
Radio Astronomy Beam Forming on Many-Core Architectures

Alessio Sclocco, Ana Lucia Varbanescu
Faculty of Sciences

Vrije Universiteit Amsterdam
Amsterdam, The Netherlands

a.sclocco@vu.nl, a.l.varbanescu@vu.nl

Jan David Mol, Rob V. van Nieuwpoort
ASTRON

Netherlands Institute for Radio Astronomy
Dwingeloo, The Netherlands

mol@astron.nl, nieuwpoort@astron.nl

Abstract—Traditional radio telescopes use large steel dishes
to observe radio sources. The largest radio telescope in
the world, LOFAR, uses tens of thousands of fixed, omni-
directional antennas instead, a novel design that promises
ground-breaking research in astronomy. Where traditional tele-
scopes use custom-built hardware, LOFAR uses software to do
signal processing in real time. This leads to an instrument that
is inherently more flexible. However, the enormous data rates
and processing requirements (tens to hundreds of teraflops)
make this extremely challenging. The next-generation telescope,
the SKA, will require exaflops. Unlike traditional instruments,
LOFAR and SKA can observe in hundreds of directions
simultaneously, using beam forming. This is useful, for example,
to search the sky for pulsars (i.e. rapidly rotating highly
magnetized neutron stars). Beam forming is an important
technique in signal processing: it is also used in WIFI and 4G
cellular networks, radar systems, and health-care microwave
imaging instruments.

We propose the use of many-core architectures, such as 48-
core CPU systems and Graphics Processing Units (GPUs), to
accelerate beam forming. We use two different frameworks for
GPUs, CUDA and OpenCL, and present results for hardware
from different vendors (i.e. AMD and NVIDIA). Additionally,
we implement the LOFAR beam former on multi-core CPUs,
using OpenMP with SSE vector instructions. We use auto-
tuning to support different architectures and implementation
frameworks, achieving both platform and performance porta-
bility. Finally, we compare our results with the production
implementation, written in assembly and running on an IBM
Blue Gene/P supercomputer. We compare both computational
and power efficiency, since power usage is one of the funda-
mental challenges modern radio telescopes face. Compared to
the production implementation, our auto-tuned beam former
is 45–50 times faster on GPUs, and 2–8 times more power
efficient. Our experimental results lead to the conclusion that
GPUs are an attractive solution to accelerate beam forming.

Keywords-radio astronomy, many-core architectures, beam
forming, auto tuning

I. Introduction

Radio telescopes are used to capture the frequencies of
the electromagnetic spectrum that are outside the realm of
visible light. To answer astronomy’s big open questions, for
instance those related to the origin of the universe, there is
a need for more powerful and precise instruments. Due to
engineering limitations and economical constraints, simply
building larger telescopes to increase resolution is not viable

anymore. An alternative is radio interferometry, a technique
that combines signals of multiple receivers, thus creating a
single large virtual telescope. To cope with the complexity
of this scenario, telescopes rapidly evolve into software
telescopes, while they used hardware-based processing in the
past. The software solution increases flexibility and lowers
construction costs. The computational demands are chal-
lenging: LOFAR requires tens to hundreds of teraflops. The
SKA, a next-generation instrument that is currently being
designed, will require exaflops. Therefore, high performance
and power efficiency are of key importance.

LOFAR is an example of such a software telescope: it
has more than 80,000 omni-directional antennas which are
geographically distributed in five different countries. LO-
FAR’s signal processing pipeline is implemented in software,
and runs on an IBM Blue Gene/P (BG/P) supercomputer.
LOFAR is the largest and most complex radio telescope
in the world. It is driven by the astronomical community,
which needs a new instrument to study an extensive amount
of new science cases. Five key science projects have been
defined. First, we expect to see the Epoch of Reionization
(EoR), the time when the first star galaxies and quasars
were formed. Second, LOFAR offers a unique possibility in
particle astrophysics for studying the origin of high-energy
cosmic rays. Neither the source, nor the physical process
that accelerates such particles is known. Third, LOFAR’s
ability to continuously monitor a large fraction of the sky
makes it uniquely suited to find new pulsars and to study
transient sources. Fourth, Deep Extra-galactic Surveys will
be carried out to find the most distant radio galaxies and
study star-forming galaxies. Fifth, LOFAR will be capable
of observing the so far unexplored radio waves emitted by
cosmic magnetic fields. For a more extensive description of
the astronomical aspects of the LOFAR system, see [1].

One of LOFAR’s key features is the capability to point at
multiple directions in the sky at the same time, without the
need to move any mechanical part; this is made possible by
its software beam former. In fact, beam forming is the only
way to point the LOFAR telescope. With the high number
of antennas, and the ever increasing number of observa-
tions requested by the astronomers for their experiments,
it becomes apparent that the beam former is a fundamental

part of the telescope’s pipeline, with particularly demanding
requirements of high performance and scalability.

LOFAR’s production beam former is currently executed
on a Blue Gene/P, together with many other components
of the LOFAR pipeline. The beam former is an inherently
parallel application. This paper investigates whether or not
it is possible and effective to parallelize the beam former
using modern many-core architectures, such as Graphics
Processing Units (GPUs), and large multi-core CPU nodes.
Our aim is to achieve high performance and power efficiency.

We are interested in GPUs as a possible way to accelerate
radio astronomy because in the last ten years they have
evolved from simple graphics processors to general purpose
computational units, offering a mix of low costs, high
computational power, high memory bandwidth, and low
power consumption. To verify if they are a viable solution,
we have redesigned, implemented and optimized the LOFAR
beam former for the NVIDIA GTX580 and the AMD
HD6970 video cards, using the Compute Unified Device Ar-
chitecture (CUDA) [2] and the Open Computing Language
(OpenCL) [3] as implementation frameworks. OpenCL is a
portable platform, and multi-core CPUs can also execute the
OpenCL beam former. An important question is if OpenCL
also provides performance portability. Therefore, on CPUs,
we compare with an additional alternative implementation
using OpenMP and manual SSE vectorization.

