Rob van Nieuwpoort

Thilo Kielmann

Jason Maassen Henri E. Bd
Ronald Veldema

Department of Computer Science, Vrije Universiteit, Amsterdam, The Netherlands

rob@cs.vu.nl jason@cs.vu.nl

bal@cs.vu.nl

kielmann@cs.vu.nl rveldema@cs.vu.nl

http://www.cs.vu.nl/albatross/

Abstract

Java’s support for parallel and distributed processing makes the lan-
guage attractive for metacomputing applications, such as parallel
applications that run on geographically distributed (wide-area) sys-
tems. To obtain actual experience with a Java-centric approach to
metacomputing, we have built and used a high-performance wide-
area Java system, called Manta. Manta implements the Java RMI
model using different communication protocols (active messages
and TCP/IP) for different networks. The paper shows how wide-
area parallel applications can be expressed and optimized using
Java RMI. Also, it presents performance results of several applica-
tions on a wide-area system consisting of four Myrinet-based clus-
ters connected by ATM WANS.

1 Introduction

Metacomputing is an interesting research area that tries to integrate
geographically distributed computing resources into a single pow-
erful system. Many applications can benefit from such an integra-
tion [11, 22]. Metacomputing systems support such applications by
addressing issues like resource allocation, fault tolerance, security,
and heterogeneity. Most metacomputing systems are language-
neutral and support a variety of programming languages. Recently,
interest has also arisen in metacomputing architectures that are cen-
tered around a single language. This approach admittedly is restric-
tive for some applications, but also has many advantages, such as
a simpler design and the usage of a single type system. In [24],
the advantages of a Java-centric approach to metacomputing are
described, including support for code mobility, distributed poly-
morphism, distributed garbage collection, and security.

In this paper, we describe our early experiences in building
and using a high-performance Java-based system for one impor-
tant class of metacomputing applications: parallel computing on
geographically distributed resources. Although our system is not
a complete metacomputing environment yet, it is interesting for
several reasons. The system, called Manta, has been optimized
to achieve high performance. It uses a native compiler and an
efficient, light-weight RMI (Remote Method Invocation) protocol
that achieves a performance close to that of C-based RPC proto-
cols [17]. We have implemented Manta on a geographically dis-

To appear in JavaGrande 99, ACM 1999 Java Grande Conference,
Palo Alto, California, June 1999. Copyright 1999 by ACM, Inc.

tributed system, called DAS, consisting of four Pentium Pro/Myrinet
cluster computers connected by wide-area ATM links. The result-
ing system is an interesting platform for studying parallel Java ap-
plications on geographically distributed systems.

The Java-centric approach achieves a high degree of transparency
and hides many details of the underlying system (e.g., different
communication substrates) from the programmer. For several high-
performance applications, however, the huge difference in commu-
nication speeds between the local and wide-area networks is a prob-
lem. In our DAS system, for example, a Java RMI over the Myrinet
LAN costs about 40 psec, while an RMI over the ATM WAN costs
several milliseconds. Our Java system therefore exposes the struc-
ture of the wide-area system to the application, so applications can
be optimized to reduce communication over the wide-area links.

In this paper, we show how wide-area parallel applications can
be expressed and optimized using Java RMI and we discuss the
performance of several parallel Java applications on DAS. We also
discuss some shortcomings of the Java RMI model for wide-area
parallel computing. This experience will be useful for future (Java-
centric) metacomputing systems and may also stimulate further re-
search on programming support for wide-area applications. The
outline of the paper is as follows. In Section 2 we describe the im-
plementation of Manta on our wide-area system. In Section 3 we
describe our experiences in implementing four wide-area parallel
applications in Java and we discuss their performance. In Section 4
we look at related work and in Section 5 we give our conclusions.

2 A wide-area parallel Java system

In this section, we will briefly describe the DAS system and the
original Manta system (as designed for a single parallel machine).
Next, we discuss how we implemented Manta on the wide-area
DAS system. Finally, we compare the performance of Manta and
the Sun JDK 1.1.4 on the DAS system.

2.1 The wide-area DAS system

We believe that high-performance metacomputing applications will
typically run on collections of parallel machines (clusters or MPPs),
rather than on workstations at random geographic locations. Hence,
metacomputing systems that are used for parallel processing will
be hierarchically structured. The DAS experimentation system we
have built reflects this basic assumption, as shown in Figure 1. It
consists of four clusters, located at different universities in The
Netherlands. The nodes within the same cluster are connected by
1.2 Ghit/sec Myrinet [6]. The clusters are connected by dedicated
6 Mbit/s wide-area ATM networks.

The nodes in each cluster are 200 MHz/128 MByte Pentium
Pros. One of the clusters has 128 processors, the other clusters have

Leiden

seseeene
TTITITE
seseeene
seeeene
seseeene
seseeene

24 24

VU Amsterdam

UVA Amsterdam

28 24

[y

Figure 1: The wide-area DAS system.

