
Radioastronomy Image Synthesis on the
Cell/B.E.�

Ana Lucia Varbanescu1,4, Alexander S. van Amesfoort1, Tim Cornwell2,
Andrew Mattingly3, Bruce G. Elmegreen4, Rob van Nieuwpoort5,

Ger van Diepen5, and Henk Sips1

1 Delft University of Technology, The Netherlands
2 Australia Telescope National Facility
3 IBM, ST Leonards, NSW Australia

4 IBM Research, T.J.Watson Research Center, Yorktown Hts, NY, USA
5 ASTRON, Dwingeloo, The Netherlands

Abstract. Now that large radiotelescopes like SKA, LOFAR, or AS-
KAP, become available in different parts of the world, radioastronomers
foresee a vast increase in the amount of data to gather, store and pro-
cess. To keep the processing time bounded, parallelization and execution
on (massively) parallel machines are required for the commonly-used ra-
dioastronomy software kernels. In this paper, we analyze data gridding
and degridding, a very time-consuming kernel of radioastronomy image
synthesis. To tackle its its dynamic behavior, we devise and implement
a parallelization strategy for the Cell/B.E. multi-core processor, offe-
ring a cost-efficient alternative compared to classical supercomputers.
Our experiments show that the application running on one Cell/B.E.
is more than 20 times faster than the original application running on a
commodity machine. Based on scalability experiments, we estimate the
hardware requirements for a realistic radio-telescope. We conclude that
our parallelization solution exposes an efficient way to deal with dynamic
data-intensive applications on heterogeneous multi-core processors.

1 Introduction

High performance computing (HPC) applications can benefit a lot from the
emerging multi-core platforms. However, (legacy) sequential code for HPC ap-
plications is not re-usable for these architectures, as they require multiple layers
of parallelism to be properly exploited to achieve peak performance [1].

On the other hand many large-scale HPC areas, like radioastronomy, have
reached a point where computational power and the efficient ways to use it are
becoming critical. For example, radioastronomy projects like LOFAR [2], AS-
KAP [3], or SKA [4] provide highly accurate astronomical measurements by
collecting huge streams of radio synthesis data, which are further processed

� This research is partially supported by the AstroSTREAM project, funded by
NWO/STARE, and the SCALP project, funded by STW/Progress.

E. Luque, T. Margalef, and D. Beńıtez (Eds.): Euro-Par 2008, LNCS 5168, pp. 749–762, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

750 A.L. Varbanescu et al.

into sky images. For radioastronomy applications, processing power and sto-
rage space need to be used with extreme efficiency: whatever is not computed
in time, may get stored; whatever does not fit in the storage space gets lost.
Therefore, the choice for a suitable parallel hardware platform is essential, and
it may come at the price of increased programming effort. For example, on a
heterogeneous multi-core platform like the Cell/B.E., three different parallelism
classes - multi-processor, multi-core, and core-level - require specific optimization
techniques. Most of the “classical” parallel languages (like MPI or OpenMP) fail
to adapt automatically to the different hardware scale. The few specific multi-
core programming models like RapidMind [5] or Sequoia [6] do not yet pro-
vide the full parallelism range that an application should exploit on a Cell-like
architecture.

In this work, we present one of the first successful attempts to parallelize
radioastronomy kernels on a heterogeneous multi-core platform. Specifically, we
focus on the parallelization of the gridding and degridding operations on the
Cell/B.E.. Both kernels are implemented using convolutional resampling, a dy-
namic data-intensive radioastronomy kernel which, as a basic building block in
many of the data processing phases, dominates the workload of radio synthesis
imaging [3]. Optimizing it has a direct impact on the performance and hardware
requirements of any of the large radiotelescopes mentioned above. In response
to these requirements, our solution leads to a speed-up factor of more than 20
when comparing the Cell/B.E. solution with the reference (sequential) code run-
ning on a commodity machine. Based on these results, we provide a scalability
analysis for the present solution and show how our solution can be extended to
reach the scale of a real application like SKA.

Using our experience with the convolutional resampling, we show a generic
scalable solution for parallelizing dynamic data-intensive applications on Cell-
like architectures. We claim that efficient execution on heterogeneous multi-
cores requires identifying and isolating the dynamic behaviour from the parallel
computation. Further, using a master-workers model, the parallel processing
is assigned to the “worker” cores, while the dynamic, irregular behaviour is
assigned to the “master” core. The advantages are threefold: (1) the worker
processing can be optimized with generic in-core techniques, (2) data locality
decisions can be taken on-the-fly by a master process with better knowledge of
the entire application, and (3) overall application scalability is easier to analyze
and improve.