All versions exploit our auto-tuning and run-time code
generation techniques to adapt the implementation to the
hardware platform and problem parameters, as dictated by
the observation specification. To gain insights in perfor-
mance and power efficiency improvements, we compare our
novel beam former with LOFAR’s production version on
the BG/P supercomputer, which is hand-written in assembly,
and extremely efficient. Our results indicate that our auto-
tuning many-core code is up to 50 times faster, and 3 times
more power efficient on GPUs. Moreover, using 8 GPUs in
a single node, our beam former even is 8 times more power
efficient than the BG/P. This excellent result will allow us
to build larger telescopes, and to point in more directions
simultaneously, leading to more effective instruments.

The rest of this paper is organized as follows. First, we
summarize the current state in the field of beam forming for
radio astronomy in Section II. Then, we present background
on telescopes, with a focus on LOFAR, and beam forming,
in Sections III and IV respectively. In Section V we analyze
the LOFAR beam former, moving from the sequential to
the GPU algorithm, while introducing the most important
optimization strategies used. The auto-tuning of the beam
former for the different architectures is introduced in Sec-
tion VI. In Section VII we present a detailed analysis of the
algorithm’s performance and power efficiency on different
many-core platforms, while comparing to the production
version. Finally, Section VIII presents our conclusions.

II. RelatedWork

So far, there are few software beam formers in use in
astronomy, as beam forming is an operation that is still
implemented in hardware in the vast majority of cases.
Among the software implementations, the one that is more
relevant for our work is the LOFAR production beam former,
described in [4]. An overview of the real-time software
pipeline of LOFAR is presented in [5]. Another software
beam former is the one of the Giant Metrewave Radio
Telescope (GMRT) in India [6]. This beam former, running
on a cluster of commodity hardware, produces at most
32 dual polarized beams, while the LOFAR beam former
is capable of producing hundreds of different beams: this
clearly shows how difficult the operational challenges of
LOFAR are. It is interesting to observe that also for the
GMRT the use of GPUs is considered as a possible future
solution to improve performance and to cut costs [6].

A different approach to beam forming is the one of
OSKAR [7]: a research tool, developed by the Oxford
astrophysics and e-Research groups, used to investigate the
challenges of beam forming for the SKA radio telescope.
It currently supports two different modes of execution: the
simulation of the beam forming phase and the computation
of different beam patterns. Due to the fact that OSKAR is a
simulation framework, it is not possible to directly compare
its approach and performance with ours.

As far as we know, there are no GPU radio astronomy
beam formers at the moment. There are, however, some
attempts at implementing general domain beam formers
using GPUs. Nilsen et al. [8] present two different digital
beam formers, implemented with CUDA, using an NVIDIA
GeForce 8800. The authors conclude that they can see a
future for the use of GPUs as the platform to run digital, high
performance, beam formers. The hardware that we use in this
paper is significantly different, leading to different trade-
offs. Also, our implementation is portable across different
platforms thanks to the use of OpenCL and auto-tuning.

Beam forming is a general signal processing technique,
and software beam formers are used in many different areas.
For example, [9] presents two beam forming techniques
aimed at increasing the number of possible users of an I-
WiMAX maritime communication system. Beam forming is
an efficient solution to reduce the spectrum necessary for
wireless communication because the waves can be steered
to the direction of the receiver, thus reducing interferences.
Therefore, beam forming techniques are used in modern
WIFI and 4G cellular telephone networks (TLE).

Another example of the importance of beam forming can
be found in [10]. Here, the authors improve the flexibility of
a radar system used to monitor the ocean, using a software
beam former. The use of this kind of beam former permits to
deploy this type of radar systems in locations that were not
suitable before. Also, the field of medicine benefits from

filter
correlate
integrate

beamform

(BG/P)

station
processing

(FPGAs)

remove RFI
calibrate

image

(PC cluster)

station
processing

(FPGAs)

station
processing

(FPGAs)

stations in the field

real-time
central

processing
offline

processingstorage

Figure 1. A simplified overview of LOFAR processing.

software beam forming. In [11], different beam forming
algorithms are compared to find which one is the best for
breast cancer detection using microwave imaging.

III. Software Telescopes

The structure of a classic radio telescope is relatively
simple: first, a large metallic dish reflects the radio waves to
an electronic receiver in its focal point. Next, the received
signals are processed, usually by special-purpose hardware,
and transformed into a representation that the astronomers
can use. In the past, the need to improve precision and
sensitivity of telescopes has always been addressed by
building bigger dishes. However, this is a solution that does
not scale: there are physical and engineering constraints on
the dimensions that a dish may reach. In addition, moving a
huge metal dish to point at some specific direction in the sky
is slow and difficult. This is a severe limitation for several
science cases, such as transient detection. Moreover, building
a massive telescope of this kind implies enormous costs for
raw materials and realization.

An attractive alternative is provided by radio interfer-
ometry, a technique that combines the signals received by
different antennas into a single and meaningful signal. It
is thus possible with this technique to use small dishes or
antennas (simpler and cheaper than large metal dishes) and
combine their measurements to build an instrument with
a resolution that is equivalent to that of a telescope with
a diameter equal to the largest distance between antennas.
Such telescopes essentially are distributed sensor networks.

However, a distributed telescope poses its own challenges:
it is necessary to connect all receiving antennas to a central
processing unit, and perform operations on the recorded
samples to merge (correlate) them. Additionally, since the
data streams are too large to store on disk, all these oper-
ations must be done in real-time. Implementing a system
like this completely in hardware is costly and error prone,
and may even span a period of over a decade to go from the
design to the realization. Moreover, it requires expertises that
are not easily found on the market. Most importantly though,

hardware implementations lack flexibility: a telescope has
a long lifetime (decades) during which there is a high
probability that new requirements will arise, and that the
operational setup will change. What appears to be the best
solution for providing flexibility for the new generation of
telescopes is to implement their operational pipelines in
software.

In this paper, we use the LOFAR telescope as a driving
example. LOFAR is a large radio interferometric array, and
a perfect example of what we call a software telescope: it
currently is the largest radio telescope in the world, with
more than 80,000 antennas, and its software pipeline is
executed in real-time by a two and a half rack IBM Blue
Gene/P supercomputer. The antennas, all of them omni-
directional, are of two different types: low-band antennas,
for the frequency interval of 10-80 MHz, and high-band
antennas, for the 110-240 MHz range. These antennas are
not directly connected to the central computing facility,
instead they are co-located in groups of different dimensions,
and organized in stations. There are 20 core stations, all
situated together in the northern part of the Netherlands,
and 24 external stations at increasing distance from the
core. Each station is equipped with a cabinet where some
preliminary processing is performed. Each core station may
act as two different stations, bringing the number of LOFAR
stations to 64. Stations are important because they increase
scalability: the software at the central computing facility can
use the stations’ output as its input, instead of dealing with
each single antenna.