24 nodes each. The machines run RedHat Linux version 2.0.36 and
BSD/OS 3.0. The Myrinet network is a 2D torus and the wide area
ATM network is fully connected. The system, called DAS, is more
fully described in [20] (and on http://www.cs.vu.nl/das/).

2.2 The Manta system

Manta is a Java system designed for high-performance parallel com-
puting. Like JavaParty [19], Manta uses a separate remote key-
word to indicate which classes allow their methods to be invoked
remotely. This method is somewhat more flexible and easier to use
than inheriting from java.rmi.server.UnicastRemoteObject (the
standard RMI mechanism). JavaParty requires a preprocessor for
implementing this language extension; for Manta, we have mod-
ified our compiler. Except for this difference, the programming
model of Manta is the same as that of standard RMI. Manta uses a
native compiler and an optimized RMI protocol. The most impor-
tant advantage of a native compiler (compared to a JIT) is that it
can do more aggressive optimizations and therefore generate better
code. The compiler also generates the serialization and deserializa-
tion routines, which greatly reduces the runtime overhead of RMls.
Manta nodes thus contain the executable code for the application
and (de)serialization routines. The nodes communicate with each
other using Manta’s own light-weight RMI protocol.

The most difficult problem addressed by the Manta system is to
allow interoperability with other JVMs. One problem is that Manta
has its own, light-weight RMI protocol that is incompatible with
Sun’s JDK protocol. We solve this problem by letting a Manta node
also communicate through a JDK-compliant protocol. Two Manta
nodes thus communicate using our fast protocol, while Manta-to-
JVM RMIs use the standard RMI protocol.

Another problem concerning interoperability is that Manta uses
a native compiler instead of a byte code interpreter (or JIT). How-
ever, since Java RMIs are polymorphic [23], Manta nodes must be
able to send and receive byte codes to interoperate with JVMs. For
example, if a remote method expects a parameter of a certain class
C, the invoker may send it an object of a subclass of C. This sub-
class may not yet be available at the receiving Manta node, so its
byte code may have to be retrieved and integrated into the compu-
tation. With Manta, however, the computation is an executable pro-
gram, not a JVM. In the reverse situation, if Manta does a remote

invocation to a node running a JVM, it must be able to send the
byte codes for subclasses that the receiving JVM does not yet have.
Manta solves this problem as follows. If a remote JVM node sends
a byte code to a Manta node, the byte code is compiled dynami-
cally to object code and this object code is linked into the running
application using the dlopen() dynamic linking interface. Also,
Manta generates byte codes for the classes it compiles (in addition
to executable code). These byte codes are stored at an http daemon,
where remote JVM nodes can retrieve them. For more details, we
refer to [17].

The Manta RMI protocol is designed to minimize serializa-
tion and dispatch overhead, such as copying, buffer management,
fragmentation, thread switching, and indirect method calls. Manta
avoids the several stream layers used for serialization by the JDK.
Instead, RMI parameters are serialized directly into a communica-
tion buffer. Moreover, the JDK stream layers are written in Java
and their overhead thus depends on the quality of the interpreter
or JIT. In Manta, all layers are either implemented as compiled C
code or compiler-generated native code. Heterogeneity between
little-endian and big-endian machines is achieved by sending data
in the native byte order of the sender, and having the receiver do
the conversion, if necessary.

To implement distributed garbage collection, the Manta RMI
protocol also keeps track of object references that cross machine
boundaries. Manta uses a mark-and-sweep algorithm (executed
by a separate thread) for local garbage collection and a reference
counting mechanism for remote objects.

The serialization of method arguments is an important source
of overhead of existing RMI implementations. Serialization takes
Java objects and converts (serializes) them into an array of bytes.
The JDK serialization protocol is written in Java and uses reflec-
tion to determine the type of each object during run time. With
Manta, all serialization code is generated by the compiler, avoiding
the overhead of dynamic inspection. The compiler generates a spe-
cialized serialization and deserialization routine for every method.
Pointers to these routines are stored in the method table. As ex-
plained above, Manta sometimes needs to load and compile classes
dynamically, to implement polymorphic RMIs. In this case, the
(de)serialization routines are also generated during run time. The
Manta serialization protocol optimizes simple cases. For example,
an array whose elements are of a primitive type is serialized by
doing a direct memory-copy into the message buffer, which saves
traversing the array. Compiler generation of serialization is one of
the major improvements of Manta over the JDK [17].

2.3 Manta on the wide area DAS system

To implement Java on a wide-area system like DAS, the most im-
portant problem is how to deal with the different communication
networks that exist within and between clusters. As described in
Section 2.1, we assume that wide-area parallel systems are hierar-
chically structured and consist of multiple parallel machines (clus-
ters) connected by wide area networks. The LANs (or MPP in-
terconnects) used within a cluster typically are very fast, so it is
important that the communication protocols used for intra-cluster
communication are as efficient as possible. Inter-cluster communi-
cation (over the WAN) necessarily is slower.