The remainder of this paper is organized as follows. Section 2 briefly presents
our application, together with a radioastronomy primer. The target platform
and the potential parallelization strategies are presented in Section 3. Section 4
discusses our experiments and results, focusing on the increased performance
of the parallel version. Scalability analysis is covered in Section 5. We briefly
survey existing related work in Section 6. We conclude that although the perfor-
mance results are good, further research should address more application specific
optimizations and different platforms, as presented in Section 7.

Radioastronomy Image Synthesis on the Cell/B.E. 751

Fig. 1. The software pipeline from antennas to sky images

2 The Gridding and Degridding Kernels

In this section we briefly analyze our application, from its radioastronomy back-
ground to its computation and data access patterns.

2.1 Radioastronomy - A Primer

The history of radio astronomy has been one of solving engineering problems
to construct radio telescopes of continually increasing angular resolution (i.e.,
telescopes able to distinguish the finest level of detail in the sky). Very good re-
solutions require very large antennas. An alternative to building large single-dish
radiotelescopes is radio interferometry. This solution enables arrays of connected
radiotelescopes (with various antennas types and placement geometries) to col-
lect more signals and, using the aperture synthesis technique [?] to significantly
increase the angular resolution of the “combined” telescope. By interfering the
signals from different antennas, this technique creates a combined telescope the
size of the antennas furthest apart in the array.

The simplified path of the signal from the antenna to a sky image is presented
in Figure 1. The signals coming from two antennas forming a baseline1 have to be
correlated before they are combined. A correlator reads these (sampled) signals
and generates the corresponding set of complex visibilities, V , depending on
the baseline b, the frequency f , and the sample time t. Increasing the number
of baselines in the array (i.e., varying the antennas numbers and/or placement)
increases the quality of the generated sky image. The total number of baselines B
in an array of A antennas is B = A ·(A+1)/2, and it is a significant performance
parameter of the radiotelescope.

2.2 Building the Sky Image

An image of the sky is a reconstruction of the sky brightness using the measured
visibilities. For coplanar baselines, (e.g., for a narrow field of view), the visibility
function and the sky brightness are a 2D Fourier pair. Thus, in practice, image
reconstruction uses the discrete Fourier transform on the observed (sampled)
visibilities. For the more general case of non-coplanar baselines (i.e., wide field

1 The projected separation between any two individual antennas in the array as seen
from the radio source is called a baseline and it is described by a set of 3D spatial
coordinates, (u, v, w).

752 A.L. Varbanescu et al.

Fig. 2. A diagram of the typical deconvolution process in which a model is iterati-
vely refined by multiple passes. The shaded blocks (gridding and degridding) are both
performed by convolutional resampling.

of view), we use the W-projection algorithm [8], which computes one FFT for
each projection of the baseline b on Pw parallel planes (usually, betwen 10 and
30), and combines the results.

The practical process of building a sky image has two phases: imaging and
deconvolution. The imaging phase generates a dirty image directly from the
measured visibilities, using FFT. The deconvolution “cleans” the dirty image into
a sky model. Further, this sky model can be iteratively enhanced by repeating the
process using new measured visibilities. A snapshot of this process is presented in
Figure 2. Before any FFT operations, data has to be placed in a regularly spaced
grid. The operation used to interpolate the original visibility data to a regular
grid is called gridding. Degridding is the “reverse” operation, that projects the
regular grid points back to the original tracks; degridding is required when a
computed grid is used to refine an existing model.

2.3 Application Analysis

The visibility data is gathered at regular time intervals from each baseline in the
system. For a single sample, gridding and degridding are performed by convolu-
tion with a function designed to have good properties in the image domain. In
practice, all the convolution coefficients are pre-calculated and stored in a large
matrix, C, and the gridding of the V (u, v, w)t) visibilities into G, the 2g × 2g

regular grid is implemented by convolution with sub-blocks from C. Such a sub-
block, SKM , having M = m × m elements, is called a support kernel. Typical
values for M are between 15 × 15 and 129 × 129, depending on the required
accuracy level. Similarly, degridding uses the same support kernels to transform
the data from the regular grid back into the visibility domain, generating a new
set of V ′(u, v, w)t.

The essential application data structures are summarized in Table 2.3. Data is
collected from A antennas (i.e., B = A · (A + 1)/2 baselines); in one observation
session, each baseline is sampled at regular intervals, providing Nsamples for each
one of the chosen Nfreq frequency channels. For example, at a sampling rate of 1
sample/s, Nsamples = 28800 for an 8 hours observation; Nfreq can vary between
tens and thousands of channels.

The computation patterns for gridding and degridding are presented in Lis-
ting 1.1. Note that the effective computation is the same: one complex

Radioastronomy Image Synthesis on the Cell/B.E. 753

Listing 1.1. The core of the convolutional resampling kernel. f1 and f2 are two different
functions.

