send-
ing one asynchronous broadcast message while
the latter needs one asynchronous point-to-point
message. Moreover, only a small fraction of the
jobs in the system are stolen and sent to another
processor. As shown in [22], with typical Satin
applications, only one out of 1000—-10000 jobs ac-
tually gets stolen.

When a processor crashes, we do not lose any
work done by any other, live processor, except for
the jobs in progress, which need to be aborted.
But, as explained above, this causes little work
to be lost. In Section 4.2, we will also give an
experimental evaluation of this claim.

Note that the use of the global result table
does not influence the correctness of the algo-



processor 1

processor 2

processor 3
° Job finished global result table
@ Job in progress (empty)

1 Job spawned but not yet started

(a) Before crash of processor 2

processor 1
processor 3
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@ Job in progress
1 Job spawned but not yet started

global result table

(b) After crash of processor 2

Figure 2: An example computation tree

rithm. If the result of a job is not found in the
table, the job can always be recomputed. The
table only was introduced to improve the perfor-
mance of the system. Therefore, broadcasting
does not need to be reliable. Scalable broadcast-
ing algorithms, such as gossiping, can be used.
Also, if the size of the table is too large, part of
the entries might be safely dropped.

As future work, we plan to extend our algo-
rithm with support for applications with large
parameters and results. To avoid broadcasting
large amounts of data, the results will be stored
locally and only the location from which they
can be retrieved is broadcast. Jobs with large
parameters are then identified by their position
in the job tree rather than their parameters.

3.2 Implementation

We have incorporated our fault-tolerance mecha-
nism in Satin, which is a Java-based divide-and-
conquer system. Satin is implemented on top of
the Ibis [23] communication library. The core of
Ibis is implemented in pure Java, without using
any native code. The Satin runtime system and

our fault-tolerance extension also are written en-
tirely in Java. The resulting system therefore
is highly portable (due to Java’s “write once,
run anywhere” property) allowing the software
to run unmodified on a heterogeneous grid.

The global result table is implemented as a
replicated hash table. Keys in this table are
records containing the parameters of the job.
The hash of such a record is computed as a sum
of hashes of all its fields. Hashes of array param-
eters are computed as sums of hashes of their
elements. After an update, an asynchronous up-
date message is broadcast to all replicas of the
table. Lookup is a local operation.

4 Evaluation

In this section, we will evaluate our mechanism.
We show the following properties of our fault-
tolerance mechanism and its implementation in
the Satin system:

1. Our fault-tolerance mechanism adds very
little overhead to Satin in the absence of
crashes;



2. The overhead incurred by lookups in the
global result table is very small;

3. With our scheme, little redundant compu-
tation is done after a crash;

4. Our scheme outperforms the traditional ap-
proach, which does not use a global result
table;

5. The scheme is suitable for divide-and-
conquer applications that run in a real grid
environment.

We show properties 1 and 2 by doing ex-
periments on a single DAS-2 cluster (see Sec-
tion 4.1). For properties 3 and 4, we do ex-
periments on the wide-area DAS-2 system (see
Section 4.2). The DAS-2 system consists of five
clusters located at five Dutch universities. Each
node contains a 1 GHz Pentium III processor
and runs RedHat Linux 7.2. The nodes are
connected both by 100 Mbit Ethernet and by
Myrinet [9]. In our experiments we used Ether-
net. For the experiments on the DAS-2 system,
we used the IBM JIT 1.4. The DAS-2 system is
used because its homogeneous structure makes it
suitable for meaningful performance evaluations.
For property 5, we use the testbed of the Euro-
pean GridLab [2] project (see Section 4.3). For
the experiments on the GridLab testbed, we used
whichever Java implementation was preinstalled
on the sites.

4.1 Overhead on normal execution

We first assess the impact of our fault-tolerance
mechanism on application performance in the
absence of crashes. Therefore, we ran five ap-
plication kernels with three versions of the Satin
runtime system each:

(1) the plain Satin system, without our fault-
tolerance mechanism,

(2) fault-tolerant Satin, and

(3) a modified version of fault-tolerant Satin in
which lookups in the global result table are
performed for all jobs.