Most Java RMI implementations are built on top of TCP/IP. Us-
ing a standard communication protocol eases the implementation
of RMI, but also has a major performance penalty. TCP/IP was
not designed for parallel processing, and therefore has a very high
overhead on fast LANs such as Myrinet. For the Manta system, we
therefore use different protocols for intra-cluster and inter-cluster
communication.

To obtain a modular and portable system, Manta is implemented
on top of a separate communication library, called Panda [3]. Panda

Application Application
Manta Manta
Panda Panda Panda
LFC LFC LFC | TCP
Myrinet =

Be

ATM

Figure 2: Wide area communication based on Panda

provides communication and multithreading primitives that are de-
signed to be used for implementing runtime systems of various par-
allel languages. Panda’s communication primitives include point-
to-point message passing, RPC, and broadcast. The primitives are
independent of the operating system or network, which eases port-
ing of languages implemented on top of Panda. The implemen-
tation of Panda, however, is structured in such a way that it can
exploit any useful functionality provided by the underlying system
(e.g., reliable message passing or broadcast), which makes commu-
nication efficient [3].

Panda has been implemented on a variety of machines, oper-
ating systems, and networks. The implementation of Manta and
Panda on the wide-area DAS system is shown in Figure 2. For
intra-cluster communication over Myrinet, Panda internally uses
the LFC communication system [5]. LFC is a highly efficient, user-
space communication substrate for Myrinet, similar to active mes-
sages.

For inter-cluster communication over the wide-area ATM net-
work, Panda uses one dedicated gateway machine per cluster. The
gateways also implement the Panda primitives, but support commu-
nication over both Myrinet and ATM. A gateway can communicate
with the machines in its local cluster, using LFC over Myrinet. In
addition, it can communicate with gateways of other clusters, us-
ing TCP/IP over ATM. The gateway machines thus forward traffic
to and from remote clusters. In this way, the existence of multiple
clusters is transparent to the Manta runtime system. Manta’s RMI
protocol simply invokes Panda’s communication primitives, which
internally calls LFC and/or TCP/IP.

The resulting Java system thus is highly transparent, both for
the programmer and the RMI implementor. The system hides sev-
eral complicated issues from the programmer. For example, it uses
a combination of active messages and TCP/IP, but the application
programmer sees only a single communication primitive (RMI).
Likewise, Java hides any differences in processor-types from the
programmer.1

As stated before, parallel applications often have to be aware of
the structure of the wide-area system, so they can minimize com-
munication over the wide-area links. Manta programs therefore can
find out how many clusters there are and to which cluster a given
machine belongs. In Section 3, we will give several examples of
how this information can be used to optimize programs.

2.4 Performance measurements on the DAS system

Table 1 shows the latency and throughput obtained by Manta RMI
and Sun JDK RMI over the Myrinet LAN and the ATM WAN. The
latencies are measured for null-RMls, which take zero parameters

IManta supports the serialization and deseriaization protocols needed to support
heterogeneous systems, but the underlying Panda library does not yet support hetero-
geneity, asit does not do byte-conversions on its headers yet.

Application Application

Manta Manta

Panda Panda Panda

TCP |LFC LFC LFC
_ | :><: Myrinet
Myrinet ATM

Latency Throughput | Latency Throughput
(us) (MBytels) (us) (MBytels)
Manta 39.9 38.6 5600 0.55
SunJDK 1.1.4 1228 4.66 6700 0.35

Table 1: Latency and maximum throughput of Manta and Sun
JDK 1.1.4

and do not return a result. The maximum throughputs are measured
for RMIs that take a large array as parameter.

For intra-cluster communication over Myrinet, Manta is much
faster than the JDK, which uses a slow serialization and RMI pro-
tocol, executed using a byte code interpreter. Manta uses fast se-
rialization routines generated by the compiler, a light-weight RMI
protocol, and an efficient communication protocol (Panda). The
maximum throughput of Manta (achieved with arrays of size 16
KByte) is 38.6 MByte/sec. A performance breakdown of Manta
RMI and JDK RMl is given in [17].

For inter-cluster communication over ATM, we used the wide
area link between the DAS clusters at VU Amsterdam an TU Delft
(see Figure 1), which has the longest latency (and largest distance)
of the DAS wide-area links. The difference in wide-area RMI la-
tency between Manta and the JDK is 1.1 msec. Manta achieves a
maximum wide-area throughput of 0.55 MByte/sec, which is al-
most 75% of the hardware bandwidth (6 Mbit/sec). The JDK RMI
protocol is able to achieve less than 50% of the wide-area band-
width. The differences in wide-area latency and throughput be-
tween Manta and the JDK are due to Manta’s more efficient serial-
ization and RMI protocols, since both systems use the same com-
munication layer (TCP/IP) over ATM.