1 forall (i=0..N_freq; j=0..N_samples -1) // for all samples
2 compute g_index=f1((u,v,w)[j], freq[i]);
3 compute c_index=f2((u,v,w)[j], freq[i]);
4 for (x=0; x<M; x++) // sweep the convolution kernel
5 if(gridding) G[g_index+x] += C[c_index+x]*V[i,j];
6 if(degridding) V’[i,j] += G[g_index+x]*C[c_index+x];

Table 1. The main data structures of the convolutional resampling and their
characteristics

Name Symbol Cardinality Type Access pattern
Coordinates/baseline u, v, w Nsamples Real Linear
Visibility data V Nsamples · Nfreq Complex Linear
Convolution matrix C M · os2 · Pw Complex Irregular
Support kernel SKM M = m × m Complex Linear
Grid G 512 x 512 Complex Irregular
Grid subregion SGM M = m × m Complex Linear

8h0

c i
nd

ex

Time [10s]

Fig. 3. Irregular access patterns in the C matrix for measurements collected by 1
baseline in 8h. The more distant the points are in the Y dimension, the poorer the
data locality is.

multiply-add (MADD) operation, i.e., 4 MADD floating point operations. The
large execution time of both kernels is caused by (1) the large iteration space
(Nfreq × Nsamples × M), and (2) the irregular accesses in both C and G. Fi-
gure 2.3 gives an example of how irregular these accesses are by plotting all the
c_index values computed for measurements taken by one baseline in an 8-hour
session. A similar graph can be drawn for g_index. These irregular accesses in
both C and G lead to a data-dependent behaviour of the application, which
in turn results in poor data locality and requires a non-trivial data layout for
parallelization.

3 Parallelization on the Cell/B.E.

In this section we discuss the parallelization solutions used to efficiently imple-
ment the gridding and degridding kernels on the Cell/B.E. platform.

754 A.L. Varbanescu et al.

3.1 Cell/B.E. Overview

The Cell Broadband Engine (Cell/B.E.) is a heterogeneous multi-core processor,
initially designed by Sony, IBM and Toshiba for the Playstation 3 (PS3) game
console. Due to its peak performance levels [?], the processor became quickly a
popular target for high performance computing applications.

Cell/B.E. has nine cores: one Power Processing Element (PPE), acting as a
coordinator for the eight Synergistic Processing Elements (SPEs), which share
the main computational load. All cores, the main memory, and the external
I/O are connected by a high-bandwidth Element Interconnection Bus (EIB).
The theoretical maximum data bandwidth of the EIB is 204.8 GB/s. The PPE
contains the Power Processing Unit (PPU) - a two-way multithreaded core, based
on the Power Architecture -, separated L1 caches (32KB for data and 32KB for
instructions), and 512KB of L2 Cache. The PPE runs the operating system and
coordinates the SPEs. An SPE contains a RISC-core (the SPU), a 256KB Local
Storage (LS), and a Memory Flow Controller (MFC). The LS is used as local
memory for both code and data and is managed entirely by the application.
All SPU instructions are 128-bit SIMD instructions, and all 128 SPU registers
are 128-bit wide. The theoretical peak performance of one SPE is 25.6 single
precision GFlops.

The Cell/B.E. cores combine functionality to execute a large spectrum of
applications, ranging from scientific kernels [1,10] to image processing appli-
cations [11]. The basic Cell/B.E. programming is based on a multi-threading
model: the PPE spawns threads that execute asynchronously on the SPEs, until
interaction and/or synchronization is required. The SPEs can communicate with
the PPE using simple mechanisms like signals and mailboxes for small amounts
of data, or DMA transfers via the main memory for larger data.

3.2 Parallelization on the Cell/B.E.

Because both our kernels are data-intensive, the parallelization follows an SPMD
model, where all SPEs run the same computation (i.e., the convolution itself) on
different sets of data. For an efficient solution, we need to design a balanced data
and task distribution, to implement it, and to address the eventual Cell-specific
problems that may occur.