Figure 1 shows an overview of the LOFAR processing
pipeline. The left part, before the storage, is executed in
real time. This part includes the beam former. After beam
forming, data is stored to disk, and processed further off-
line. For more detailed information on the pipeline, we refer
to [5]. In the next section, we will describe the beam forming
process in more detail.

IV. Beam Forming
Beam forming is a standard signal processing technique

that is used to control the spatial selectivity of omni-

directional antennas. It is important in radio interferometry,
because the signals from the receiving antennas need to
be compensated for the different antenna positions. This is
shown in Figure 2: all antennas receive the signals from
a radio source at different moments in time. Signals are
compensated before being integrated (added together), by
shifting their phase and amplitude by a value that depends on
the position of the source and of the antennas. Without this
compensation, the formed beams would have no direction-
ality. In case of narrow-band systems, such as LOFAR, the
amplitude shift is unnecessary, and a phase shift is sufficient
to provide the correct compensation.

LOFAR has two main software beam formers: the su-
perstation and the tied-array beam former. The superstation
beam former is part of the telescope’s imaging pipeline. It
reduces the number of stations seen by the correlator (i.e. the
component that computes sky images [5]), thus lowering its
complexity. This beam former simply adds samples together,
without shifting them. We focus on the tied-array beam
former, since it provides directionality in LOFAR.

The input samples of the beam former are grouped in
channels. A channel represents an observation’s frequency
interval (in our case of 763 Hz). For this interval, the input
contains all samples, for all used stations, measured in two
polarizations (X and Y). The output consists of an arbitrary
number of beams, that may vary between few and many
hundreds, with each beam representing a different pointing
direction. A beam contains all the frequency channels, and
their samples in both polarizations. The complexity of the
beam former is O(s · b), where s is the number of input
stations and b is the number of generated output beams.

Beam forming is especially important for the detection
of transient objects. Thanks to forming multiple beams at
the same time, and thus pointing at many directions simul-
taneously, it is possible to use the telescope for monitoring
a large fraction of the sky and wait for unexpected events.
Moreover, if another instrument detects an object outside
the area of the sky that LOFAR is currently monitoring, the
software beam former can be reprogrammed to redirect its
focus in real-time, without the need to move any mechanical
part. We refer to [4] for more information on how beam
forming is used in LOFAR.

V. Application Analysis

In this section, we first introduce the sequential beam
forming algorithm. Subsequently, we present our multi-core
and GPU parallel beam formers, explaining the paralleliza-
tion and choice of optimization strategies.

A. The Sequential Algorithm

The LOFAR beam forming algorithm consists of three
successive stages: (1) delays computation, (2) flagging bad
samples, and (3) beam forming. The goal of the delays
computation stage is to compute the time delays that are

Δt

Figure 2. The rightmost antenna receives the signal earlier.

needed to correct for the different antenna positions and for
pointing the instrument. These are different for each possible
combination of stations and beams. The input of this stage
are the delays at the beginning and the end of a samples
period, for each pair of stations and beams. For each beam
and station the algorithm computes an average of these two
values, subtracts from it the precomputed delay of the first
station, and stores the result in a matrix.

The second stage, flagging bad samples, is necessary
because received signals may contain errors due to radio
frequency interference (RFI). Since the beam former inte-
grates data from different stations, errors from one station
will propagate, and pollute all output beams. A station is
invalid and excluded from the computation if the number
of its flagged samples, i.e. the samples containing errors, is
above a certain threshold. Even if a station is valid it may
still contain some errors. To account for this, if a station’s
sample is flagged, the corresponding sample in all output
beams is flagged as well.

Algorithm 1 Pseudocode for the third stage of the beam
forming algorithm.

for b = 0→ nrBeams do
for c = 0→ nrChannels do

for t = 0→ nrT imes do
for p = 0→ nrPolarizations do

beam = 0
for s = 0→ nrS tations do

sample = Input[c][s][t][p]
shi f t = computeS hi f t(c, s, b)
sample = sample ∗ shi f t
beam = beam + sample

end for
Output[b][c][t][p] = beam/nrValidS tations

end for
end for

end for
end for

The third stage is the proper beam forming stage, and it
accounts for most of the execution time. For each beam
to form, the algorithm iterates over all three dimensions

(channels, samples and polarizations), loads each station’s
samples, phase shifts them, and outputs the average of these
shifted samples. Algorithm 1 shows pseudocode for the main
loop of this stage. The phase shift value is a function of the
previously computed delay, and of the sample’s frequency.
All the signals are represented as single precision floating
point complex numbers, so all the arithmetic operations in
the pseudocode are in fact complex operations.

The delays computed in the first stage are used only
to compute the phase shifts in the third stage. Therefore,
we extract the phase shifts computation from the third
stage and move it to the first. Thus, the computeShift()
operation in Algorithm 1 simply becomes an access to a
lookup table. As a side effect of this merge, the beam
forming stage is simplified, and uses only single-precision
floating point operations. In fact, the only operations now are
complex additions and multiplications, which are efficiently
implemented on all platforms. Even after the removal of the
phase shifts computation, the third stage remains the most
time consuming part of the algorithm.

Analysis of the sequential algorithm shows that the beam
forming algorithm is inherently parallel: there are no data
dependencies between different beams, and they can be
computed independently of each other. We can affirm that
the delays computation and the flagging stages don’t have
dependencies between them, thus they can be independently
computed, possibly concurrently. The third stage, however,
has to wait until the completion of the previous stages, as
its computation depends on their outputs.

B. The IBM Blue Gene/P Production Version

The current production version of the LOFAR beam
former runs on an IBM Blue Gene/P supercomputer. It
is implemented in C++, with the core routines written in
assembly for performance reasons. The code presented in
Algorithm 1 is written in assembly and is manually tuned
to minimize memory accesses and maximize hardware uti-
lization. This highly optimized implementation of the beam
former achieves 86% of the platform’s peak performance.
For a further description and performance analysis of the
production beam former we refer to [4].

