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ABSTRACT
In computational grids, performance-hungry applications need to
simultaneously tap the computational power of multiple, dynami-
cally available sites. The crux of designing grid programming envi-
ronments stems exactly from the dynamic availability of compute
cycles: grid programming environments (a) need to be portable to
run on as many sites as possible, (b) they need to be flexible to
cope with different network protocols and dynamically changing
groups of compute nodes, while (c) they need to provide efficient
(local) communication that enables high-performance computing
in the first place.

Existing programming environments are either portable (Java),
or they are flexible (Jini, Java RMI), or they are highly efficient
(MPI). No system combines all three properties that are necessary
for grid computing. In this paper, we present Ibis, a new program-
ming environment that combines Java’s “run everywhere” porta-
bility both with flexible treatment of dynamically available net-
works and processor pools, and with highly efficient, object-based
communication. Ibis can transfer Java objects very efficiently by
combining streaming object serialization with a zero-copy proto-
col. Using RMI as a simple test case, we show that Ibis out-
performs existing RMI implementations, achieving up to 9 times
higher throughputs with trees of objects.

Categories and Subject Descriptors
C.2.4 [computer-communication networks]: Distributed Systems

General Terms
Performance, Design

Keywords
grid computing, Java, portability, performance

1. INTRODUCTION
Computational grids can integrate geographically distributed re-

sources into a seamless environment [9]. In one important grid
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scenario, performance-hungry applications use the computational
power of dynamically available sites. Here, compute sites may join
and leave ongoing computations. The sites may have heteroge-
neous architectures, both for the processors and for the network
connections. Running high-performance applications on such dy-
namically changing platforms causes many intricate problems. The
biggest challenge is to provide a programming environment and a
runtime system that combine highly efficient execution and com-
munication with the flexibility to run on dynamically changing sets
of heterogeneous processors and networks.

Although efficient message passing libraries, such as MPI, are
widely used, they were not designed for grid environments. MPI
only marginally supports malleable applications that can cope with
dynamically changing sets of processors. MPI implementations
also have difficulties to efficiently utilize multiple, heterogeneous
networks simultaneously; let alone switching between them at run
time. For grid computing, more flexible, but still efficient, commu-
nication models and implementations are needed.

Many researchers believe that Java will be a useful technology
to reduce the complexity of grid application programming [11].
Based on a well-defined virtual machine and class libraries, Java is
inherently more portable than languages like C and Fortran, which
are statically compiled in a traditional fashion. Java allows pro-
grams to run on a heterogeneous set of resources without any need
for recompilation or porting. Modern Just In Time compilers (JITs)
such as the IBM JIT1 or Sun HotSpot2 obtain execution speed that
is competitive to languages like C or Fortran [4]. Other strong
points of Java for grid applications include type safety and inte-
grated support for parallel and distributed programming. Java pro-
vides Remote Method Invocation (RMI) for transparent communi-
cation between Java Virtual Machines (JVMs).

Unfortunately, a hard and persistent problem is Java’s inferior
communication speed. In particular, Java’s RMI performance is
much criticized [3]. The communication overhead can be one or
two orders of magnitude higher than that of lower-level models like
MPI or RPC [25]. In earlier research on RMI [19], we have solved
this performance problem by using a native compiler (Manta), re-
placing the standard serialization protocol by a highly efficient,
compiler-generated zero-copy protocol written in C. Unfortunately,
this approach fails for grid programming, as it requires a custom
Java runtime system that cannot be integrated with standard JVMs.
Thus, an important research problem is how to obtain good com-
munication performance for Java without resorting to techniques
that give up the advantages of its virtual machine approach.

In this paper, we present a Java-based grid programming envi-
ronment, called Ibis, that allows highly efficient communication in
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combination with any JVM. Because Ibis is Java-based, it has the
advantages that come with Java, such as portability, support for het-
erogeneity and security. Ibis has been designed to combine highly
efficient communication with support for both heterogeneous net-
works and malleability. Ibis can be configured dynamically at run
time, allowing to combine standard techniques that work “every-
where” (e.g., TCP) with highly-optimized solutions that are tai-
lored for special cases, like a local Myrinet interconnect. The Ibis
Portability Layer (IPL) that provides this flexibility consists of a set
of well-defined interfaces. The IPL can have different implemen-
tations, that can be selected and loaded into the application at run
time. We will call a loaded implementation an Ibis instantiation.

As a test case for our strategy, we implemented an optimized
RMI system on top of Ibis. We show that, even on a regular JVM
without any use of native code, our RMI implementation outper-
forms previous RMI implementations. When special native im-
plementations of Ibis are used, we can run RMI applications on
fast user-space networks (e.g., Myrinet), and achieve performance
that was previously only possible with special native compilers and
communication systems.

The contributions of this paper are the following:

1. The IPL provides a set of interfaces that allow the construc-
tion of dynamic grid applications in a portable way.

2. The IPL communication primitives have been designed to
allow efficient implementations.

3. The Ibis implementation that should be used can be chosen
at run time, by the application.

4. Using generated serialization code, object streaming and a
zero-copy protocol, Ibis makes object-based communication
efficient.

5. We demonstrate the efficiency of Ibis with a fast RMI mech-
anism, implemented in pure Java.

In the remainder of this paper, we present the design of the Ibis
system (Section 2). Section 3 explains two different Ibis implemen-
tations. We present a case study of Ibis RMI in Section 4. Related
work is discussed in Section 5. Finally, we draw our conclusions in
Section 6.

2. IBIS DESIGN
For deployment on the grid, it is imperative that Ibis is an ex-

tremely flexible system. Ibis should be able to provide communi-
cation support for any grid application, from the broadcasting of
video to massively parallel computations. It should provide a uni-
fied framework for reliable and unreliable communication, unicas-
ting and multicasting of data, and should support the use of any un-
derlying communication protocol (TCP/IP, UDP, GM, etc.) More-
over, Ibis should support malleability (i.e., machines must be able
to join and leave a running computation).

Ibis consists of a runtime system (RTS) and a bytecode rewriter.
The RTS implements the IPL. The bytecode rewriter is used to gen-
erate bytecode for application classes to actually use the IPL, a role
similar to RMI’s rmic. Below, we will describe how Ibis was de-
signed to support the aforementioned flexibility, while still achiev-
ing high performance.