3 Application experience

We implemented four parallel Java applications that communicate
via RMI. The applications exploit the hierarchical structure of the
wide-area system to minimize the communication overhead over
the wide area links, using optimizations similar to those described
in [4, 20]. Below, we briefly discuss the optimized applications and
we give performance measurements on the DAS system.2 We only
present results for Manta, as other competitive Java platforms are
not yet available for the DAS system. (Sun’s JDK 1.1.4 uses only
interpreted code, the Kaffe JIT does not yet support RMI, and we
were unable to run Sun’s JIT 1.1.6 on BSD/OS or Linux.)

2All applications except ASP are measured on the actual wide-area DAS system.
ASP was measured on a local emulation system described in [20], which accurately
emulates the wide-area system on a single 128-node cluster.

For each of the four programs, we will analyze its performance
on the wide-area DAS system, using the following approach. The
goal of wide-area parallel programming is to obtain higher speedups
on multiple clusters than on a single cluster. Therefore, we have
measured the speedups of each program on a single DAS clus-
ter and on four DAS clusters. In addition, we have measured the
speedups on a single cluster with the same total number of nodes,
to determine how much performance is lost by using multiple dis-
tributed clusters instead of one big centralized cluster. (All speedups
are computed relative to the same program on a single machine.)

The results are shown in Figure 5. The figure contains three
bars for each application, giving the speedups on a single cluster
of 10 nodes, four clusters of 10 nodes each, and a single cluster of
40 nodes. The difference between the first two bars thus indicates
the performance gain by using multiple 10-node clusters (at differ-
ent locations) instead of a single 10-node cluster. The difference
between the second and third bar shows how much performance is
lost due to the slow wide-area network (since the 40-node cluster
uses the fast Myrinet network between all nodes).

3.1 Successive Overrelaxation

Red/black Successive Overrelaxation (SOR) is an iterative method
for solving discretized Laplace equations on a grid. Here, it is used
as an example of nearest neighbor parallelization methods. SOR is
an iterative algorithm that performs multiple passes over a rectan-
gular grid, until the grid changes less than a certain value. The new
value of a grid point is computed using a stencil operation, which
depends only on the previous value of the point itself and its four
neighbors on the grid

The skeleton code for the wide-area parallel Java program for
SOR is given in Figure 3. The parallel algorithm we use distributes
the grid row-wise among the available processors, so each machine
is assigned several contiguous rows of the grid, denoted by the in-
terval LB to UB (for lower bound and upper bound). Each processor
runs a slave process (a Java thread of class SOR_Slave), which per-
forms the SOR iterations until the program converges (see the run
method). Each iteration has two phases, for the red and black grid
points. The processes are logically organized in a linear array. Due
to the stencil operations and the row-wise distribution, every pro-
cess needs one row of the grid from its left neighbor (row LB — 1)
and one row from its right neighbor (row UB + 1). (Exceptions are
made for the first and last process, but we have omitted this from
our skeleton code.)

At the beginning of every iteration, each slave process exchanges
rows with its left and right neighbors and then updates its part of
the grid using this boundary information from its neighbors. The
row exchange is implemented using a remote object of class Bin
on each processor. This object is a buffer of size one and contains
synchronized methods to put and get data.

On a local cluster with a fast switch-based interconnect (like
Myrinet), the exchange between neighbors adds little overhead, so
parallel SOR obtains a high efficiency. On a wide-area system,
however, the communication overhead between neighbors that are
located in different clusters will be high, as such communication
uses the WAN. The Java program allocates neighboring processes
to the same cluster as much as possible, but the first and/or last
process in each cluster will have a neighbor in a remote cluster.
To hide the high latency for such inter-cluster communication, the
program uses split-phase communication for exchanging rows be-
tween clusters. It first initiates an asynchronous send for its bound-
ary rows and then computes on the inner rows of the matrix. When
this work is finished, a blocking receive for the boundary data from
the neighboring machines is done, after which the boundary rows
are recomputed.

The optimization is awkward to express in Java, since Java

public class senderThread implements Runnable {
private boolean filled;
private Object o;
private Bin otherSide; // Bin of remote cluster

public synchronized void put(Object o) {
if (filled) wait();
filled = true;
this.o = o;
notify();
¥

private synchronized void send() {
if ('filled) wait();
otherSide.put(o); // Send to remote cluster
filled = false;
notify();
¥

public void run() {
while (true) send();
¥

public remote class Bin {
synchronized void put(double [] row) {
Wait until the bin is empty and save the new row.

}

synchronized double [] get() {
Wait until the bin is full and return the row.
¥
}

public remote class SOR_Slave extends RemoteThread {
Bin leftBin, rightBin;
senderThread leftSender, rightSender;

void sendRows() {
SOR_Row row = new SOR_Row();
row.data = row LB of grid partition
if (leftBoundary) { // Am I at a cluster boundary?
leftSender.put(row); // asynchronous send
} else {
leftBin.put(row);
}
Same for row UB to right neighbor ...