C. The Multi-core CPU Version

A beam former for multi-core CPUs needs to be flexible
enough to leverage the ever increasing number of available
cores per node. Moreover, modern CPUs provide different
levels of parallelism as they also support SIMD instructions
(SSE); exploiting all these levels of parallelism at the same
time is critical to achieve high performance.

Given that the phase shifts are computed for each combi-
nation of channels, stations and beams, and that each phase
shift is independent of all the others, we use OpenMP [12]
to divide the work in the first stage between different

threads. For each different channel a thread works on a non-
overlapping subset of stations, and computes the phase shifts
associated with these stations and all the beams.

In the flagging stage, we can use OpenMP to parallelize
counting the valid stations and flagging the output. However,
this part of the algorithm is less computation intensive and,
consequently, benefits less from parallelization. Therefore,
we do not further investigate the parallelization of this stage.

For stage three, we have two different levels of paral-
lelism: (1) samples are equally divided between OpenMP
threads and (2) the two polarizations of each sample are
computed in parallel using the Streaming SIMD Extensions
(SSE) [13]. The beam former kernel uses a different thread
for each frequency channel and, for each channel, this thread
spans a small number of children, each of them working
on a part of the samples and being responsible for the
computation of all beams, i.e. it merges all the shifted
samples, in both polarizations, of all the different stations.

D. The GPU Version

Here we introduce the parallelization strategies behind our
GPU algorithm; as common in high performance computing,
these strategies are a direct consequence of the hardware
organization of the platform. The described algorithm is the
best performing one of a family of six different GPU beam
forming algorithms that we designed and implemented in
previous work [14]. To achieve good performance it is nec-
essary to understand that GPUs are inherently hierarchical
devices. In fact, they use two different hierarchical abstrac-
tions: the computational and the memory organization. From
a computational point of view, GPUs are equipped with a
variable number of streaming multiprocessors, each of which
contains many computational cores. GPU computations are
organized in thread-blocks and threads, with each thread-
block being associated with a streaming multiprocessor, and
each of the block’s threads being executed by one of the
streaming multiprocessor’s cores. In addition, GPUs have
several different memories. Most important are the off-chip
global memory, accessible by all threads of all thread-blocks,
and the on-chip shared memory, that is available only to the
threads of a same block, and may be used as an application-
controlled cache.

Data transfers from the host to the GPU over the PCI-e
bus can be a bottleneck for data-intensive computations [15].
In radio astronomy signal processing, this has also been
identified as a problem [16]. However, for this work, we
do not take the host-GPU data transfers into account, since
the beam former is a part of a larger pipeline [5]. Therefore,
we assume the data already is on the GPU, and may also be
used on the GPU again for further processing.

The delays and phase shift computations present a degree
of parallelism that may benefit from a GPU implementation.
However, they use double-precision floating point operations
and trigonometric functions, both of which are expensive on

GPUs. We did investigate GPU parallelization of this stage,
but the OpenMP/SSE CPU implementation performed better.

The flagging stage has less advantage of being parallelized
on the GPU, since it has limited data parallelism and uses
non-trivial data structures (i.e. C++ sparse sets). Moreover,
of this stage’s outputs, only the number of valid stations is
directly used in the following phase, and this value can be
easily passed as an argument to the GPU kernel.

The third phase of the algorithm benefits the most from
parallelization on a GPU. In the design of our GPU beam
former we exploit two levels of parallelism. In the first
level, we assign each channel to a different thread-block. All
samples are independent in the time direction, thus inside
each thread-block we assign a different sample to every
single thread. Each thread is then responsible for merging
and shifting all stations and all beams, in both polarizations,
but just for the channel and time associated with it. The
advantage of this solution is that it eliminates the need for
any inter thread, and inter thread-block communication: each
thread can run independently from the others.

Moreover, this structure for the computation permits coa-
lesced accesses to the GPU’s global memory, as the threads
inside a block read their inputs from, and write their outputs
to, consecutive memory addresses. This is important be-
cause, on GPUs, coalescing is critical for performance [17].
Due to hardware or implementation framework limitations
on some platforms the structure may be slightly modified at
runtime, i.e. splitting each original thread-block into multiple
blocks, but this does not modify the overall structure of the
algorithm.

E. The beams-block Optimization Strategy

Sections V-C and V-D outlined how the beam forming
algorithm can be parallelized. However, achieving good
performance is still difficult. To achieve good performance
on architectures where the gap between computational power
and memory bandwidth is wide (such as on GPUs), it is
extremely important to minimize the number of accesses to
the slow global memory [16]. Minimizing memory accesses
is even more important for algorithms with low arithmetic
intensity (AI) [18], such as the beam former. Its arithmetic
intensity, the number of operations performed per byte
accessed in global memory, can simply be counted looking
at the source code, and is shown in Equation 1.

AI =
(4 × stations) + 1
(6 × stations) + 4

(1)

A way to minimize accesses to memory is to increase data
reuse: when loading data from global memory, it is important
to perform all, or most of, the operations associated with
these data. There are two different points in our algorithm
with potential for data reuse: (1) all the threads of a
thread-block may share the phase shifts, because they are
independent with respect to time, and (2) a single thread may

reuse a loaded station’s sample to compute many beams.
To implement this optimization strategy we modified the
kernel’s main loop as shown in Algorithm 2.

Algorithm 2 Pseudocode for the kernel’s beams-block op-
timization.

c = myChannel()
t = myTime()
for station = f irstS tation→ nrS tations do

samplePolarization0 = Input[c][station][t][0]
samplePolarization1 = Input[c][station][t][1]
for beam = f irstBeam→ f irstBeam + beamBlockDim do

shi f t = S hi f ts[c][station][beam]
beam0 = samplePolarization0 ∗ shi f t
beam1 = samplePolarization1 ∗ shi f t
Beams[beam][0] = Beams[beam][0] + beam0
Beams[beam][1] = Beams[beam][1] + beam1

end for
end for

The first crucial difference with Algorithm 1 is that the
order of the loops over stations and beams is changed. This
enables reuse of loaded station samples to form many beams.
Another important difference is that the beams loop is not
over the whole space of the beams, but only over a block.

This is necessary because it is not always possible to
compute all the beams within a single kernel execution due
to the limited amount of registers. Even though we use arrays
in the pseudocode, the actual code uses registers instead
of memory for performance reasons. Thus, the number of
beams that is possible to form within a single execution
is limited by the number of registers that are available
per thread. Furthermore, in the source code the memory
operations are vectorized, so the two polarizations are loaded
and stored with a single operation.