2.1 Design Overview of the Ibis Architecture
A key problem in making Java suitable for grid programming is

how to design a system that obtains high communication perfor-
mance while still adhering to Java’s ”write once, run everywhere”

model. Current Java implementations are heavily biased to ei-
ther portability or performance, and fail in the other aspect. Our
strategy to achieve both goals simultaneously is to develop reason-
ably efficient solutions using standard techniques that work “ev-
erywhere”, supplemented with highly optimized but non-standard
solutions for increased performance in special cases. We apply this
strategy to both computation and communication. Ibis is designed
to use any standard JVM, but if a native optimizing compiler (e.g.,
Manta [19]) is available for a target machine, Ibis can use it in-
stead. Likewise, Ibis can use standard communication protocols
(e.g., TCP/IP or UDP, as provided by the JVM), but it can also plug
in an optimized low-level protocol for a high-speed interconnect
(e.g., GM or MPI), if available. Essentially, our aim is to reuse all
good ideas from the Manta native Java system [19], but now imple-
mented in pure Java. This is non-trivial, because Java lacks point-
ers, information on object layout, low level access to the thread
package, interrupts, and a select mechanism to monitor the status
of a set of sockets. The challenges for Ibis are:

1. how to make the system flexible enough to run seamlessly on
a variety of different communication hardware and protocols;

2. how to make the standard, 100% pure Java case efficient
enough to be useful for grid computing;

3. study which additional optimizations can be done to improve
performance further in special (high-performance) cases.

Thus, grid applications using Ibis can run on a variety of dif-
ferent machines, using optimized software (e.g., a native compiler,
the GM Myrinet protocol, MPI, etc.) where possible, and using
standard software (e.g., TCP) when necessary. Interoperability is
achieved by using the well-known TCP protocol: when multiple
Ibis implementations are used (e.g., an Ibis implementation on top
of MPI, and one on top of GM), all machines can still be used in
one single computation, using TCP to communicate between the
different implementations. Some underlying communication sys-
tems may have a closed world assumption. In that case, Ibis also
uses TCP to glue multiple “closed worlds” together. Below, we
discuss the three aforementioned issues in more detail.

2.1.1 Flexibility
The key characteristic of Ibis is its extreme flexibility, which is

required to support grid applications. A major design goal is the
ability to seamlessly plug in different communication substrates
without changing the user code. For this purpose, the Ibis design
uses the IPL, which consists of a number of well-defined interfaces.
The IPL can have different implementations, that can be selected
and loaded into the application at run time. The layer on top of the
IPL can negotiate with Ibis instantiations through the well-defined
IPL interface, and select the modules it needs. This flexibility is
implemented using Java’s dynamic class-loading mechanism. Al-
though this kind of flexibility is hard to achieve with traditional
programming languages, it is relatively straightforward in Java.

Many message passing libraries such as MPI and GM guarantee
reliable message delivery and FIFO message ordering. When appli-
cations do not require these properties, a different message passing
library might be used to avoid the overhead that comes with relia-
bility and message ordering.

The IPL supports both reliable and unreliable communication,
ordered and unordered messages, using a single, simple interface.
Using user-definable properties (key-value pairs) applications can
create exactly the communication channels they need, without un-
necessary overhead.



2.1.2 Optimizing the Common Case
To obtain acceptable communication performance, Ibis imple-

ments several optimizations. Most importantly, the overhead of
serialization and reflection is avoided by compile-time generation
of special methods (in bytecode) for each object type. These meth-
ods can be used to convert objects to bytes (and vise-versa), and to
create new objects on the receiving side, without using expensive
reflection mechanisms. This way, the overhead of serialization is
reduced dramatically.

Furthermore, our communication implementations use an opti-
mized wire protocol. The Sun RMI protocol, for example, resends
type information for each RMI. Our implementation caches this
type information per connection. Using this optimization, our pro-
tocol sends less data over the wire, but more importantly, saves
processing time for encoding and decoding the type information.

2.1.3 Optimizing Special Cases
In many cases, the target machine may have additional facilities

that allow faster computation or communication, which are difficult
to achieve with standard Java techniques. One example we investi-
gated in previous work [19] is using a native, optimizing compiler
instead of a JVM. This compiler (Manta) or any other high perfor-
mance Java implementation can simply be used by Ibis. We there-
fore focus on optimizing communication performance. The most
important special case for communication is the presence of a high-
speed local interconnect. Usually, specialized user-level network
software is required for such interconnects, instead of standard pro-
tocols (TCP, UDP) that use the OS kernel. Ibis therefore was de-
signed to allow other protocols to be plugged in. So, lower-level
communication may be based, for example, on a locally-optimized
MPI library. We have developed low-level network software based
on Panda [2], which can likewise be used by Ibis. Panda is a
portable communication substrate, which has been implemented on
a large variety of platforms and networks, such as Fast Ethernet (on
top of UDP) and Myrinet (on top of GM).

An important issue we study in this paper is the use of zero-
copy protocols for Java. Such protocols try to avoid the overhead
of memory copies, as these have a relatively high overhead with
fast gigabit networks, resulting in decreased throughputs. With the
standard serialization method used by most Java communication
systems (e.g. RMI), a zero-copy implementation is impossible to
achieve, since data is always serialized into intermediate buffers.
With specialized protocols using Panda or MPI, however, a zero-
copy protocol is possible for messages that transfer array data struc-
tures. For graph data structures, the number of copies can be re-
duced to one. Another major source of overhead is in the JNI (Java
Native Interface) calls [16] required to convert the floating point
data types into bytes (and back). We found that, in combination
with a zero-copy implementation, this problem can be solved by
serializing into multiple buffers, one for each primitive data type.
Implementing zero-copy (or single-copy) communication in Java is
a nontrivial task, but it is essential to make Java competitive with
systems like MPI for which zero-copy implementations already ex-
ist. The zero-copy Ibis implementation is described in more detail
in Section 3.2.

2.1.4 Design Overview
The overall structure of the Ibis system is shown in Figure 1.

The grey box denotes the Ibis system. An important component is
the IPL or Ibis Portability Layer, which consists of a set of Java
interfaces that define how the layers above Ibis can make use of the
lower Ibis components, such as communication and resource man-
agement. Because the components above the IPL can only access
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Figure 1: Design of Ibis. The various modules can be loaded
dynamically, using run time class loading.

the lower modules via the IPL, it is possible to have multiple imple-
mentations of the lower modules. The IPL design will be explained
in more detail in Section 2.2.