Data Distribution. The simplest option for data distribution is to share all data
evenly among the SPEs: each core receives a piece of V , C, and G, and computes
its share. This solution could provide linear speed-up when increasing the num-
ber of participating cores if a contiguous set of data from V would map uniformly
in either C or G. Of course, this is not the case for the irregular access patterns
of convolutional resampling. Choosing G or C for symmetrical distribution (i.e.,
each SPE is working only with its own subregion, and fetching the other data
as needed) leads to overall load-imbalance and extensive communication ove-
rhead, as seen in [12]. Finally, we can symmetrically distribute the visibilities
V (u, v, w)t. If the data is available offline (i.e., stored in files), a block-based

Radioastronomy Image Synthesis on the Cell/B.E. 755

distribution is sufficient for good load-balancing. If the data is streaming in the
application, SPE utilization and load balancing are improved by using a cyclic,
round-robin-like distribution: each sample fetched by the PPE is distributed to
the next SPE in line. The SPE receives the data, fetches (u, v, w)t, computes
cindext

and gindext
locally, and then uses DMA to bring the necessary SKM and

SGM in LS (assuming all these fit!). Although relatively simple, this solution re-
quires excessive SPE-PPE communication, not suitable for the Cell/B.E., where
the SPEs are severely underutilized and the overall speed-up (on 16SPEs) is only
about a factor of 3.

Implementation. In the end, we opt for a dynamic data distribution, imple-
mented using the master-workers paradigm: the PPE distributes the visibility
data samples on-the-fly, and stores the share for each SPE in a dedicated queue.
In this scenario, the PPE computes the c_{index} and g_{index}, and distri-
butes adjacent values in the same queue. The solution increases per-SPE data
locality, at the expense of the extra main memory consumption; the poten-
tial load-imbalance (too many work piling up in the same queue) is control-
led by limiting the queue size and allowing more queues to focus on the same
subregions.

The SPE performs a simple loop: it polls its queue to check if there is work to
do; as soon as there is, the SPE fetches the SKM and SGM via DMA, computes
the new values for SGM , and does the DMA-out transfer of the new SGM . To
avoid too expensive synchronization mechanisms, we allocate one grid copy for
each SPE. The final result, calculated by the PPE, is a simple addition of these
individual grids.

We further optimize this solution as follows: if consecutive SPE queue elements
have the same c_{index} and g_{index}, the data samples are summed. Once
the sequence is over, the convolution is no longer executed for each Vi, but only
once, for the entire

∑
(Vi). In the case only c_{index} is the same, we can still

spare one DMA transfer for the SKM data. Similarly, if g_{index} is the same,
the number of DMA out transfers can be decreased.

Cell-specific Issues. Once the top level parallelization is implemented, we ve-
rify the memory footprint of the SPE code: the complete SKM and SGM , as
well as the local copy of the queue should fit, together with the code, in 256KB
of memory. For large values of M , this is not possible. Thus, a slightly more
complicated scheme is implemented: for each data sample in the queue, SKM is
fetched entirely in a sequential series of DMA transfers, while SGM is fetched,
updated, and written back line-by-line. Finally, although we only need one SGM

line for the actual computation, we store three such lines - the one being pro-
cessed, the one ready to be transferred out to the main-memory, and the one
being read in for the next computation, thus enabling a simple opportunity for
computation/communication overlap Finally, we optimize the core computation
of each SPE by partial SIMD-ization and loop unrolling, as well as DMA double
buffering [13].

756 A.L. Varbanescu et al.

4 Experiments and Results

In this section we present our experiments on two Cell/B.E. platforms and we
analyze their results (more detailed experiments and more in-depth explanations
are described in [12]).

We run our experiments on two platforms: (1) a PlayStation3 gaming console,
and (2) a QS20 Cell blade, a platform for high-performance computing. PS3 has
one Cell/B.E. processor, running at 3.2GHz, with six out of the eight SPEs
fully available for programming; the QS20 blade has two Cell/B.E. processors,
providing (almost) uniform access to 16 SPEs.

Our input data is a collection of samples from a real astronomical measure-
ment. The data is collected from 45 antennas (990 baselines), over a period of
8 hours, with a sampling rate of a one element per 10s. However, all results in
this section refer to experiments performed for one baseline only. We discuss the
multi-baseline application and its scalability in Section 5.

4.1 Overall Application Performance

The first set of experiments shows the overall performance improvement of
the parallelized convolutional resampling. The input data set is a collection of
2880 samples produced by one baseline. The support kernel size varies between
M = 33 × 33 and M = 129 × 129 elements. The metric we use is the execution
time per operation (i.e., total execution time divided by the number of elemen-
tary operations, e.g., the number of grid additions) for both the gridding and
degridding kernels. Note that for full utilization and scalability, the values for
this metric should be constant (see the Pentium D behavior). We compare the re-
ference code, running on a single core of a 3.4GHz Pentium D machine2 with the
our parallelized version running on different configurations on the two available
Cell/B.E. platforms. Figure 4 presents these execution time results, emphasi-
zing the best performance on each Cell platforms and the SPE configuration
that generated it.