We call the number of beams formed during an iteration
of the innermost loop the beams-block. This parameter is of
capital importance for the performance of the algorithm: a
correct setup may effectively improve performance, while a
wrong one may lead to hardware underutilization, a non
optimal number of memory accesses if the block is too
small, and register spilling if the block is too large. The
performance improvement brought by the beams-block opti-
mization strategy is also reflected in the arithmetic intensity,
as shown in Equation 2. The kernel’s arithmetic intensity
increases with a larger beams-block size.

AI =
(4 × stations) + 1

4×stations
beams−block + (2 × stations) + 4

(2)

VI. Auto-tuning the Beams-block

To provide a fair platform performance comparison, we
need to select the best configuration of the beams-block
parameter. To tune the algorithm, we try different configu-
rations, and measure the number of single precision floating
point operations per second (GFLOP/s) achieved in the third

Platform Cores GFLOP/s GB/s TDP (Watt)
IBM Blue Gene/P 4 × 1 13.6 13.6 24
Intel Xeon E5620 4 × 2 153.6 51.6 160
AMD Opteron 6172 12 × 4 806.4 170.4 320
AMD HD6970 64 × 24 2793 176 250
NVIDIA GTX580 32 × 16 1581.1 192.4 244

Table I
Characteristics of the used platforms.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 50 100 150 200

G
F

L
O

P
/s

Beams

AMD Opteron 6172 - OpenCL (Intel)
Intel Xeon E5620 - OpenCL (Intel)

AMD Opteron 6172 - OpenCL (AMD)
Intel Xeon E5620 - OpenCL (AMD)

Figure 3. Comparison of Intel and AMD OpenCL compilers for CPU,
512 stations (higher is better).

stage. The analysis of these values provides general and
case-specific guidelines for the setup of the beams-block.

The experiments are performed using the Distributed
ASCI Supercomputer 4 (DAS-4) [19], running CentOS Linux
release 6. The C++ compiler used for the CPU code is the
GNU g++, version 4.4.6, that implements OpenMP 3.1; we
obtained slightly lower results accross the board using the
Intel C++ compiler, version 12.1, thus we are not including
it in the discussion. For running the OpenCL implementation
on multi-core CPUs we rely on the runtime environment
included with the Intel OpenCL SDK 1.1, as we found that
for our application it is much faster than AMD’s SDK (see
Figure 3). For the NVIDIA GPU we use CUDA 4.0, that
also provides an OpenCL runtime, while for the AMD GPU
we use the AMD Accelerated Parallel Processing (APP)
SDK version 2.5. Platform characteristics are summarized
in Table I.

A. IBM Blue Gene/P

The LOFAR production code uses an optimization strat-
egy based on combining multiple iterations of the beam
former’s main loop. After careful analysis and manual tuning
we found that the optimal setup is to compute 128 time
samples, 6 stations and 3 beams for each kernel iteration.
The tuning of the production version of the beam former on
the BG/P is beyond the scope of this work, thus we do not
further discuss it and refer to [4] for more information.

 0

 10

 20

 30

 40

 50

 0 20 40 60 80 100 120 140 160 180

G
F

L
O

P
/s

Beams

2 stations

4 stations

8 stations

16 stations

32 stations

64 stations

128 stations

256 stations

512 stations

Figure 4. Tuning the beams-block for the Intel Xeon E5620 using
OpenMP/SSE (higher is better).

 0

 10

 20

 30

 40

 50

 60

 70

 0 20 40 60 80 100 120 140 160 180

G
F

L
O

P
/s

Beams

2 stations

4 stations

8 stations

16 stations

32 stations

64 stations

128 stations

256 stations

512 stations

Figure 5. Tuning the beams-block for the Intel Xeon E5620 using OpenCL
(higher is better).

B. Intel Xeon E5620

The first multi-core CPU we use is the Intel Xeon
E5620. Figure 4 presents the results obtained using the
OpenMP/SSE version (described in Section V-C). Results
show that performance is increasing with the size of the
beams-block. The returns are diminishing for higher val-
ues, however, because the beams-block size determines the
amount of registers used, and for higher values, the compiler
spills the registers to memory. Nevertheless, the best setup
for this platform is to set the beams-block equal to the
number of beams to form.

The Intel CPUs also support OpenCL, and we auto-tuned
the OpenCL implementation (described in Section V-D)
for this platform as well. Figure 5 shows the results for
this experiment. Despite some outliers, the behavior of
the OpenCL implementation is close to the OpenMP/SSE

 0

 10

 20

 30

 40

 50

 60

 70

 0 20 40 60 80 100 120 140 160 180

G
F

L
O

P
/s

Beams

OpenCL
OpenMP

Figure 6. Comparison between OpenMP/SSE and OpenCL on the Intel
Xeon E5620, 512 stations (higher is better).

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100 120 140 160 180

G
F

L
O

P
/s

Beams

2 stations

4 stations

8 stations

16 stations

32 stations

64 stations

128 stations

256 stations

512 stations

Figure 7. Tuning the beams-block for the AMD Opteron 6172 using
OpenMP/SSE (higher is better).

version. With OpenCL, the best setup of the beams-block is
also to use a value equal to the number of beams.

Since we have two different implementations on the same
hardware, we compare the performance achieved on this
platform by OpenMP/SSE and OpenCL in Figure 6. The
comparison shows that the OpenCL implementation achieves
higher performance than the OpenMP/SSE version: the
OpenCL implementations achieves 65 GFLOP/s (42% of the
platform’s peak), while the OpenMP/SSE implementation
achieves only 45 GFLOP/s (29% of the platform’s peak).
This result can be explained by further optimizations applied
by the Intel’s OpenCL compiler compared to GCC.

C. AMD Opteron 6172

The second multi-core CPU that we use is the AMD
Opteron 6172. We run the same experiment that we previ-
ously described for the Intel CPU. Figures 7 and 8 present

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 20 40 60 80 100 120 140 160 180

G
F

L
O

P
/s

Beams

2 stations

4 stations

8 stations

16 stations

32 stations

64 stations

128 stations

256 stations

512 stations

Figure 8. Tuning the beams-block for the AMD Opteron 6172 using
OpenCL (higher is better).

the results obtained using OpenMP/SSE and OpenCL, re-
spectively.