Below the IPL are the modules that implement the actual Ibis
functionality, such as serialization, communication, and typical grid
computing requirements, such as performance monitoring and to-
pology discovery. Although serialization and communication are
mostly implemented inside Ibis, this is not required for all function-
ality. For many components, standard grid software can be used.
Ibis then only contains an interface to these software packages.

Generally, applications will not be built directly on top of the
IPL (although this is possible). Instead, applications use some pro-
gramming model for which an Ibis version exists. At this moment,
we have implemented four runtime systems for programming mod-
els on top of the IPL: RMI, GMI, RepMI and Satin. RMI is Java’s
equivalent of RPC. However, RMI is object oriented and more flex-
ible, as it supports polymorphism [28]. In [27] we demonstrated
that parallel grid applications can be written with RMI. However,
application-specific wide-area optimizations are needed. GMI [18]
extends RMI with group communication. GMI also uses an object-
oriented programming model, and cleanly integrates into Java, as
opposed to Java MPI implementations. We intend to port the wide-
area optimizations we implemented in earlier work on MPI (Mag-
PIe [14]), in order to make GMI more suitable for grid environ-
ments. RepMI extends Java with efficient replicated objects. In [17]
we show that RepMI also works efficiently on wide-area systems.
Satin [26] provides divide-and-conquer and replicated worker pro-
gramming models, and is specifically targeted at grid systems. The
four mentioned programming models are integrated into one single
system, and can be used simultaneously. In this paper, we use our
Ibis RMI implementation as a case study. Due to space limitations,
we cannot discuss the other programming models.

2.2 Design of the Ibis Portability Layer
The Ibis Portability layer is the interface between Ibis implemen-

tations for different architectures and the runtime systems that pro-
vide programming model support to the application layer. The IPL
is a set of Java interfaces (i.e., an API). The philosophy behind the
design of the IPL is the following: when efficient hardware primi-
tives are available, make it possible to use them. Great care has to
be taken to ensure that the use of mechanisms such as zero-copy
protocols and hardware multicast are not made impossible by the
interface. We will now describe the concepts behind the IPL and
we will explain the design decisions.

2.2.1 Negotiating with Ibis Instantiations
Ibis implementations are loaded at run time. Ibis allows the ap-

plication or runtime system on top of it to negotiate with the Ibis



m = sendPort.getMessage();
m.writeInt(3);
m.writeIntArray(a);

m.writeObject(o);
m.send();

i = m.readInt();

o = m.readObject();

a = m.readIntArray();

m = receivePort.receive();

m.finish();

send port receive port

m.writeIntSlice(b, 0, 100); m.readIntSlice(b, 0, 100);

Figure 2: Send ports and receive ports.

instantiations, in order to select the instantiation that best matches
the specified requirements. More than one Ibis implementation can
be loaded simultaneously, for example to provide gateway capabil-
ities between different networks.

In contrast to many message passing systems, the IPL has no
concept of hosts or threads, but uses location independent Ibis iden-
tifiers to identify Ibis instantiations. A registry is provided to locate
communication endpoints, called send ports and receive ports, us-
ing Ibis identifiers. The communication interface is object oriented.
Applications using the IPL can create communication channels be-
tween objects (i.e. ports), regardless of the location of the objects.
The connected objects can be located in the same thread, on dif-
ferent threads on the same machine, or they could be located at
different ends of the world.

2.2.2 Send Ports and Receive Ports
The IPL provides communication primitives using send ports

and receive ports. A careful design of these ports and primitives al-
lows flexible communication channels, streaming of data, and zero-
copy transfers. Therefore, the send and receive ports are important
concepts in Ibis, and we will explain them in more detail below.
The layer above the IPL can create send and receive ports, which
are then connected (the send port initiates the connection) to form
a unidirectional message channel. Figure 2 shows such a channel.
New (empty) message objects can be requested from send ports.
Next, data items of any type can be inserted in this message. Both
primitive types such as long and double, and objects such as String
or user-defined types can be written. When all data is inserted, the
send primitive can be invoked on the message, sending it off.

The IPL offers two ways to receive messages. First, messages
can be received with the receive port’s blocking receive primitive
(see Figure 2). The receive method returns a new message object,
and the data can be extracted from the message using the provided
set of read methods. Second, the receive ports can be configured to
generate upcalls, thus providing the mechanism for implicit mes-
sage receipt. The upcall provides the message that has been re-
ceived as a parameter. The data can be read with the same read
methods described above. The upcall mechanism is provided in
the IPL, because it is hard to implement an upcall mechanism effi-
ciently on top of an explicit receive mechanism. Many applications
and runtime systems rely on efficient implementations of upcalls
(e.g., RMI, GMI and Satin). To avoid thread creation and switch-
ing, the IPL defines that there is at most one upcall thread running
at a time per receive port.

Many message passing systems (e.g., MPI, Panda) are connec-
tionless. Messages are sent to their destination, without explic-
itly creating a connection first. In contrast, the IPL provides a
connection-oriented scheme (send and receive ports must be con-
nected in order to communicate). This way, message data can be
streamed. When large messages have to be transferred, the building
of the message and the actual sending can be done simultaneously.
This is especially important when sending large and complicated
data structures, as can be done with Java serialization, because this
incurs a large host overhead. It is thus imperative that communica-

send port

send port

receive port

receive port

upcall handler

upcall

host 1 host 2
RPC

Figure 3: An RPC implemented with the IPL primitives.

receive port

receive port

receive port

multicast

send port

send port

send port

many to one

receive portsend port

Figure 4: Other IPL communication patterns.

tion and computation are overlapped.
A second design decision is to make the connections unidirec-

tional. This is essential for the flexibility of the IPL, because it
sometimes is desirable to have different properties for the individ-
ual channel directions. For example, when video data is streamed,
the control channel from the client to the video server should be
reliable. The return channel, however, from the video server back
to the client, should be an unreliable channel with low jitter char-
acteristics. For some applications there is no return channel at all
(e.g., wireless receivers that do not have a transmitter). The IPL
can support all these communication requirements. Furthermore,
on the Internet, the outbound and return channel may be routed dif-
ferently. It is therefore sensible to make it possible to export this
to the layers above the IPL when required. Differences between
the outbound and return channels are important for some adaptive
applications or runtime systems, such as the Satin runtime system.
Moreover, the IPL extends the send and receive port mechanism
with multicast and many to one communication, for which unidi-
rectional channels are more intuitive.