Comparing (1) and (2) indicates the bookkeep-
ing overhead for the additional data structures
of our fault-tolerance mechanism. As there are
no crashes, version (2) will not perform any ta-
ble lookups. Comparing (2) and (3) indicates the
overhead of table lookups. The performance of
(3) thus gives a lower bound on application per-
formance caused by our fault-tolerance mecha-
nism for those processors of a faulty system that
remain alive during an application run.

Figure 3 shows the speedups achieved by our
application kernels on 48 processors in all three
cases (plain Satin, fault-tolerant Satin, fault-
tolerant Satin with lookups for all jobs). The
speedups were calculated relative to the se-
quential Java applications that were run with-
out Satin. For all applications we tested,
there is no significant difference in speedup be-
tween plain Satin, fault-tolerant Satin and fault-
tolerant Satin with lookups for all jobs. We con-
clude that, in the absence of crashes, our fault-
tolerance mechanism incurs only negligible over-
head on application performance.

4.2 Efficiency in case of crashes

We will now assess the efficiency of our fault-
tolerance mechanism by comparing settings with
and without crashes, and with and without us-
ing a global result table. For these experiments
we use four DAS-2 clusters (Amsterdam, Delft,
Leiden, Utrecht), with 16 CPUs each. In prelim-
inary experiments we found that crashes of indi-
vidual nodes and of whole clusters show similar
effects, proportional to the number of crashed
nodes. In the following, we will only discuss re-
sults with crashes of all nodes in a cluster, as
these are more pronounced. Such a crash of a
whole cluster represents the situation in which
the cluster becomes unreachable due to network
problems. From our application kernels we have
chosen the knapsack program as it is the most
sensitive to crashes of all applications in our pre-
liminary experiments.

Figure 4 shows the results of our assess-
ment. Part (a), on the left side, compares our
fault-tolerance algorithm with the traditional ap-
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Figure 3: Speedup on 48 processors

proach that does not use a global result table.
Traditionally, orphan jobs are simply discarded;
work lost in a crash (including discarded orphan
jobs) has to be recomputed. This approach is
adopted by most other fault-tolerant divide-and-
conquer systems.

We first ran the knapsack application on four
DAS-2 clusters, without any crashes. The aver-
age run time was 125.2 seconds. The left pair
of bars in Figure 4(a) shows the application run-
times when one of the four clusters will crash
after 50 % of the four-cluster runtime, i.e., after
62.6 seconds. Using our global result table, the
application terminated after 159.4 seconds, while
not using a result table took 217.9 seconds. Like-
wise, with two of the four clusters crashing (the
right pair of bars), the application terminated
after 214.6 seconds with, and after 350.7 seconds
without a result table. Clearly, our global re-
sult table significantly improves the application
runtime in case of crashes.

Figure 4(b), on the right side, shows an as-
sessment of the overhead while handling crashes,
caused by redundant computations due to abort-
ing and restarting unfinished parts of orphan
jobs. For this experiment we modified slightly
the Satin runtime system. With our modified
runtime system, we assess the worst case of a
processor crash, which is the situation in which

none of the results computed by the crashed pro-
cessor will be propagated to live processors. In
our modified system, the to-be-crashed proces-
sors will be tagged during application startup.
Our runtime system simply discards their re-
sults; these results are neither forwarded to other
processors, nor written into the result table. The
tagged processors are still allowed to steal jobs
from other processors and to act as victims of
steal requests by other processors. The latter
case will generate orphan jobs when the crash
occurs. As with Figure 4(a), we trigger a crash
of all tagged processors after 62.6 seconds, which
is 50 % of a successful four-cluster run.

The left pair of bars in Figure 4(b) compares
the runtime of three clusters without crashes (no
clusters were tagged as to-be-crashed) with the
runtime of four clusters, where after 62.6 sec-
onds one cluster will crash. In both cases, the
three live clusters have to compute all jobs of
the application. The runtime difference, how-
ever, quantifies the amount of additional work,
mostly redundant computations, that has to be
performed to recover from the crash. As the fig-
ure shows, this difference is marginal, e.g. less
than 2 seconds. The right pair of bars simi-
larly compares two clusters, with four clusters
of which two clusters will crash after 62.6 sec-
onds. Again, the runtime difference is marginal,
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Figure 4: Assessing redundant computation due to crashes with 4 DAS-2 clusters (16 CPUs each)

e.g. less than 3 seconds.