// synchronous RMI

}

void receiveRows() {
SOR_Row row;
row = myLeftBin.get();
row LB-1 of grid partition = row.data
Same for row UB+1 of right neighbor ...
}

public void run() {
do { // do red/black SOR on the interval LB .. UB
sendRows () ; // Send rows LB and UB to neighbors
Calculate red fields in local rows LB+1 ... UB-1
receiveRows(); // Receive rows LB-1 and UB+1
Calculate red fields in local rows LB and UB

sendRows () ; // Send rows LB and UB to neighbors
Calculate black fields in local rows LB+1 ... UB-1
receiveRows(); // Receive rows LB-1 and UB+1
Calculate black fields in local rows LB and UB

} while (....)

Figure 3: Code skeleton for SOR.

lacks asynchronous communication. It is implemented by using
a separate thread (of class senderThread) for sending the boundary
data. To send a row to a process on a remote cluster, the row is
first given to the local senderThread (using the put method); this

thread will then put the row in the Bin object of the destination
process on a remote cluster, using an RMI. During the RMI, the
original SOR_Slave process can continue computing, so communi-
cation over the wide-area network is overlapped with computation.
For communication within a cluster, however, the overhead of extra
thread-switches outweighs the benefits, so only inter-cluster com-
munication is handled in this way (see the method sendRows).

The performance of the SOR program is shown in Figure 5.
The program obtains a high efficiency on a single cluster. Due to
the latency-hiding optimization, the program is only 6% slower on
the wide-area system than on a local 40-node cluster.

3.2 All-pairs Shortest Paths Problem

The goal of the All-pairs Shortest Paths (ASP) problem is to find
the shortest path between any pair of nodes in a graph. The program
uses a distance matrix that is divided row-wise among the available
processors. At the beginning of iteration k, all processors need the
value of the kth row of the matrix. The most efficient method for
expressing this communication pattern would be to let the proces-
sor containing this row (called the owner) broadcast it to all the
others. Unfortunately, Java RMI does not support broadcasting, so
this cannot be expressed in Java. Instead, we simulate the broadcast
using multiple RMI calls.

A naive implementation of broadcast, however, would send the
same row many times over the same wide-area link, once to every
destination machine. To avoid this, we use a separate Coordinator
object per cluster. To broadcast a row, the row is sent to the coordi-
nators of the different clusters, and these coordinators forward the
message to the nodes in their cluster. This approach is illustrated by
the skeleton code of Figure 4. Each machine contains a thread that
executes the procedure do_asp, which performs n iterations. At the
beginning of iteration k, most threads block until they have received
the row from its owner. The thread owning row k broadcasts this
row by sending it (over the WAN) to the coordinator objects. It is
important to use asynchronous communication for this, so the rows
can be sent over the different WAN links in parallel. To implement
this, we do the RMI call (to the remote method forward) from a
newly created thread, of class ForwarderThread. The coordinator
object forwards the row to the threads in its cluster, by invoking the
remote method transfer; the latter method also wakes up the local
computation thread.

The speedup of the wide-area ASP program for a graph with
2000 nodes is given in Figure 5. The program takes only 5% longer
on four clusters of 10 machines than on a single 40-node cluster.
Our implementation of the wide-area broadcast thus is fairly ef-
ficient. On a single cluster, the program also uses the coordina-
tor mechanism to obtain some parallelism in forwarding multicast
messages, which improves performance considerably compared to
a serialized broadcast. A more general mechanism would be to use
a spanning tree broadcast, as we have implemented, for example, in
our MagPle wide-area collective communication library [13]. We
have not implemented a general spanning tree algorithm for Java
yet, however.

3.3 The Traveling Salesperson Problem

The Traveling Salesperson Problem (TSP) computes the shortest
path for a salesperson to visit all cities in a given set exactly once,
starting in one specific city. We use a branch-and-bound algorithm,
which prunes a large part of the search space by ignoring partial
routes that are already longer than the current best solution. The
program is parallelized by distributing the search space over the dif-
ferent processors. Because the algorithm performs pruning, how-
ever, the amount of computation needed for each sub-space is not
known in advance and varies between different parts of the search

remote class Coordinator { // 1 coordinator per cluster

synchronized void forward(int[] row, int k) {
for(all other threads T in this cluster)
T.transfer(row, k);

}

class ForwarderThread extends Thread {
// This class is used to do asynchronous RMIs
Coordinator dest;
int[] row;
int k;

public void run() {
dest.forward(row, k); // RMI over a WAN
}
¥

remote class asp_thread extends RemoteThread {

int[]J[] tab; // The distance table
int 1b, ub; // The interval assigned to this process

synchronized void transfer(int[] row, int k) {
tab[k] = row; // This depends on call by value
notifyAll(Q);