The standard Java streaming classes (used for serialization and
for writing to TCP/IP sockets) convert all data structures to bytes,
including the primitive types and arrays of primitive types. An ex-
ception is only made for byte arrays. Furthermore, there is no sup-
port for slices of arrays. When a pure Java implementation is used,
the copying of the data is thus unavoidable.

An important insight is that zero copy can be made possible in
some important special cases by carefully designing the interface
for reading data from and writing data to messages. As can be
seen in Figure 2, the IPL provides special read and write methods
for (slices of) all primitive arrays. This way, Ibis allows efficient
native implementations to support zero copy for the array types,
while only one copy is required for object types.

Connecting send ports and receive ports, creating a unidirec-
tional channel for messages is the only communication primitive
provided by the IPL. Other communication patterns can be con-
structed on top of this model. By creating both a send and re-
ceive port on the same host, bidirectional communication can be
achieved, for example to implement an RPC-like system, as Fig-
ure 3 shows. The IPL also allows a single send port to connect to



class Foo implements java.io.Serializable {
int i1, i2;
double d;
int[] a;
Object o;
String s;
Foo f;

}

Figure 5: An example serializable class: Foo.

multiple receive ports. Messages that are written to a send port that
has multiple receivers are multicast (see Figure 4). Furthermore,
multiple send ports can connect to a single receive port, thus im-
plementing many-to-one communication (also shown in Figure 4).

2.2.3 Port Types
All send and receive ports that are created by the layers on top of

the IPL are typed. Port types are defined and configured with prop-
erties (key-value pairs) via the IPL. Only ports of the same type can
be connected. Properties that can be configured are, for instance,
the serialization method that is used, reliability, message ordering,
performance monitoring support, etc. This way, the layers on top
of the IPL can configure the send and receive ports they create (and
thus the channels between them) in a flexible way.

3. IBIS IMPLEMENTATIONS
In this section, we will describe the Ibis implementations. An

important part is the implementation of an efficient serialization
mechanism. Although the Ibis serialization implementation was
designed with efficient communication in mind, it is independent
of the lower network layers, and completely written in Java. The
communication code, however, has knowledge about the serializa-
tion implementation, because it has to know how the serialized
data is stored to avoid copying. Applications can select at run
time which serialization implementation (standard Sun serializa-
tion or optimized Ibis serialization) should be used for each indi-
vidual communication channel. At this moment we have imple-
mented two communication modules, one using TCP/IP and one
using message passing (MP) primitives. The MP implementation
can currently use Panda and MPI. The TCP/IP implementation is
written in 100% pure Java, and runs on any JVM. The MP imple-
mentation requires some native code.

3.1 Efficient Serialization
Serialization is a mechanism for converting (graphs of) Java ob-

jects to some format that can be stored or transfered (e.g., a stream
of bytes, or XML). Serialization can be used to ship objects be-
tween machines. One of the features of Java serialization is that the
programmer simply lets the objects to be serialized implement the
empty, special interface java.io.Serializable. Therefore, no special
serialization code has to be written by the application programmer.
The Foo class in Figure 5 is tagged as serializable in this way. The
serialization mechanism always makes a deep copy of the objects
that are serialized. For instance, when the first node of a linked list
is serialized, the serialization mechanism traverses all references,
and serializes the objects they point to (i.e., the whole list). The
serialization mechanism can handle cycles, making it possible to
convert arbitrary data structures to a stream of bytes. When objects
are serialized, not only the object data is converted into bytes, but
type and version information is also added. When the stream is de-
serialized, the versions and types are examined, and objects of the

public final class FooGenerator extends Generator {
public final Object doNew(ibis.io.IbisInputStream in)
throws ibis.ipl.IbisIOException,
ClassNotFoundException {

return new Foo(in);
}

}

class Foo implements java.io.Serializable,
ibis.io.Serializable {

int i1, i2;
double d;
int[] a;
String s;
Object o;
Foo f;

public void ibisWrite(ibis.io.IbisOutputStream out)
throws ibis.ipl.IbisIOException {

out.writeInt(i1);
out.writeInt(i2);
out.writeDouble(d);
out.writeObject(a);
out.writeUTF(s);
out.writeObject(o);
out.writeObject(f);

}

public Foo(ibis.io.IbisInputStream in)
throws ibis.ipl.IbisIOException,
ClassNotFoundException {

in.addObjectToCycleCheck(this);
i1 = in.readInt();
i2 = in.readInt();
d = in.readDouble();
a = (int[])in.readObject();
s = in.readUTF();
o = (Object)in.readObject();
f = (Foo)in.readObject();

}
}

Figure 6: Rewritten code for the Foo class.

correct type can be created. When a version or type is unknown, the
deserializer can use the bytecode loader to load the correct classfile
for the type into the running application. Serialization performance
is of critical importance for Ibis (and RMI), as it is used to transfer
objects over the network (e.g., parameters to remote method invo-
cations for RMI).

In previous work [19], we described what the performance bot-
tlenecks in the serialization mechanism are, and how it can be made
efficient when a native Java system is used (e.g., Manta). The most
important sources of overhead in standard Java serialization are run
time type inspection, data copying and conversion, and object cre-
ation. Because Java lacks pointers, and information on object lay-
out is not available, it is non-trivial to apply the techniques we im-
plemented for Manta. We will now explain how we avoid these
overhead sources in the Ibis serialization implementation.

3.1.1 Avoiding Run Time Type Inspection
The standard Java serialization implementation uses run time

type inspection, called reflection in Java, to locate and access ob-
ject fields that have to be converted to bytes. The run time reflection
overhead can be avoided by generating serialization code for each
class that can be serialized. This way, the cost of locating the fields
that have to be serialized is pushed to compile time. Ibis provides
a bytecode rewriter that adds generated serialization code to class
files, allowing all programs to be rewritten, even when the source
code is not available. The rewritten code for the Foo class from Fig-



ure 5 is shown in Figure 6 (we show Java code instead of bytecode
for readability).