Note that Cell/B.E. outperforms the sequential machine. Further, the larger
the kernel, the better the Cell performance becomes. However, note that for ker-
nels as small as M = 17 × 17, the PentiumD results are somewhat comparable
with the Cell ones; also, for M = 129× 129, where both the PentiumD core and
the PS3 hit a memory bottleneck. The case of PS3 is much worse because the
total available platform memory is very low. Besides the good speed-up factor
(over 20 for M = 101 × 101), these results also signal a significant core unde-
rutilization - see the SPEs numbers for each peak performance. This behavior
is caused by the small input set: one baseline with 2880 × 16 data samples does
not provide enough computation for a full Cell/B.E.

2 The PentiumD processor is used here as an instance of a general purpose processor;
the choice for this machine was only due to availability, and we use the execution
time on PentiumD only as a measure of the performance the reference sequential
code, not as a measure of the potential performance of the processor.

Radioastronomy Image Synthesis on the Cell/B.E. 757

Degridding
Gridding

 0.00

 0.20

 0.40

 0.60

 0.80

 1.00

P
D

P
S

3

Q
S

20 P
D

P
S

3

Q
S

20 P
D

P
S

3

Q
S

20 P
D

P
S

3

Q
S

20 P
D

P
S

3

Q
S

20 P
D

P
S

3

Q
S

20 P
D

P
S

3

Q
S

20

E
xe

cu
tio

n
tim

e/
op

er
at

io
n

[n
s]

Number of SPEs

Best performance for gridding/degridding for 1 baseline

4

4
4

4 4 6

4

4

6
16

8 6 8 8

17x17 33x33 45x45 65x65 83x83 101x101 129x129

Fig. 4. The overall application performance for the gridding/degridding with different
support kernel sizes, running on a PentiumD using 1 core, on the PS3, and on the
QS20. The labels inside the graph specify with how many SPEs was each performance
peak obtained.

Degridding
Gridding

 0.00

 0.05

 0.10

 0.15

 0.20

 0.25

 0.30

 0.35

 0.40

 0.45

P
S

3−
1S

P
E

s
P

S
3−

2S
P

E
s

P
S

3−
4S

P
E

s
P

S
3−

6S
P

E
s

1S
P

E
s

2S
P

E
s

4S
P

E
s

6S
P

E
s

8S
P

E
s

16
S

P
E

s
P

D

P
S

3−
1S

P
E

s
P

S
3−

2S
P

E
s

P
S

3−
4S

P
E

s
P

S
3−

6S
P

E
s

1S
P

E
s

2S
P

E
s

4S
P

E
s

6S
P

E
s

8S
P

E
s

16
S

P
E

s
P

D

P
S

3−
1S

P
E

s
P

S
3−

2S
P

E
s

P
S

3−
4S

P
E

s
P

S
3−

6S
P

E
s

1S
P

E
s

2S
P

E
s

4S
P

E
s

6S
P

E
s

8S
P

E
s

16
S

P
E

s
P

D

E
xe

cu
tio

n
tim

e/
op

er
at

io
n

[n
s]

Number of SPEs

Convolutional resampling over multiple SPEs for 1 baseline

33x33 83x83 101x101

Fig. 5. The performance for the gridding/degridding with different support kernel sizes,
running on 6 different hardware configurations

4.2 SPE Utilization

Due to the application low computation-to-communication ratio, we expect the
SPEs to be under-utilized. Thus, we show more details on SPE utilization: we
measure the execution time for different problem sizes running on different num-
bers of SPEs (1, 2, 4, 6, 8, and 16). We present the results of these experiments
in Figure 5.

Figure 5 shows that for large kernels, i.e., 83x83 elements, the application
has good scalability with the number of used SPEs for one Cell/B.E. The best
results are indeed obtained for 8 SPEs. The 15% increase in the execution time
on 16 SPEs is due to the architecture organization: the 16SPEs are part of two
different Cell/B.E. processors, and the “remote” memory accesses from one pro-
cessor to the other take slightly longer. Thus, for one baseline, one Cell/B.E.
(8 SPEs) is sufficient. If a performance penalty of about 10% can be tolerated
by the application, using only 6 out of 8 SPEs/Cell provides the hardware cost