The OpenMP/SSE implementation behaves almost the
same as on the Intel CPU, with the difference that on the
Opteron CPU the curves are plateauing later, thanks to the
higher number of available cores. We also see that for a high
number of stations performance is not always increasing
with the beams-block size, i.e. it rises to a peak and then
there is a sudden drop. Thus, we can conclude that the
best setup of the beams-block for this platform equal to the
number of beams when there are not so many stations, and
to select a smaller value if the number of stations is larger
than 128. The specific value is input dependent and can be
identified using the results of this auto-tuning step.

The behavior of the OpenCL implementation on the
Opteron 6172 is far less stable than what observed on
the Intel CPU, and even less stable than the OpenMP/SSE
implementation on the same hardware. However, if we
exclude the outliers, we see the same trend that we had with
the OpenMP/SSE implementation, thus we can conclude the
same for what concerns the size of the beams-block size.

Figure 9 shows a comparison of OpenMP/SSE and
OpenCL for this platform. The OpenCL implementation
again achieves more GFLOP/s than OpenMP/SSE: 161
against 123. However, our many-core beam former is less
efficient on the AMD CPU, reaching only 20% and 15%
of the theoretical peak, respectively. This is caused by the
relatively low memory bandwidth per core of the AMD
machine, which hurts our data-intensive code.

D. NVIDIA GTX580

The NVIDIA GTX580 card can run both CUDA and
OpenCL. The number of stations varies between 2 and 512,
while the number of beams varies between 1 and 16; we
have this large difference in the maximum number of stations

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 20 40 60 80 100 120 140 160 180

G
F

L
O

P
/s

Beams

OpenCL
OpenMP

Figure 9. Comparison between OpenMP/SSE and OpenCL on the AMD
Opteron 6172, 512 stations (higher is better).

 0

 100

 200

 300

 400

 500

 600

 700

 0 5 10 15 20

G
F

L
O

P
/s

Beams

2 stations

4 stations

8 stations

16 stations

32 stations

64 stations

128 stations

256 stations

512 stations

Figure 10. Tuning the beams-block for the NVIDIA GTX580 using CUDA
(higher is better).

and beams because the number of stations is limited only
by the available global memory (3 GB in our configuration).
The number of beams, however, is limited by the number of
available registers, and we hit the ceiling of 63 registers
per thread (a hardware property of the NVIDIA Fermi
architecture) before the value of 16 for the beams-block.
The results using CUDA are presented in Figure 10.

The behavior appears to be regular, with performance
increasing with the growing of the beams-block. We can
see that for few stations, the performance’s peak is found in
correspondence of the value of 7, while for a large number
of stations the same peak is found in correspondence of
a beams-block of 11. We also show that for values larger
than 11 beams, there is a sudden loss in performance,
due to register spilling. The highest achieved number of
GFLOP/s for the GPU beam former is 642, 40% of the card’s
theoretical peak performance. This is an excellent result for

 0

 100

 200

 300

 400

 500

 600

 700

 0 5 10 15 20

G
F

L
O

P
/s

Beams

2 stations

4 stations

8 stations

16 stations

32 stations

64 stations

128 stations

256 stations

512 stations

Figure 11. Tuning the beams-block for the NVIDIA GTX580 using
OpenCL (higher is better).

 0

 100

 200

 300

 400

 500

 600

 700

 0 5 10 15 20

G
F

L
O

P
/s

Beams

OpenCL
CUDA

Figure 12. Comparison between CUDA and OpenCL on the NVIDIA
GTX580, 512 stations (higher is better).

an algorithm that is as data intensive as the beam former.
The OpenCL implementation produces results that are

comparable, as shown in Figure 11. We see, however, that
the OpenCL behavior is more irregular: instead of smooth
curves we have spiked ones. Differently from the CUDA
implementation, the performance’s peak appears to be in
correspondence with a greater value of the beams-block for
a little amount of stations, and to retreat back to the value
of 10 for a high number of stations. Also the decrease in
performance with large beams-block sizes is less steep.

We present the difference between OpenCL and CUDA
with 512 stations in Figure 12. Overall, the OpenCL imple-
mentation provides slightly higher performance, reaching a
peak of 672 GFLOP/s (42% of the theoretical peak), but the
difference with the CUDA implementation is less than 2%.
It is more difficult to tune the beams-block for the NVIDIA
GTX580 than it was for the multi-core CPUs. In general

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 10 20 30 40 50 60

G
F

L
O

P
/s

Beams

2 stations

4 stations

8 stations

16 stations

32 stations

64 stations

Figure 13. Tuning the beams-block for the AMD HD6970 using OpenCL
(higher is better).

we can affirm that a value higher than 11 for the CUDA
implementation, or 13 for the OpenCL implementation,
badly affects performance. However, the best value of the
beams-block is so dependent on the particular input size
that a decision should be deferred until this value is known.
When known, it can be easily computed thanks to the results
of our auto-tuning step. More than for multi-core CPUs
the auto-tuning looks of capital importance to achieve good
performance with GPUs, as we can see that the performance
window of these architectures is small.

E. AMD HD6970

The second GPU platform is the AMD HD6970, on which
we run the OpenCL implementation of the beam former. For
this platform we use different values for stations and beams:
the number of stations varies between 2 and 64, and the
number of beams between 1 and 51. These numbers reflect
two large differences between this card and the NVIDIA
GTX580: first, the HD6970 imposes limits on the amount of
memory that can be allocated in a single block, thus reducing
the maximum number of stations that is possible to merge
within a single run; second, the HD6970 provides more
registers per thread, thus increasing the beams-block space.
This is caused by a difference in GPU architecture: AMD
GPUs have a set of registers per core, while on NVIDIA
GPUs, the register file is shared by all cores in a streaming
multiprocessor. The results are presented in Figure 13.