The bytecode rewriter adds a method that writes the object fields
to a stream, and a constructor that reads the object fields from the
stream into the newly created object. A constructor must be used
for the reading side, because all final fields must be initialized in
all constructors. Furthermore, the Foo class is tagged as rewritten
with the same mechanism used by standard serialization: we let
Foo implement the empty ibis.io.Serializable interface.

The generated write method (called ibisWrite) just writes the
fields to the stream one at a time. The constructor that reads the
data is only slightly more complicated. It starts with adding the
this reference to the cycle check table, and continues reading the
object fields from the stream that is provided as parameter. The ac-
tual handling of cycles is done inside the Ibis streaming classes. As
can be seen in Figure 6, strings are treated in a special way. Instead
of serializing the String object, the value of the string is directly
written in the more efficient UTF format.

3.1.2 Optimizing Object Creation
The reading side has to rebuild the serialized object tree. In gen-

eral, the exact class of objects that have to be created is unknown,
due to inheritance. For example, the o field in the Foo object can
refer to any non-primitive type. Therefore, type descriptors that de-
scribe the object’s class have to be sent for each reference field. Us-
ing the type descriptor, an object of the actual type can be created.
Standard Java serialization uses a native method inside the stan-
dard class libraries to create objects without invoking a constructor
(it may have side-effects). We found that this is considerably more
expensive than a normal new operation.

Ibis implements an optimization that avoids the use of this na-
tive method, making object creation cheaper. For each serializable
class, a special generator class is generated (called FooGenerator
in the example), which contains a method with a well-known name,
doNew, that can be used to create a new object of the accompany-
ing serializable class (Foo). When a type is encountered for the first
time, the IbisInputStream uses the (expensive) newInstance opera-
tion to create an object of the accompanying generator class. A
reference to the generator object is then stored in a table in the
IbisInputStream. When a previously encountered type descriptor is
read again, the input stream can do a cheap lookup operation in the
generator table to find the generator class for the type, and create
a new object of the desired class, by calling the doNew method on
the generator. Thus, the IbisInputStream uses newInstance only for
the first time a type is encountered. All subsequent times, a cheap
table lookup and a normal new is done instead of a call to a native
method. This optimization effectively eliminates a large part of the
object creation overhead that is present in standard serialization.

The serialization mechanism can be further optimized when se-
rializable classes are final (i.e., they cannot be extended). When a
reference field that has to be serialized points to a final class, the
type is known at compile time, and no type information has to be
written to the stream. Instead, the deserializer can directly do a
new operation for the actual class. Example code, generated by
the bytecode rewriter, that implements this optimization, assuming
that the Foo class is now final, is shown in Figure 7. The code
only changes for the f field, because it has the (now final) type Foo.
The other fields are omitted for brevity. The ibisWrite method can
now directly call the ibisWrite method on the f field. The write-
KnownObjectHeader method handles cycles and null references.
On the reading side, a normal new operation can be done, as the
type of the object that has to be created is known at compile time.

Some classes cannot easily be rewritten. For example, classes

public final void ibisWrite(ibis.io.IbisOutputStream out)
throws ibis.ipl.IbisIOException {

// Code to write fields i1 ... o is unchanged.
boolean nonNull = out.writeKnownObjectHeader(f);
if(nonNull) f.ibisWrite(out);

}

public Foo(ibis.io.IbisInputStream in)
throws ibis.ipl.IbisIOException,
ClassNotFoundException {

// Code to read fields i1 ... o is unchanged.
int i = in.readKnownTypeHeader();
if(i == NORMAL_OBJECT) f = new Foo(in);
else if(i == CYCLE) f = (Foo)in.getFromCycleCheck(i);

}

Figure 7: Optimization for final classes.

that were received over the network. These classes can be recog-
nized because they do not implement the ibis.io.Serializable inter-
face (which is added by the Ibis bytecode rewriter). If a class was
not rewritten, objects of that class are serialized using the normal
(but slower) run time inspection techniques.

3.1.3 Avoiding Data Copying
Ibis serialization tries to avoid the overhead of memory copies, as

these have a relatively high overhead with fast networks, resulting
in decreased throughputs. With the standard serialization method
used by most RMI implementations, a zero-copy implementation
is impossible to achieve, since data is always serialized into inter-
mediate buffers. By using special typed buffers and treating arrays
separately, Ibis serialization achieves zero-copy for arrays, and re-
duces the number of copies for complex data structures to one. The
generated serialization code uses the IbisInputStream and IbisOut-
putStream classes to read and write the data. We will now explain
these classes in more detail using Figure 8. The streaming classes
use typed buffers to store the data in the stream for each primitive
type separately. When objects are serialized, they are decomposed
into primitive types, which are then written to a buffer of the same
primitive type. No data is converted to bytes, as is done by the
standard object streams used for serialization in Java. Arrays of
primitive types are handled specially: a reference to the array is
stored in a separate array list, no copy is made. The stream data
is stored in this special way to allow a zero copy implementation
(which will be described in Section 3.2).

Figure 8 shows how an object of class Bar (containing two inte-
gers, a double and an integer array) is serialized. The Bar object
and the array it points to are shown in the upper leftmost cloud la-
beled “application heap”. As the Bar object is written to the output
stream, it is decomposed into primitive types, as shown in the lower
cloud labeled “Ibis RTS heap”. The two integer fields i1 and i2 are
stored in the integer buffer, while the double field d is stored in
the separate double buffer. The array a is not copied into the typed
buffers. Instead, a reference to the array is stored in a special array
list. When the typed buffers are full, or when the flush operation is
invoked, the data is streamed.

For implementations in pure Java, all data has to be converted
into bytes, because that is the only way to write data to TCP/IP
sockets, UDP datagrams and files. Therefore, the typed buffer
scheme is limited in its performance gain in a pure Java imple-
mentation. All types except floats and doubles can be converted
to bytes using Java code. For floats and doubles, Java provides
a native method inside the class libraries (Float.floatToIntBits and
Double.doubleToLongBits), which must be used for conversion to
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Figure 8: Low-level diagram of zero copy data transfers with the Ibis implementation on Myrinet.