Comparing the bars between parts (a) and
(b) of Figure 4 gives two additional insights to
the behaviour of Satin in case of crashes. The
first observation is that, in the beginning of a
run, only few jobs actually get completed with
all their children, such that their results can al-
ready be returned to other clusters where the
jobs had been stolen from. Without crashes,
three clusters terminate after 162.3 seconds while
four clusters of which one cluster crashes termi-
nate after 159.4 seconds. The marginal gain of 3
seconds is the contribution of the fourth cluster
before it crashed. With two clusters crashing,
the situation is similar. Two clusters, without
crashes, terminate after 240.6 seconds; four clus-
ters with two of them crashing terminate after
214.6 seconds. Here, the contribution of the two
crashed clusters is 26 seconds.

The second observation concerns the effective-
ness of our global result table. We compare the
case of two out of four clusters crashing, with-
out using a result table, (350.7 seconds) with two
clusters running without crashes (240.6 seconds).
Obviously, without a global result table, han-
dling the crash is more expensive than starting
with fewer clusters. This is because orphan jobs
are not aborted but computed until they com-

plete, but the results must be discarded and re-
computed. However, with our result table, start-
ing with four clusters is beneficial, as the run-
time improves from 240.6 seconds to 214.6 sec-
onds. Comparing three clusters with four, out
of which one cluster crashes, shows analogous
results (comparing 217.9 with 162.3 and 159.4
seconds).

4.3 Grid experiment

To evaluate our divide-and-conquer system in a
real grid environment, we carried out an exper-
iment on the testbed of the European GridLab
project. We used 64 processors in total, using
5 machines located in 3 countries across Europe.
Figure 5 shows a map of Europe, annotated with
the machine locations. The machines happened
to run different flavors of Linux; we used the
JVMs installed on the individual sites. The ma-
chines are connected by the Internet. The links
show typical wide-area behavior, as the physical
distance between the sites is large.

We used a real-world application for this test,
a satisfiability solver (a classical DPLL SAT
solver [26]) implemented with Satin, computing
a FPGA design verification problem. On a sin-
gle node of the Amsterdam DAS-2 cluster, the
solver runs for 102,045 seconds, about 28 hours,



Table 1: Machines on the GridLab testbed

operating CPUs / | total
location architecture system JVM | nodes | node CPUs
Vrije Universiteit Intel Red Hat
Amsterdam Pentium-III Linux 7.2 IBM
The Netherlands 1 GHz kernel 2.4.18 | 1.4.0 | 9 2 18
Konrad-Zuse-Zentrum Intel Red Hat
fiir Informationstechnik XEON 2.4 GHz | Linux 9 SUN
Berlin, Germany HyperThreading | kernel 2.4.20 | 1.4.2 | 1 2 2
Masaryk University Intel Debian
Brno XEON 2.4 GHz | Linux 3.0 SUN
Czech Republic HyperThreading | kernel 2.4.27 | 1.4.2 | 2 2 4
Technische Universiteit Delft | Intel Red Hat
Delft Pentium-III Linux 7.2 IBM
The Netherlands 1 GHz kernel 2.4.18 | 1.4.0 | 8 2 16
PC? Intel Red Hat
University of Paderborn Pentium-IIT Linux 7.2 SUN
Paderborn, Germany 850 MHz kernel 2.4.7 | 1.4.1 | 12 2 24

in total spawning about one billion jobs.

Figure 6 summarizes the results of our exper-
iment. Using all 5 clusters together, the SAT
solver completed after 2494 seconds; using only
four clusters (without the Delft cluster), the run-
time was 3229 seconds. Then, we deployed our
fault-tolerance mechanism: after 50 % of the
runtime with five clusters (1247 seconds), we
crashed the nodes of the Delft cluster. In this
case, the SAT solver terminated after 3082 sec-
onds which is consistent with our tests presented
in Section 4.2.

Finally, we used our system to dynamically
increase the number of processors at runtime,
namely by starting with four clusters, and adding
the Delft cluster in the middle of the run, again
after 1247 seconds. In this constellation, the
SAT solver terminated after 2940 seconds. In
both cases, with the crash and with the added
cluster, the total processing power is the same.
Still, with the added cluster the runtime is 5 %
lower than the runtime after the crash. This dif-
ference can be attributed to the amount of re-
dundant work performed while recovering from
the crash. We can conclude that Satin and its
fault-tolerance mechanism can efficiently execute
realistic applications in Grid environments while

handling changing numbers of available proces-
SOTS.