758 A.L. Varbanescu et al.

Degridding
Gridding

 0.00
 0.10
 0.20
 0.30
 0.40
 0.50
 0.60
 0.70
 0.80

P
S

3−
12

9x
12

9
P

S
3−

83
x8

3
P

S
3−

33
x3

3
Q

S
20

−
12

9x
12

9
Q

S
20

−
83

x8
3

Q
S

20
−

33
x3

3
1C

el
l−

12
9x

12
9

1C
el

l−
83

x8
3

1C
el

l−
33

x3
3

P
D

P
S

3−
12

9x
12

9
P

S
3−

83
x8

3
P

S
3−

33
x3

3
Q

S
20

−
12

9x
12

9
Q

S
20

−
83

x8
3

Q
S

20
−

33
x3

3
1C

el
l−

12
9x

12
9

1C
el

l−
83

x8
3

1C
el

l−
33

x3
3

P
D

P
S

3−
12

9x
12

9
P

S
3−

83
x8

3
P

S
3−

33
x3

3
Q

S
20

−
12

9x
12

9
Q

S
20

−
83

x8
3

Q
S

20
−

33
x3

3
1C

el
l−

12
9x

12
9

1C
el

l−
83

x8
3

1C
el

l−
33

x3
3

P
D

P
S

3−
12

9x
12

9
P

S
3−

83
x8

3
P

S
3−

33
x3

3
Q

S
20

−
12

9x
12

9
Q

S
20

−
83

x8
3

Q
S

20
−

33
x3

3
1C

el
l−

12
9x

12
9

1C
el

l−
83

x8
3

1C
el

l−
33

x3
3

P
D

E
xe

cu
tio

n
tim

e/
op

er
at

io
n

[n
s]

Number of SPEs

Baseline scalability

1B 10B 100B 500B

Fig. 6. Baseline scalability: analyzing data from 1, 10, 100, 500 baselines for 4 hard-
ware configurations (PD=1core, PS3=6SPEs, 1Cell=8SPEs, QS20=16SPEs and three
different support kernel sizes

advantage (replaces one QS20 with two cheaper PlayStation3). Finally, for smal-
ler support kernels, the SPEs are significantly under-utilized. Ideally, the optimal
SPE configuration for a given problem size should be computed by an automated
performance predictor. No such tool is available yet for the Cell/B.E.

5 Scalability Analysis

In this section we test the scalability potential of our application, and we evaluate
how far off we are from the real system scale.

5.1 Multi-baseline Parallelization

In Section 4, we have discussed the performance results obtained when using the
PS3 or QS20 machines to perform the gridding/degridding for a single baseline.
To test our solution’s scalability, we repeat the experiments for sets of 10, 100
and 500 baselines. To simulate a streaming-like environment, we have used real
baseline data, only shuffled such that all data arrives in correct time order, but
data coming in the same time interval from different baselines and on different
frequency channels has no guaranteed order. We present our results in Figure 6.

Note that the execution time for a single baseline (1B) is better than for a 10
baselines set. This happens because the data locality is decreased by the shuffling.
However, as we increase to 100+ baselines, the G coverage tends to be more
uniform, and the performance is increasing. Also note the differences between
the platforms: the sequential version, running on the a single core of a PentiumD,
pays some performance penalty only for very large kernel sizes, and only for the
gridding operation - probably a cache effect. The PS3 performance drops badly
also for larger numbers of baselines (about 5-7 times for 100 baselines, and

Radioastronomy Image Synthesis on the Cell/B.E. 759

complete crash on 500 baselines), as the processor runs out of main memory.
The QS20 - in both 8 and 16 SPEs scales for all test cases.

5.2 The Scale of the Real Application

Radio-telescopes are typically used to gather data during one 8 or 12 hours
period (depending on how long the source is above the horizon), and process
it later. Data is gathered in a streaming fashion, with a given data rate (e.g,
a sample every 10s). For telescopes like SKA, processing is also required to be
on-line streaming: gather data, process, move on.

Our goal is to verify whether a collection of X Cell processors can deal with
online data processing constraints and, if so, to show how can X be estimated and
minimized. Equation 1 shows the upper bound to be enforced on the computation
time, T Cell

sample, such that data can be processed at a rate of 1 sample/Tint
3.

B × Nfreq

Tint
≤ X

T multi−Cell
sample

(1)

So, for each data sample (one per baseline per frequency channel) delivered to
the X processors in the time Tint, there has to be at least one grid addition, which
is the time T multi−Cell

sample . For example, in the case of B = 1000baselines, Nfreq =
50000 frequency channels, and Tint = 10s, X = 5.000.000× (T multi−Cell

sample /1s), or
the addition time has to be below 200ns for a single Cell to be able to handle
the data computation online.

To further bound T multi−Cell
sample , we note the following: (1) even if the computa-

tion speed may be able to keep-up with streaming requirements for 1000 base-
lines, the I/O capacity of Cell/B.E. will not: it is impossible to stream data into
one single Cell/B.E. at a rate of (1000 × 8)B/s [14]; (2) streaming at a low rate
may decrease the computation performance due to core underutilization; and
(3) the application scalability will be different for more Cell/B.E. processors,
especially when “packaged” in different machines, thus T Cell

sample ≤ T multi−Cell
sample .