¥

synchronized void broadcast(int k, int owner) {
if (this thread is the owner) {
for(all remote cluster coordinators C) {
// do asynchronous RMI using new thread
new ForwarderThread(C, tabl[k], k).start();
}
// Send directly to nodes in my own cluster.
for(threads T in this cluster) {
T.transfer(tabl[k], k);
}
} else
while (tab[k] == null) wait();
}

void do_asp() { // computation part
int i, j, k;

for (k = 0; k < n; k++) {
broadcast (k, owner(k));
for (i = 1b; i < ub; i++) // recompute my rows

if (1 !'= k)
for (j = 0; j < m; j++)
tab[il[j] =

minimum(tab[i] [j]1, tab[il[k] + tabl[k][j1);

Figure 4: Code skeleton for ASP.

space. Therefore, load balancing becomes an issue. Load imbal-
ance could be minimized using a centralized job queue, but this
would also generate much wide-area communication. Instead, the
program distributes the work statically over the different clusters,
but within each cluster it uses dynamic load balancing. The pro-
gram thus uses one FIFO job queue per cluster. The job queues
are remote objects, so they can be accessed over the network using
RMI. Each job contains an initial path of a fixed number of cities;
a processor that executes the job computes the lengths of all pos-
sible continuations, pruning paths that are longer than the current
best solution. Each processor runs one worker process, which is
a remote object containing an active thread. The worker repeat-
edly fetches jobs from the job queue of its cluster (using RMI) and
executes the job, until all work is finished.

The TSP program keeps track of the current best solution found

50 10 nodes, 1 cluster
m 40 nodes, 4 clusters

m 40 nodes, 1 cluster
30—-
20—-
10—-
oL
SOR ASP TSP IDA*

Figure 5: Speedups of four Java applications on a single cluster of
10 nodes, 4 clusters of 10 nodes each connected by a WAN, and a
single cluster of 40 nodes.

speedup

so far, which is used to prune part of the search space. Each worker
contains a copy of this value. If a worker finds a better complete
route, the program does an RMI to all other workers to update their
copies. (To allow these RMIs, the workers are declared as remote
objects.)

The performance for the TSP program on the wide-area DAS
system is shown in Figure 5, using a 17-city problem. As can be
seen, the performance of TSP on the wide-area system is the same
as that on a local cluster with the same number of processors. The
reason is that the program is rather coarse-grained.

3.4 Ilterative Deepening A*

Iterative Deepening A* is another combinatorial search algorithm,
based on repeated depth-first searches. IDA* tries to find a solu-
tion to a given problem by doing a depth-first search up to a certain
maximum depth. If the search fails, it is repeated with a higher
search depth, until a solution is found. The search depth is initial-
ized to a lower bound of the solution. The algorithm thus performs
repeated depth-first searches. Like branch-and-bound, IDA* uses
pruning to avoid searching useless branches.

We have written a parallel IDA* program in Java for solving the
15-puzzle (the sliding tile puzzle). IDA* is parallelized by search-
ing different parts of the search tree concurrently. The program
uses a more advanced load balancing mechanism than TSP, based
on work stealing. Each machine maintains its own job queue, but
machines can get work from other machines when they run out
of jobs. Each job represents a node in the search space. When a
machine has obtained a job, it first checks whether it can prune the
node. If not, it expands the nodes by computing the successor states
(children) and stores these in its local job queue. To obtain a job,
each machine first looks in its own job queue; if it is empty it tries
the job queues of some other machines. To avoid wide-area com-
munication for work stealing, each machine first tries to steal jobs
from machines in its own cluster. Only if that fails, the work queues
of remote clusters are accessed. In each case, the same mechanism
(RMI) is used to fetch work, so this heuristic is easy to express in
Java.

Figure 5 shows the speedups for the IDA* program. The pro-
gram takes about 7% longer on the wide-area DAS system than on
a single cluster with 40 nodes. The overhead is due to the work-
stealing between clusters.

4 Related work

We have discussed a Java-centric approach to writing wide-area
parallel (metacomputing) applications. Most other metacomput-
ing systems (e.g., Globus [10] and Legion [12]) support a variety
of languages. The SuperWeb [1] and Javelin [8] are examples of
global computing infrastructures that support Java. A language-
centric approach makes it easier to deal with heterogeneous sys-
tems, since the data types that are transferred over the networks are
limited to the ones supported in the language (thus obviating the
need for a separate interface definition language) [24].

Most work on metacomputing focuses on how to build the nec-
essary infrastructure [2, 10, 12, 21]. In addition, research on par-
allel algorithms and applications is required, since the bandwidth
and latency differences in a metacomputer can easily exceed three
orders of magnitude [9, 10, 12, 20]. Coping with such a large
non-uniformity in the interconnect complicates application devel-
opment. The ECO system addresses this problem by automatically
generating optimized communication patterns for collective opera-
tions on heterogeneous networks [16].