It is interesting to observe that peaks are not confined to
the beginning of the space: there are peaks at as high as a
beams-block of 32, thanks to the large number of registers
of this platform. Also the behavior is more stable than on the
NVIDIA GPU, and the general advice for this platform is
to use a larger value for the beams-block. Unfortunately,
the impossibility of merge more than 64 stations in a
single kernel execution prevents this platform to achieve

Platform GFLOP/s Efficiency
IBM Blue Gene/P 10.8 79%
Intel Xeon E5620 (OpenMP/SSE) 45 29%
Intel Xeon E5620 (OpenCL) 65 42%
AMD Opteron 6172 (OpenMP/SSE) 123 15%
AMD Opteron 6172 (OpenCL) 161 20%
AMD HD6970 (OpenCL) 370 13%
NVIDIA GTX580 (CUDA) 642 40%
NVIDIA GTX580 (OpenCL) 672 42%

Table II
Maximum single run performance achieved during the auto-tuning.

performance comparable with the GTX580: we measure a
peak performance of 370 GFLOP/s, only the 13% of the
GPU’s theoretical peak.

To conclude, Table II presents a summary of the highest
measured GFLOP/s for all the platforms, together with the
achieved efficiency. We see that our GPU beam former,
compared with the production implementation, provides a
performance improvement, per chip, of more than 60 times,
even though the efficiency is lower due to the wide gap that
GPUs have between memory bandwidth and computational
power.

VII. Performance Analysis

In this Section we describe the performance and power
efficiency results obtained by our many-core beam former,
and compare the results of the different architectures with
the production implementation.

A. Performance comparison for a sky survey observation

To answer the question if many-core architectures are
suitable to accelerate beam forming in radio astronomy, we
compare the performance of our beam former running on
all the architectures presented in Table I with the production
one, using a real use case from the LOFAR telescope.

For this experiment, the number of input stations is 64,
the highest currently available in the LOFAR operational
setup, with each station providing one second of observa-
tion, divided into 768 dual polarized samples, covering a
frequency spectrum composed of 256 different channels.
The number of beams to form as output is 155. This
configuration is typical for a sky survey observation. The
beams-block is set according to the results of Section VI.
The achieved GFLOP/s, and the speedups relative to the
Blue Gene/P implementation, are available in columns 3 and
4 of Table III.

In terms of raw computational power the GPUs are clear
winners: our many-core beam former running on GPUs
achieves 5–14 times more single precision floating point
operations per second than on multi-core CPUs. The best
performing platform is the AMD HD6970 GPU, achieving
612 GFLOP/s, 7% more than the same OpenCL implemen-
tation running on the NVIDIA GTX580. For what concerns
the GTX580, we measure a difference of nearly 4% between

Platform AI GFLOP/s Speedup Watt GFLOP/Watt
IBM Blue Gene/P - 12.1 1 24 0.45
Intel Xeon E5620 (OpenMP/SSE) 1.92 42 3.4 360 0.11
Intel Xeon E5620 (OpenCL) 1.92 49 4.0 342 0.14
AMD Opteron 6172 (OpenMP/SSE) 1.92 106 8.7 625 0.16
AMD Opteron 6172 (OpenCL) 1.92 88 7.3 535 0.16
AMD HD6970 (OpenCL) 1.73 612 50.6 439 1.39
NVIDIA GTX580 (CUDA) 1.65 552 45.6 467 1.18
NVIDIA GTX580 (OpenCL) 1.63 572 47.3 455 1.25

Table III
Platform comparison for a typical sky survey observation, merging 64 stations into 155 beams.

the CUDA and OpenCL implementations, with the latter
performing slightly better than the former. It is important
to note that, thanks to auto-tuning, our beam former shows
performance portability between the different GPUs.

For what concerns the two multi-core CPUs, the
OpenCL implementation provides higher performance than
OpenMP/SSE on the Intel CPU, while on the AMD CPU it
is the OpenMP/SSE implementation that performs better.

The IBM Blue Gene/P achieves 12.1 GFLOP/s in this
configuration, 88% of the theoretical peak. In terms of
efficiency this platform remains the best performing one, but,
due to its design, it scores the lowest in terms of achieved
GFLOP/s. Comparing the results of our many-core beam
former with the production implementation, we measure an
improvement of 3–8 times for multi-core CPUs and of 45–
50 times for GPUs.

B. Power efficiency for a sky survey observation

Our GPU beam former provides high performance, as we
demonstrated in Section VII-A, and can be tuned to different
platforms and observation modes, as shown in Section VI.
However, this is not enough: future software telescopes
require high performance, but must also be highly power
efficient. For LOFAR, power dissipation already accounts for
a large part of the instrument’s operational costs. For future
telescopes, this will likely be even worse. When evaluating
the computational architectures of future telescopes, it is thus
necessary to look for an architecture that will maximize
the number of operations that is possible to provide per
Watt of consumed power. Therefore, we measure the power
efficiency of our beam former for the different platforms we
evaluate, again comparing with the production version on
the Blue Gene/P. To measure power consumption, we run the
different beam formers in the same operational environment
(the sky survey observation) as described in Section VII-A,
and use the DAS-4 Schleifenbauer Power Distribution Units
(PDUs) to measure the power dissipated by the working
nodes. The measurements are provided in Table III.

The IBM Blue Gene/P uses the least power per chip
in absolute sense, as expected, since it is designed for
low power consumption. However, the architecture also (by
design) has a relatively low floating point performance per

chip: it provides nearly half a GFLOP for each consumed
Watt of power. This is not surprising, as the chip is created
with an older manufacturing process (90 nm). Moreover,
the Blue Gene/P also contains hardware for five different
networks. These results are better than those achieved by the
multi-core CPUs that we tested: they provide only 0.11–0.16
GFLOP per Watt. In contrast to the Blue Gene/P, however,
these CPUs are focused on single core performance and not
on power efficiency.

With 1.18–1.39 GFLOP per Watt, the GPUs are 2–
3 times more power efficient than the Blue Gene/P, and
7–12 times more efficient than the multi-core CPUs we
tested. Moreover, the GPU power efficiency increases when
using more GPUs per node, since the power budget of the
host is spread over more GPUs and more FLOPs. In fact,
we experimented with a special DAS-4 node containing 8
NVIDIA GTX580 GPUs, resulting in a GFLOP per Watt
ratio of 3.72. This is 8 times more efficient than the Blue
Gene/P, and 23–33 times more than the multi-core CPUs.

VIII. Conclusions

Radio telescopes are quickly changing into gigantic sensor
networks with complex real-time software pipelines. To
efficiently implement future telescopes with exascale perfor-
mance demands, we need to evaluate computing platforms
that can provide high performance, while simultaneously
being highly energy efficient. In this paper, we evaluated
the beam forming algorithm, an important radio telescope
building block, but also used in computer networks, radar
systems and medical equipment. We evaluated this algorithm
on seven many-core hardware and software platform com-
binations, while comparing to the production version of the
beam former of LOFAR, the largest radio telescope in the
world, which uses a Blue Gene/P supercomputer.