JVM Sun 1.4 IBM 1.31 Manta
conversion zero-copy conversion zero-copy conversion zero-copy
read write read write read write read write read write read write

100 KB byte[] 115.9 � 134.2 � 121.6 � 120.4 � 187.8 � 195.3 �

100 KB int[] 77.6 282.3 118.4 � 82.4 186.4 110.4 � 68.8 195.3 160.1 �

100 KB double[] 36.2 43.3 135.1 � 49.9 45.2 121.2 � 54.3 111.6 203.5 �

1023 node tree user 41.7 50.6 61.0 71.0 31.7 49.0 38.6 80.5 23.0 35.5 36.5 60.0
1023 node tree total 63.0 76.4 92.2 107.3 47.9 74.0 58.3 121.7 34.7 53.3 55.2 90.8

Table 1: Ibis serialization throughput (MByte/s) for three different JVMs.

integers and longs, which can then be converted to bytes. Be-
cause these native methods must be provided by all JVMs, their use
does not interfere with Ibis’ portability requirements. When a float
or double array is serialized, a native call is used for conversion
per element. Because the Java Native Interface is quite expensive
(see [16]), this is a major source of overhead for both standard and
Ibis serialization. However, this overhead is unavoidable without
the use of native code. Using the typed buffers mechanism and
some native code, the conversion step from primitive types to bytes
can be optimized by converting all typed buffers and all primitive
arrays in the array list using one native call. For native communi-
cation implementations, conversion may not be needed; the typed
buffer scheme then allows a zero copy implementation. On the re-
ceiving side, the typed buffers are recreated, as is shown in the right
side of Figure 8. The read methods of the input stream return data
from the typed buffers. When a primitive array is read, it is copied
directly from the data stream into the destination array. The rest of
Figure 8 will be explained in the next section.

3.1.4 Ibis Serialization Performance
We ran several benchmarks to investigate the performance that

can be achieved with the Ibis serialization scheme. Our measur-
ing platform consists of 1 GHz Pentium III machines, connected
by 100 Mbit Ethernet and Myrinet, running RedHat Linux 7.2 with
kernel 2.4.9-13. The results for Ibis serialization on different Java
systems are shown in Table 1, while the performance of standard
Java serialization is shown in Figure 2 for reference. The figures
give the performance of serialization to memory buffers, thus no
communication is involved. The numbers show the host overhead

JVM Sun 1.4 IBM 1.31 Manta
read write read write read write

100 KB byte[] 99.6 � 97.0 � 171.3 �

100 KB int[] 64.3 151.0 68.2 144.9 87.2 113.6
100 KB double[] 32.7 38.4 54.8 61.0 85.7 120.6
1023 node user 8.2 12.4 3.3 6.0 5.9 15.6
1023 node total 11.8 17.9 4.7 8.6 8.6 22.4

Table 2: Standard Java serialization throughput (MByte/s) for
three different JVMs.

caused by serialization, and give an upper limit on the commu-
nication performance. We show serialization and deserialization
numbers separately, as they often take place on different machines,
potentially in parallel. (i.e., when data is streamed). Due to ob-
ject creation and garbage collection, deserialization is the limiting
factor for communication bandwidth. This is reflected in the table:
the numbers for serialization (labeled “write”) are generally higher
than the numbers for deserialization (labeled “read”).

For Ibis serialization, two sets of numbers are shown for each
JVM: the column labeled “conversion” includes the conversion to
bytes, as is needed in a pure Java implementation. The column la-
beled “zero-copy” does not include this conversion and is represen-
tative for Ibis implementations that use native code to implement
zero-copy communication.

We present numbers for arrays of primitive types and balanced
binary trees with nodes that contain four integers. For the trees, we
show both the throughput for the user payload (i.e., the 4 integers)
and the total data stream, including type descriptors and informa-
tion that is needed to rebuild the tree (i.e., the references). The lat-



ter gives an indication of the protocol overhead. Some numbers are
infinite (the � -signs in the table), because zero-copy implementa-
tions just store references to arrays in the array list. The same holds
for serialization of byte arrays, as these are not converted.

The numbers show that data conversion is expensive: through-
puts without conversion (labeled zero-copy) are much higher. It is
clear that, although no native code is used, high throughputs can be
achieved with Ibis serialization, especially for complex data struc-
tures. For reading binary trees, for instance, Ibis serialization with
data conversion achieves a payload throughput that is 5.0 times
higher than the throughput of standard serialization on the Sun JIT,
and 9.6 times higher on the IBM JIT. When data conversion is not
needed, the difference is even larger: the payload throughput for
Ibis serialization is 7.4 times higher on the Sun JIT and 11.6 times
higher on the IBM JIT. On Manta, the throughput for arrays is bet-
ter for Sun than for Ibis serialization, because Manta avoids wiping
new objects with its native Sun serialization implementation.

3.2 Efficient Communication
It is well known that in (user level) communication systems most

overhead is in software (e.g., data copying). Therefore, much can
be gained from software optimization. In this section, we will de-
scribe the optimizations we implemented in the TCP/IP and Panda
Ibis implementations. The general strategy that is followed in both
implementations is to avoid thread creation, thread switching, lock-
ing, and data copying as much as possible.

3.2.1 TCP/IP Implementation
The TCP/IP Ibis implementation is relatively straightforward.

One socket is used per unidirectional channel between a single send
and receive port. However, we found that using a socket as a one-
directional channel is inefficient. This is caused by the flow con-
trol mechanism of TCP/IP. Normally, acknowledgment messages
are piggybacked on reply packets. When a socket is used in only
one direction, there are no reply packets, and acknowledgments
cannot be piggybacked. Only when a timeout has expired are the
acknowledgments sent in separate messages. This severely limits
the throughput that can be achieved. Because it is common that an
RTS (or application) creates both an outgoing and a return channel
(for instance for RMI, see Figure 3), it is possible to optimize this
scheme. Ibis implements channel pairing: whenever possible, the
outgoing and return data channels are combined and use only one
socket. This optimization greatly improves the throughput.