5 Conclusions

In this paper, we have presented a fault-tolerance
mechanism for divide-and-conquer systems. Be-
cause our mechanism exploits the properties of
the divide-and-conquer paradigm, its overhead
during the normal (i.e., crash-free) execution is
very small. For all applications we have tested,
there is no significant difference in speedup be-
tween the application run on the plain Satin sys-
tem and its fault-tolerant version. We propose
a novel approach to salvaging orphan jobs — a
global result table. Using this approach we min-
imized the amount of redundant computation
which is a problem of many other fault-tolerance
mechanisms for divide-and-conquer systems. To
evaluate our approach, we carried out tests on
the Dutch wide-area DAS-2 system and on the
GridLab testbed.

Our fault-tolerant Satin system has the poten-
tial to become a viable platform for Grid appli-
cations. To approach this goal, we are currently
working on two extensions. One is an alternative
result table mechanism for jobs with large pa-
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Figure 5: Locations of the GridLab testbed sites
used for the experiments

rameter or result variables. The other extension
will allow us to use our mechanism for support-
ing malleability and migration of long-running
Satin applications [25].
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tion, however, achieving such a state is easier
since the computations performed by each of the
processors are to a great extent independent of
each other. Jobs can be evaluated independently
of each other (due to referential transparency),
except that a child must return the result to
its parent before the parent can be completed.
Therefore, dependencies between processors ap-
pear only when one processor steals a job from
another processor — the result must be returned
before the stolen job’s parent can be finished. A
crash of a processor thus has a direct impact only
on the processors from which the crashed pro-
cessor stole a job or which stole a job from the
crashed processor. To analyze this impact let us
assume that processor T (the thief) steals a job
from processor V (the victim). A state transition
diagram of this process is shown in Figure 7. Let
us analyze all possible cases, assuming that nei-
ther of the processors is the master.

1. In states 1 and 8 a crash of one processor
obviously does not have any influence on the
other processor;

. If V crashes while the job is being stolen
from it (states 2 and 3), T cancels the steal
request as soon as it detects the crash of V
and sends a steal request to another proces-
Sor;

. If T crashes while stealing the job, the be-
havior of V depends on when it detects the
crash. If V detects the crash before sending
the reply (state 2 or 3), it discards the steal



5. If V crashes after T stole the job from it

T sends a steal request to V (states 4, 5 and 6), the job becomes an or-
phan. T aborts the job and all its descen-
V receivesthe steal request dents to avoid unnecessary work. The job
will be redone while redoing jobs stored on
V sends areply (ajob) the crashed V (by processors from which V

was stealing). The finished parts of the job

T receives the reply are stored in the global result table;

6. If T crashes before the result is received

T computes the job (state 7), V acts as in case 4 and redoes the
job. However, since the result is sent over
T sendstheresult to V the network, it was put in the global result
table by T. The result can thus be reused
V receivesthe result while recomputing the job;

()

7. If V crashes before it receives the result
(state 7), T ignores it. As in case 6, the
result will be stored in the global result ta-

ing, computing and returning the result of a job ble and used while redoing the job (by the

processor from which an ancestor of this job

was stolen by V).

Figure 7: The state transition diagram for steal-

request. If V detects the crash after it sent

the reply (state 4), it treats the job as stolen In all cases, live processors will be able to con-
and acts as in case 4: tinue their work. Their jobs that have become

orphans will be aborted. All other jobs will be
4. If T crashes while working on the stolen job completed and their results will eventually be re-
(states 5 and 6), V will not receive the re- turned to the nodes from which the jobs had
sult and will not be able to finish the stolen been stolen. In particular, the master will be
job’s parent. Consequently, all other ances- able to successfully compute all its jobs includ-
tors of the job (including the root) will not ing the root job which marks a successful end
be completed. To solve this problem, V re- of the computation. A special case is the crash
does the stolen job (and all its subjobs) after of the master. The new master will restart the
detecting the crash; whole computation.
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