Optimizing memory access is of capital importance when
dealing with platforms where the gap between computational
power and memory bandwidth is wide, as it is on GPUs. This
problem becomes increasingly important with virtually all
modern architectures, as the number of compute cores grows
much faster than the memory bandwidth. This is especially
difficult with data-intensive algorithms, such as the beam
former, which has a low arithmetic intensity.

We parallelized the algorithm for both multi-core CPUs
and modern many-core GPUs. We implemented our solu-
tions using OpenMP with SSE vector instructions, CUDA
and OpenCL. To achieve high performance on these archi-
tectures, we modified the sequential algorithm and imple-
mented many optimization techniques aimed at minimizing
memory accesses. We maximized data reuse at different
levels, both inter and intra-thread, while at the same time
ensuring that the algorithm uses coalesced access to memory.

Since many-core platforms are changing rapidly, and
telescopes have lifetimes of decades, we do not focus on
a specific many-core architecture, but aim to be portable,
in terms of both code and performance. We demonstrated
that it is possible to use auto-tuning to achieve high perfor-
mance for different combinations of hardware platforms and
implementation frameworks. We use run-time compilation
techniques to automatically tune the code for a particular
input problem (observation specification) and hardware plat-
form dynamically. We showed that performance portability
is possible in practice: our auto-tuned OpenCL code achieves
the same or better performance than hand-optimized code,
on both GPUs and multi-core CPUs. Moreover, we believe
that this approach to code and performance portability, based
on run-time code generation and auto-tuning, may be applied
to different parallel applications for many-core architectures.
We are now applying this same approach to other radio
astronomy algorithms.

Our approach leads to exciting results: compared to the
production implementation, our auto-tuned beam former is
45–50 times faster and 2–3 times more power efficient on
GPUs, and even 8 times more power efficient when using
8 GPUs in a single node. Furthermore, the GPU solution
remains the fastest even when taking the host-GPU memory
transfers into account. We conclude that GPUs provide a
viable solution for high performance and energy efficient
beam forming in radio astronomy. We plan to further inves-
tigate how GPUs may be used to accelerate other software
telescope pipeline components. In addition, we want to study
the feasibility of performing the entire LOFAR real time
pipeline on a GPU-powered cluster.

References

[1] A. de Bruyn et al., “Exploring the universe with the
low frequency array, a scientific case,” September 2002,
http://www.lofar.org/PDF/NL-CASE-1.0.pdf.

[2] NVIDIA Corporation, “NVIDIA CUDA C programming
guide 4.0,” May 2011.

[3] Khronos OpenCL Working Group, “The OpenCL specifica-
tion 1.1,” September 2010.

[4] J. D. Mol and J. W. Romein, “The LOFAR Beam Former:
Implementation and Performance Analysis,” in EuroPar’11,
vol. LNCS 6853, no. Part II, Bordeaux, France, August 2011,
pp. 328–339.

[5] J. W. Romein, P. C. Broekema, J. D. Mol, and Rob V.
van Nieuwpoort, “The LOFAR correlator: Implementation
and performance analysis,” in 15th ACM SIGPLAN Symp.
on Principles and Practice of Parallel Programming (PPoPP
2010), Bangalore, India, January 2010, pp. 169–178.

[6] J. Roy, Y. Gupta, U. Pen, J. Peterson, S. Kudale, and
J. Kodilkar, “A real-time software backend for the GMRT,”
Experimental Astronomy, vol. 28, pp. 25–60, 2010.

[7] B. Mort, F. Dulwich, S. Salvini, K. Adami, and M. Jones,
“OSKAR: Simulating digital beamforming for the SKA aper-
ture array,” in IEEE International Symp. on Phased Array
Systems and Technology (ARRAY), oct. 2010, pp. 690–694.

[8] C. Nilsen and I. Hafizovic, “Digital beamforming using
a GPU,” in IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2009, pp. 609–612.

[9] X. Lian, H. Nikookar, and L. Ligthart, “Efficient radio trans-
mission with adaptive and distributed beamforming for intel-
ligent WiMAX,” Wireless Personal Communications, vol. 59,
pp. 405–431, 2011.

[10] T. Helzel and M. Kniephoff, “Software beam forming for
ocean radar WERA features and accuracy,” in IEEE OCEANS
2010, 2010, pp. 1–3.

[11] D. Byrne, M. O’Halloran, M. Glavin, and E. Jones, “Contrast
enhanced beamforming for breast cancer detection,” Progress
In Electromagnetics Research, vol. 28, pp. 219–234, 2011.

[12] OpenMP Architecture Review Board, “OpenMP Application
Program Interface 3.1,” July 2011.

[13] S. Thakkur and T. Huff, “Internet streaming SIMD exten-
sions,” IEEE Computer, vol. 32, no. 12, pp. 26–34, 1999.

[14] A. Sclocco, “Radio astronomy beam forming on GPUs,”
May 2011. [Online]. Available: http://alessio.sclocco.eu/wp-
content/uploads/MScThesis.pdf

[15] J. Meredith, P. Roth, K. Spafford, and J. Vetter, “Performance
implications of non-uniform device topologies in scalable
heterogeneous GPU systems,” IEEE Micro, vol. PP, no. 99,
p. 1, 2011.

[16] Rob V. van Nieuwpoort and J. W. Romein, “Correlating
radio astronomy signals with many-core hardware,” Springer
International Journal of Parallel Programming, vol. 39, no. 1,
pp. 88–114, 2011.

[17] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone,
D. B. Kirk, and W.-m. W. Hwu, “Optimization principles and
application performance evaluation of a multithreaded GPU
using CUDA,” in 13th ACM SIGPLAN Symp. on Principles
and practice of parallel programming (PPoPP), 2008, pp.
73–82.

[18] S. Williams, A. Waterman, and D. Patterson, “Roofline: an
insightful visual performance model for multicore architec-
tures,” Commun. ACM, vol. 52, pp. 65–76, April 2009.

[19] “Das-4: The distributed ASCI supercomputer version 4,” see
http://www.cs.vu.nl/das4/.