A socket is a one-to-one connection. Therefore, with multicast
or many-to-one communication (e.g., multiple clients connecting
to one server via RMI), multiple sockets must be created. A prob-
lem related to this is that Java does not provide a select operation.
select can be used on a set of sockets, and blocks until data be-
comes available on any of the sockets in the set. Because Java does
not offer a select operation, there are only two ways to implement
many-to-one communication (both are supported by Ibis).

First, it is possible to poll a single socket, using the method In-
putStream.available. A set of sockets can thus be polled by just
invoking available multiple times, once per socket. However, the
available method must do a system call to find out whether data
is available for the socket. Hence, it is an expensive operation.
Moreover, polling wastes CPU time. This is not a problem for
single-threaded applications that issue explicit receive operations
(e.g., MPI-style programs), but for multithreaded programs this is
undesirable. When implicit receive is used in combination with
polling, CPU time is always wasted, because one thread must be
constantly polling the network to be able to generate upcalls.

Second, it is possible to use one thread per socket. Each thread

JVM Sun 1.4 IBM 1.31 Manta
network TCP GM TCP GM TCP GM
latency downcall 143 61.5 134 33.3 147 35.1
latency upcall 129 61.5 126 34.4 140 37.0

Sun serialization
100 KB byte[] 9.7 32.6 10.0 43.9 9.9 81.0
100 KB int[] 9.4 28.2 9.6 42.5 9.1 27.6
100 KB double[] 8.4 18.7 9.1 29.5 9.0 27.6
1023 node user 2.8 3.2 1.7 2.7 1.4 1.9
1023 node total 4.0 4.6 2.4 3.9 2.0 2.7
Ibis serialization
100 KB byte[] 10.0 60.2 10.3 123 10.0 122
100 KB int[] 9.9 60.2 9.6 122 9.7 122
100 KB double[] 9.0 60.2 9.2 123 9.7 123
1023 node user 5.9 17.7 5.8 23.6 4.4 22.0
1023 node total 8.9 26.7 8.8 35.6 6.6 33.2

Table 3: Ibis communication latencies in � s and throughputs in
MByte/s on TCP (Fast Ethernet) and GM (Myrinet).

calls a blocking receive primitive, and is unblocked by the kernel
when data becomes available. This scheme does not waste CPU
time, but now each thread uses memory space for its stack. More-
over, a thread switch is needed to deliver messages to the correct
receiver thread when explicit receive is used. Ibis allows the pro-
grammer to decide which mechanism should be used via the prop-
erties mechanism described in Section 2.2.

3.2.2 Zero Copy Message Passing Implementation
The message passing (MP) implementation is built on top of na-

tive (written in C) message passing libraries, such as Panda and
MPI. For each flush, the typed buffers and application arrays to be
sent are handed as a message fragment to the MP device, which
sends the data out without copying; this is a feature supported by
both Panda and MPI. This is shown in more detail in Figure 8. On
the receiving side, the typed fields are received into pre-allocated
buffers; no other copies need to be made. Only when sender and
receiver have different byte order, a single conversion pass is made
over the buffers on the receiving side. Arrays are received in the
same manner, with zero copy whenever the application allows it.

Multiplexing of Ibis channels over one device is challenging to
implement efficiently. It is hard to wake up exactly the desired re-
ceiver thread when a message arrives. For TCP/IP, there is support
from the JVM and kernel that manage both sockets and threads: a
thread that has done a receive call on a socket is woken up when
a message arrives on that socket. A user-level MP implementation
has a more difficult job, because the JVM gives no hooks to as-
sociate threads with communication channels. A straightforward,
inefficient solution is to let a separate thread poll the MP device,
and trigger a thread switch for each arrived fragment to the thread
that posted the corresponding receive. We opted for an efficient
implementation by applying heuristics to maximize the chance that
the thread that pulls the fragment out of the MP device actually is
the thread for which the fragment is intended. A key observation is
that a thread that performs a downcall receive is probably expect-
ing to shortly receive a message (e.g., a reply). Such threads are al-
lowed to poll the MP device in a tight loop for roughly two latencies
(or until their message arrives). After this polling interval, a yield
call is performed to relinquish the CPU. A thread that performs an
upcall service receives no such privileged treatment. Immediately
after an unsuccessful poll, it yields the CPU to another thread.

3.2.3 Performance Evaluation
Table 3 shows performance data for both Ibis implementations.

For comparison, we show the same set of benchmarks as in Ta-



Sun RMI KaRMI 1.05b Ibis RMI
network TCP TCP GM TCP GM
null-latency 218.3 127.9 32.2 131.3 42.2

array throughput
100 KB byte[] 9.5 10.3 57.2 10.3 76.0
100 KB int[] 9.5 9.6 45.6 9.6 76.0
100 KB double[] 10.2 9.5 25.1 9.1 76.0
tree throughput
1023 node user 2.2 2.3 2.5 4.3 22.9
1023 node total 3.2 3.3 3.6 6.5 34.6

Table 4: RMI latencies in � s and throughputs in MByte/s on
TCP (Fast Ethernet) and GM (Myrinet) using the IBM JIT.

ble 1 for both Sun serialization and Ibis serialization. Ibis is able
to exploit the fast communication hardware and provides low com-
munication latencies and high throughputs on Myrinet, especially
when arrays of primitive types are transfered. The numbers show
that Ibis provides portable performance, as all three Java systems
achieve high throughputs with Ibis serialization. The array through-
put on Myrinet (GM) for the Sun JIT is low compared to the other
Java systems, because the Sun JIT makes a copy when a pointer
to the array is requested in native code, while the other systems
just use a pointer to the original object. Because this copying af-
fects the data cache, throughput for the Sun JIT is better for smaller
messages of 40KB, where 83.4 MByte/s is achieved.

4. A CASE STUDY: EFFICIENT RMI
As described in Section 2.1, we implemented four runtime sys-

tems as a part of Ibis. In this paper, we focus on the RMI implemen-
tation, because RMI is present in standard Java, and many people
are familiar with its programming model. The API of Ibis RMI is
identical to Sun’s RMI. RMI is straightforward to implement, be-
cause most building blocks are present in the IPL. We extended the
bytecode rewriter (which we use to generate serialization code) to
generate the RMI stubs and skeletons. The RMI registry is imple-
mented on top of the IPL registry. Communication channels are
set up as shown in Figure 3. Thus, each stub has a send port, and
each skeleton creates a receive port. When an RMI program is-
sues a bind operation, the ports are connected. Using the properties
mechanism described in Section 2.2, the ports can be configured to
use Sun serialization or Ibis serialization.