In our earlier research, we experimented with optimizing the
performance of parallel programs for a hierarchical interconnect,
by changing the communication structure [4]. Also, we studied the
sensitivity of such optimized programs to large differences in la-
tency and bandwidth between the LAN and WAN [20]. Based on
this experience, we implemented collective communication opera-
tions as defined by the MPI standard, resulting in improved applica-
tion performance on wide area systems [13]. Some of the ideas of
this earlier work have been applied in our wide-area Java programs.

There are many other research projects for parallel program-
ming in Java. Titanium [25] is a Java-based language for high-
performance parallel scientific computing. The JavaParty system
[19] is designed to ease parallel cluster programming in Java. In
particular, its goal is to run multi-threaded programs with as little
change as possible on a workstation cluster. Hyperion [18] also
uses the standard Java thread model as a basis for parallel pro-
gramming. Unlike JavaParty, Hyperion caches remote objects to
improve performance. The Do! project tries to ease parallel pro-
gramming in Java using parallel and distributed frameworks [15].
Java/DSM [26] implements a JVM on top of a distributed shared
memory system. Breg et al. [7] study RMI performance and inter-
operability. Krishnaswamy et al. [14] improve RMI performance
somewhat with caching and by using UDP instead of TCP. The
above Java systems are designed for single-level (“flat”) parallel
machines. The Manta system described in this paper, on the other
hand, is designed for hierarchical systems and uses different com-
munication protocols for local and wide area networks. It uses a
highly optimized RMI implementation, which is particularly effec-
tive for local communication.

5 Conclusions

We have described our experiences in building and using a high-
performance Java system that runs on a geographically distributed
(wide-area) system. The goal of our work was to obtain actual ex-
perience with a Java-centric approach to metacomputing. Java’s
support for parallel processing and heterogeneity make it an attrac-
tive candidate for metacomputing. The Java system we have built,
for example, is highly transparent: it provides a single communi-
cation primitive (RMI) to the user, even though the implementation
uses several communication networks and protocols.

Our Manta programming system is designed for hierarchical
wide-area systems, for example clusters or MPPs connected by
wide-area networks. Manta uses a very efficient (active message
like) communication protocol for the local interconnect (Myrinet)
and TCP/IP for wide-area communication. The two communica-
tion protocols are provided by the Panda library. Manta’s light-
weight RMI protocol is implemented on top of Panda and is very
efficient.

We have implemented several parallel applications on this sys-
tem, using Java RMI for communication. In general, the RMI
model was easy to use. To obtain good performance, the programs
take the hierarchical structure of the wide-area system into account
and minimize the amount of communication (RMIs) over the slow
wide-area links. With such optimizations in place, the programs
can effectively use multiple clusters, even though they are con-
nected by slow links. We also encountered several shortcomings
of the RMI model. In particular, the lack of asynchronous commu-
nication and broadcast complicates programming.

In the near future we will extend the Panda library with support
for heterogeneity, to allow RMI communication between different
types of processors. In addition, we will do research on program-
ming support that eases the development of efficient wide-area par-
allel applications.

Acknowledgements

This work is supported in part by a SION grant from the Dutch research
council NWO, and by a USF grant from the Vrije Universiteit. The wide-
area DAS system is an initiative of the Advanced School for Computing and
Imaging (ASCI). We thank Aske Plaat, Raoul Bhoedjang, Rutger Hofman,
Ceriel Jacobs, and Cees Verstoep for their contributions to this research. We
thank Cees Verstoep and John Romein for keeping the DAS in good shape,
and Cees de Laat (University of Utrecht) for getting the wide area links of
the DAS up and running.

References

[1] A. D. Alexandrov, M. lbel, K. E. Schauser, and C. J. Scheiman. Su-
perWeb: Research Issues in Java-Based Global Computing. Concur-
rency: Practice and Experience, 9(6):535-553, June 1997.

[2] J. Arabe, A. Beguelin, B. Lowekamp, E. Seligman, M. Starkey, and
P. Stephan. Dome: Parallel programming in a heterogeneous multi-
user environment. In 10th International Parallel Processing Sympo-
sium, pages 218-224, Honolulu, Hawaii, April 1996.

[3] H.Bal, R. Bhoedjang, R. Hofman, C. Jacobs, K. Langendoen, T. Riihl,
and F. Kaashoek. Performance Evaluation of the Orca Shared Object
System. ACM Transactions on Computer Systems, 16(1):1-40, Febru-
ary 1998.

[4] H.E. Bal, A. Plaat, M.G. Bakker, P. Dozy, and R.F.H. Hofman. Opti-
mizing Parallel Applications for Wide-Area Clusters. In International
Parallel Processing Symposium, pages 784-790, Orlando, FL, April
1998.

[5] R. A. F. Bhoedjang, T. Rihl, and H. E. Bal. User-Level Network
Interface Protocols. |EEE Computer, 31(11):53-60, November 1998.