A more general model, including these new constraints and presented in Equa-
tion 2.

B × Nfreq

Tint
≤ X

max(T Cell
sample, T

multi−Cell
streaming , TIO)

(2)

Thus, we conclude that our solution for the parallel implementation of the
gridding/degridding kernels scales well with the number of baselines. However,
although we seem to be able to deal with more than 500 baselines on a single
Cell/B.E. processor, slow I/O and streaming operations may as well impose the
use of several Cell/B.E. .

3 B is the number of baselines, Nf req is the number of frequency channels, Tint is the
time interval for the correlation integral.

760 A.L. Varbanescu et al.

6 Related Work

In this section we show how our work can be related with the fields of parallel
radio astronomy algorithms and HPC on multi-cores. So far, these two fields have
been completely disjoint. Our approach is a first step to high-performance radio
astronomy kernels on a high-performance heterogeneous multi-core system.

Astronomers mainly use shared memory and MPI to parallelize their applica-
tions. To use MPI on Cell/B.E., a very lightweight implementation is needed and
tasks must be stripped down to t in the remaining space of the local store. The
only MPI-based programming model for Cell is the MPI microtask model [15],
but their prototype is not available for evaluation. OpenMP [16] is not an option
as it relies on shared-memory.

Applications like RAxML [17] and Sweep3D [10], have also shown the chal-
lenges and results of efficient parallelization of HPC applications on the Cell/B.E.
Although we used some of their techniques to optimize the SPE code perfor-
mance, the higher-level parallelization was too application specific to be reused
in our case. Furthermore, typical ports on the Cell, like MarCell [18], or real-time
ray tracing are [11] are very computation intensive, so they do not exhibit the
unpredictable data access patterns and the low number of compute operations
per data byte we have seen in this application.

Currently, efforts are underway to implement other parts of the
radio-astronomy software pipeline, such as the correlation and calibration al-
gorithms on Cell and GPUs. Correlation may be very compute-intensive, but it
is much easier to parallelize - it has already been implemented very efficiently
on Cell and FPGAs [19]. Apart from the general-purpose GPU frameworks
like CUDA [20] and RapidMind [5], we are following with interest the work
in progress on real-time imaging and calibration [21], which deals with similar
applications.

7 Conclusions and Future Work

HPC applications are hard to port efficiently on multi-core processors, due to
the multiple levels of parallelism that need to be properly addressed. In this
paper, we have presented a significant HPC radioastronomy kernel and we have
shown how to efficiently tackle its parallelization on the Cell/B.E. processor. Our
approach is based on a locality-enhancing parallelization, which isolates and as-
signs the lower-level compute intensive blocks to the worker cores, and dedicates
master cores to execute the irregular control- and data-flow. Due to its high-level
view of the problem, our approach can be easily extended to parallelize dynamic
data-intensive applications on heterogeneous multi-cores. We have applied this
strategy to the gridding and degridding kernels, one of the very first successful
attempts to port radioastronomy kernels on a heterogeneous multi-core proces-
sor. The experimental results included in the paper show a 20 times performance
improvement of the Cell/B.E. solution over the original sequential code running

Radioastronomy Image Synthesis on the Cell/B.E. 761

on a commodity machine, as well as very good scalability. However, due to
additional limitations, like the I/O and memory rate, we may still need hundreds
of Cell/B.E. to process the LOFAR or SKA data streams on-line.

In the near future, we aim to implement a new series of aggressive, data-
dependent optimizations on the current implementation. Further, we aim to test
the performance and scalability of the gridding/degridding kernels in a multi-
Cell environment. Finally, as data-intensive irregular-access applications like the
gridding/degridding kernels are notorious stress-cases for parallel architectures,
we plan to make a thorough comparison between parallelization approaches,
programming effort and performance pay-off for several multi-core platforms
running gridding and degridding.

Acknowledgements. We would like to thank Michael Perrone, Gordon Brau-
daway, Fabrizzio Petrini and Daniele Scarpazza for their valuable support and
ideas during the development of this application. We would also like to thank
Jennifer Turner (IBM) for always finding an extra time-slot for us on the QS20
blade.