Table 4 shows the latencies and throughputs that are achieved by
several RMI implementations on our hardware using the IBM JIT.
The Sun RMI implementation only runs over TCP. KaRMI [21]
is an optimized serialization and RMI implementation. On TCP,
KaRMI is implemented in pure Java, as is Ibis RMI on TCP. There
also is a KaRMI version that uses native code to interface with GM,
which makes KaRMI a good candidate for performance compari-
son with Ibis RMI, both on TCP and GM.

The throughput on TCP for sending double values with Sun RMI
are higher than the throughputs achieved by KaRMI and Ibis RMI,
because the IBM class libraries use a non-standard native method to
convert entire double arrays to byte arrays, while the KaRMI and
Ibis RMI implementations must convert the arrays using a native
call per element. The latencies of KaRMI are slightly lower than
the Ibis RMI latencies, but both are much better than the standard
Sun RMI latency. Ibis RMI on TCP achieves similar throughput as
KaRMI, but is more efficient for complex data structures, due to the
generated serialization code. On Myrinet however, Ibis RMI out-
performs KaRMI by a factor of 1.3 – 3.0 when arrays of primitive
types are sent. For trees, the effectiveness of the generated serial-
ization code and the typed buffer scheme becomes clear, and the
Ibis RMI throughput is 9.1 times higher than KaRMI’s throughput.

5. RELATED WORK
We have discussed a Java-centric approach to writing wide-area

parallel (grid computing) applications. Most other grid computing
systems (e.g., Globus [8] and Legion [12]) support a variety of lan-
guages. GridLab [24] is building a toolkit of grid services that can
be accessed from various programming languages. Converse [13]
is a framework for multi-lingual interoperability. The SuperWeb
[1], Javelin 2.0 [20], and Bayanihan [23] are examples of global
computing infrastructures that support Java. A language-centric
approach makes it easier to deal with heterogeneous systems, since
the data types that are transferred over the networks are limited to
the ones supported in the language (thus obviating the need for a
separate interface definition language) [30].

Much research has been done since the 1980s on improving the
performance of Remote Procedure Call protocols [25]. Several
important ideas resulted from this research, including the use of
compiler-generated serialization routines and the need for efficient
low-level communication mechanisms. Ibis can use efficient user-
level communication substrates instead of kernel-level TCP/IP. Sev-
eral projects are currently also studying protected user-level net-
work access from Java, often using VIA [29]. Our communication
substrate Panda [2] also uses one interface for different communi-
cation hardware. However, with Panda, this selection is performed
at compile time; Ibis can switch implementations at run time. A
communication library in the Globus toolkit, Nexus [7], also sup-
ports automatic selection of optimal protocols at run time.

Many other projects for parallel programming in Java exist. Ti-
tanium [31] is a Java-based language for high-performance parallel
scientific computing. It extends Java with features like immutable
classes, fast multidimensional array access, and an explicitly paral-
lel SPMD model of communication. The JavaParty system [22] is
designed to ease parallel cluster programming in Java. In particu-
lar, its goal is to run multithreaded programs with as little change
as possible on a workstation cluster. JavaParty originally was im-
plemented on top of Sun RMI, and thus suffered from the same
performance problem as Sun RMI. The current implementation of
JavaParty uses KaRMI.

An alternative for parallel programming in pure Java is to use
MPI. Several MPI bindings for Java already exist [5, 10]. This ap-
proach has the advantage that many programmers are familiar with
MPI. However, the MPI message-passing style of communication
is difficult to integrate cleanly with Java’s object-oriented model.
MPI assumes an SPMD programming model that is quite differ-
ent from Java’s multithreading model. Also, current MPI imple-
mentations for Java suffer from the same performance problem as
most RMI implementations: the high overhead of serialization and
the Java Native Interface. For example, for the Java-MPI system
in [10], the latency for calling MPI from Java is 119 � s higher than
calling MPI from C (346 versus 227 � s, measured on an SP2).

RMI performance is studied in several other papers. KaRMI is a
new RMI and serialization package designed to improve RMI per-
formance [21]. The performance of Ibis RMI is better than that
of KaRMI (see Table 4 in Section 4). The main reason is that
Ibis generates serialization code instead of using run time type in-
spection. Also, Ibis exploits features of the underlying commu-
nication layer, and allows a zero-copy implementation by using
typed buffers. RMI performance is improved somewhat by Krish-
naswamy et al. [15] by using caching and UDP instead of TCP.
Their RMI implementation, however, still has high latencies (e.g.,
they report null-RMI latencies above a millisecond on Fast Ether-
net). We found that almost all RMI overhead is in software, so only
replacing the communication mechanism does not help much.



6. CONCLUSIONS AND FUTURE WORK
Ibis allows highly efficient, object-based communication, com-

bined with Java’s “run everywhere” portability, making it ideally
suited for high-performance computing in grids. The IPL provides
a single, efficient communication mechanism using streaming and
zero copy implementations. The mechanism is flexible, because
it can be configured at run time using properties. Efficient serial-
ization can be achieved by generating serialization code in Java,
thus avoiding run time type inspection, and by using special, typed
buffers to reduce type conversion and copying.

The Ibis strategy to achieving both performance and portability
is to develop efficient solutions using standard techniques that work
everywhere (for example, we generate efficient serialization code in
Java), supplemented with highly optimized but non-standard solu-
tions for increased performance in special cases. As test case, we
studied an efficient RMI implementation that outperforms previous
implementations, without using native code. The RMI implemen-
tation also provides efficient communication on gigabit networks
like Myrinet, but then some native code is required.

In future work, we intend to investigate adaptivity and malleabil-
ity for the programming models that are implemented in Ibis (i.e.,
GMI, RepMI, and Satin). Ibis then provides dynamic information
to the grid application about the available resources, including pro-
cessors and networks. For this part, we are developing a tool called
TopoMon [6], which integrates topology discovery and network
monitoring. With the current implementation, Ibis enables Java as a
quasi-ubiquitous platform for grid computing. In combination with
the grid resource information, Ibis will leverage the full potential
of dynamic grid resources to their applications.
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