[6] N.J. Boden, D. Cohen, R.E. Felderman, A.E. Kulawik, C.L. Seitz,
J.N. Seizovic, and W. Su. Myrinet: A Gigabit-per-second Local Area
Network. |EEE Micro, 15(1):29-36, February 1995.

[7] F. Breg, S. Diwan, J. Villacis, J. Balasubramanian, E. Akman, and
D. Gannon. Java RMI Performance and Object Model Interoperabil-
ity: Experiments with Java/HPC++ Distributed Components. In ACM
1998 Workshop on Java for High-Performance Network Computing,
Santa Barbara, CA, February 1998.

[8] B. Christiansen, P. Cappello, M. F. lonescu, M. O. Neary, K. E.
Schauser, and D. Wu. Javelin: Internet-Based Parallel Computing
Using Java. Concurrency: Practice and Experience, 1997.

[9] I. Foster, J. Geisler, W. Gropp, N. Karonis, E. Lusk, G. Thiruvathukal,
and S. Tuecke. Wide-Area Implementation of the Message Passing
Interface. Parallel Computing, 24(12-13):1735-1749, 1998.

[10] I. Foster and C. Kesselman. Globus: A Metacomputing Infrastructure
Toolkit. Int. Journal of Supercomputer Applications, 11(2):115-128,
Summer 1997.

[11] 1. Foster and C. Kesselman, editors. The GRID: Blueprint for a New
Computing Infrastructure. Morgan Kaufmann, 1998.

[12] A.S. Grimshaw and Wm. A. Wulf. The Legion Vision of a Worldwide
Virtual Computer. Comm. ACM, 40(1):39-45, January 1997.

[13] T. Kielmann, R.F.H. Hofman, H.E. Bal, A. Plaat, and R.A.F. Bhoed-
jang. MAGPIE: MPI’s Collective Communication Operations for
Clustered Wide Area Systems. In ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, Atlanta, GA, May
1999.

[14] V. Krishnaswamy, D. Walther, S. Bhola, E. Bommaiah, G. Riley,
B. Topol, and M. Ahamad. Efficient Implementations of Java RMI.
In 4th USENIX Conference on Object-Oriented Technologies and Sys-
tems (COOTS 98), Santa Fe, NM, 1998.

[15] P. Launay and J-L. Pazat. The Do! project: Distributed Program-
ming Using Java. In First UK Workshop Java for High Performance
Network Computing, Southampton, Sept. 1998.

[16] B. Lowekamp and A. Beguelin. ECO: Efficient Collective Opera-
tions for Communication on Heterogeneous Networks. In Interna-
tional Parallel Processing Symposium, pages 399-405, Honolulu, HI,
1996.

[17] J. Maassen, R. van Nieuwpoort, R. Veldema, H.E. Bal, and A. Plaat.
An Efficient Implementation of Java’s Remote Method Invocation. In
ACM S GPLAN Symposium on Principles and Practice of Parallel
Programming, Atlanta, GA, May 1999.

[18] M. W. Macbeth, K. A. McGuigan, and Philip J. Hatcher. Executing
Java Threads in Parallel in a Distributed-Memory Environment. In
Proc. CASCON'98, pages 40-54, Missisauga, ON, 1998. Published
by IBM Canada and the National Research Council of Canada.

[19] M. Philippsen and M. Zenger. JavaParty—Transparent Remote Ob-
jects in Java. Concurrency: Practice and Experience, pages 1225-
1242, November 1997.

[20] A. Plaat, H. Bal, and R. Hofman. Sensitivity of Parallel Applica-
tions to Large Differences in Bandwidth and Latency in Two-Layer In-
terconnects. In Fifth International Symposium on High-Performance
Computer Architecture, pages 244-253, Orlando, FL, January 1999.
IEEE CS.

[21] A. Reinefeld, R. Baraglia, T. Decker, J. Gehring, D. Laforenza, J. Si-
mon, T. Riimke, and F. Ramme. The MOL Project: An Open Exten-
sible Metacomputer. In Heterogenous computing workshop HCW 97
at IPPS 97, April 1997.

[22] L. Smarr and C.E. Catlett. Metacomputing. Communications of the
ACM, 35(6):44-52, June 1992.

[23] J. Waldo. Remote procedure calls and Java Remote Method Invoca-
tion. IEEE Concurrency, pages 5-7, July—September 1998.

[24] A. Wollrath, J. Waldo, and R. Riggs. Java-Centric Distributed Com-
puting. |EEE Micro, 17(3):44-53, May/June 1997.

[25] K. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit, A. Krish-
namurthy, P. Hilfinger, S. Graham, D. Gay, P. Colella, and A. Aiken.
Titanium: a High-performance Java Dialect. In ACM 1998 workshop
on Java for High-performance network computing, February 1998.

[26] W. Yu and A. Cox. Java/DSM: A Platform for Heterogeneous Com-
puting. Concurrency: Practice and Experience, pages 1213-1224,
November 1997.