References

1. Williams, S., Shalf, J., Oliker, L., Kamil, S., Husbands, P., Yelick, K.: The Potential
of the Cell Processor for Scientific Computing. In: ACM Computing Frontiers 2006,
Italy (May 2006)

2. van der Schaaf, K., Broekema, C., van Diepen, G., van Meijeren, E.: The lofar
central processing facility architecture. Experimental Astronomy, special issue on
SKA 17, 43–58 (2004)

3. Cornwell, T.J.: SKA and EVLA computing costs for wide field imaging. Experi-
mental Astronomy 17, 329–343 (2004)

4. Schilizzi, R.T., Alexander, P., Cordes, J.M., Dewdney, P.E., Ekers, R.D., Faulkner,
A.J., Gaensler, B.M., Hall, P.J., Jonas, J.L.:, Kellermann, K.I.: Preliminary speci-
fications for the square kilometre array. Technical Report v2.4 (November 2007),
www.skatelescope.org

5. McCool, M.: Signal processing and general-purpose computing on GPUs. IEEE
Signal Processing Magazine, 109–114 (May 2007)

6. Fatahalian, K., Knight, T.J., Houston, M., Erez, M., Horn, D.R., Leem, L., Park,
J.Y., Ren, M., Aiken, A., Dally, W.J., Hanrahan, P.: Sequoia: Programming the
memory hierarchy. In: Proceedings of the 2006 ACM/IEEE Conference on Super-
computing (November 2006)

7. Thompson, A., Moran, J., Swenson, G.: Interferometry and synthesis in radio as-
tronomy. Wiley, New York (2001)

8. Cornwell, T., Golap, K., Bhatnagar, S.: W projection: A new algorithm for wide
field imaging with radio synthesis arrays. In: Astronomical Data Analysis Software
and Systems XIV ASP Conference Series, vol. 347, p. 86–95 (2004)

9. Gschwind, M.: The Cell Broadband Engine: Exploiting multiple levels of paralle-
lism in a chip multiprocessor. International Journal of Parallel Programming 35(3),
233–262 (2007)

10. Petrini, F., Fernàndez, J., Kistler, M., Fossum, G., Varbanescu, A.L., Perrone,
M.: Multicore Surprises: Lessons Learned from Optimizing Sweep3D on the Cell
Broadband Engine. In: IPDPS 2007. IEEE/ACM (March 2007)

www.skatelescope.org

762 A.L. Varbanescu et al.

11. Benthin, C., Wald, I., Scherbaum, M., Friedrich, H.: Ray tracing on the Cell proces-
sor. In: IEEE Symposium on Interactive Ray Tracing 2006, pp. 15–23 (September
2006)

12. Varbanescu, A.L., van Amesfoort, A., Cornwell, T., Elmegreen, B.G., van Nieuw-
poort, R., van Diepen, G., Sips, H.: The performance of gridding/degridding on
the Cell/B.E. Technical report, Delft University of Technology (January 2008)

13. IBM: Cell Broadband Engine Programming Tutorial. 2.0 edn. (December 2006)
14. Hofstee, P.: Power efficient processor architecture and the cell processor. In: HPCA

2005, pp. 258–262. IEEE Computer Society Press, Los Alamitos (2005)
15. Ohara, M., Inoue, H., Sohda, Y., Komatsu, H., Nakatani, T.: MPI microtask for

programming th Cell Broadband Engine processor. IBM Systems Journal 45(1),
85–102 (2006)

16. O’Brien, K., Sura, Z., Chen, T., Zhang, T.: Supporting openmp on the cell. In:
International Workshop on OpenMP (2007)

17. Blagojevic, F., Stamatakis, A., Antonopoulos, C., Nikolopoulos, D.S.: RAxML-
CELL: Parallel phylogenetic tree construction on the cell broadband engine. In:
IPDPS 2007, Long Beach, CA. IEEE/ACM (March 2007)

18. Liu, L.K., Liu, Q., Natsev, A.P., Ross, K.A., Smith, J.R., Varbanescu, A.L.: Digital
Media Indexing on the Cell Processor. In: ICME 2007, N/A (July 2007)

19. de Souza, L., Bunton, J.D., Campbell-Wilson, D., Cappallo, R.J., Kincaid, B.:
A radio astronomy correlator optimized for the Xilinx Virtex-4 SX FPGA. In:
International Conference on Field Programmable Logic and Applications (2007)

20. ***: nVidia CUDA - Compute Unified Device Architecture Programming Guide.
nVidia (2007)

21. Wayth, R., Dale, K., Greenhill, L., Mitchell, D., Ord, S., Pfister, H.: Real-time
calibration and imaging for the MWA (poster). In: AstroGPU 2007 (November
2007)

	Radioastronomy Image Synthesis on the Cell/B.E.
	Introduction
	The Gridding and Degridding Kernels
	Radioastronomy - A Primer
	Building the Sky Image
	Application Analysis

	Parallelization on the Cell/B.E.
	Cell/B.E. Overview
	Parallelization on the Cell/B.E.

	Experiments and Results
	Overall Application Performance
	SPE Utilization

	Scalability Analysis
	Multi-baseline Parallelization
	The Scale of the Real Application

	Related Work
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

