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Abstract. Memory usage is becoming an increasingly pressing bottle-
neck in the training process of Deep Neural Networks (DNNs), espe-
cially when training on Graphics Processing Units (GPUs). Existing so-
lutions for multi-GPU training setups partition the neural network over
the GPUs in a way that favors training throughput over memory usage,
and thus maximum trainable network size.

We propose mCAP, a partitioning solution for pipeline-parallel DNN
training that focuses specifically on memory usage. It evenly distributes
Deep Learning models over the available resources with respect to per-
device peak memory usage. Our partitioning approach uses a novel incre-
mental profiling strategy to extract per-layer memory usage statistics. A
model-based predictor uses the profiling data to recommend a partition-
ing that balances peak memory usage. Our approach is DL-framework
agnostic and orthogonal to existing memory optimizations found in large-
scale DNN training systems. Our results show that our approach enables
training of neural networks that are 1.55 times larger than existing par-
titioning solutions in terms of the number of parameters.
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1 Introduction

Deep Learning (DL) has facilitated breakthroughs in many application domains,
including video analysis, natural language processing and speech recognition.
The popularity of neural networks in these domains can be attributed partly
to the development of new methods and algorithms, and partly to an increase
in available compute power. Increasing the “depth” of neural networks, i.e. the
number of hidden layers, often improves the performance of the models, as a
deeper network can learn more complex input-output relations. Increased com-
pute power has enabled training of deeper networks and has shortened the de-
velopment times of neural network architectures.

However, as DL models, training datasets and individual training samples
continue to grow in size, memory usage becomes an increasingly pressing bot-
tleneck in Deep Neural Network (DNN) training. This bottleneck is especially
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apparent when training on Graphics Processing Units (GPUs), due to their lim-
ited memory capacity. To limit memory usage, developers are forced to resort
to measures that severely reduce the effectiveness of their solutions, such as
downsampling input data, reducing training batch sizes or shrinking DL model
sizes. In some cases models cannot even be trained with such measures in place.
Examples can be found in research areas such as high resolution image- and
video-processing [4,/5,[14] and natural-language processing [124(15].

In this work, we present mCAP (memory-Centric Approach for Partitioning),
a partitioning approach for multi-GPU pipeline-parallel DNN training. Existing
pipelined training solutions, such as GPipe [6}8], PipeDream [10L{12] and DAP-
PLE [4] prioritize training throughput when partitioning the model. This cre-
ates an imbalance in peak memory usage between devices, leading to a smaller
trainable model size. Our partitioning solution uses novel methods, incremen-
tal profiling and model-based prediction, to evenly distribute DL models over
the available resources with respect to per-device peak memory usage, thus fo-
cusing on the maximum trainable model size instead of other objectives. Our
partitioning scheme targets intra-batch pipeline parallel training solutions and
can be adjusted to work with inter-batch pipelining systems as well. mCAP is
orthogonal to memory optimizations found in pipeline-parallel systems, such as
efficient scheduling of forward and backward passes [4,[12] and more generic op-
timizations, such as compression, recomputation and swapping of intermediate
data to host memory [2,9418].

Most existing partitioning and placement approaches aim to optimize achieved
throughput and do not consider per-GPU memory usage. PipeDream and DAP-
PLE’s planners only focus on equal per-GPU processing time and high through-
put. GPipe leaves the task of partitioning the model to the programmer. How-
ever, TorchGPipe [8] (an implementation of GPipe in PyTorch) contains an
automatic partitioner that optimizes throughput based on measurements of the
execution time of the forward pass for each layer of the DL model.

Accurate predictions of per-GPU peak memory consumption are needed for
automatic, memory-balanced partitioning. Predicting peak memory consump-
tion is complex, because it is influenced by memory optimizations implemented
at different levels of the DNN training software stack. Analytical modeling based
on static analysis of the DL model does not capture the effects of these optimiza-
tions, making it infeasible to reach accurate predictions of peak memory usage
using static techniques. mCAP uses novel profiling and prediction methods to
recommend a partitioning with a balanced per-GPU peak memory usage, while
automatically capturing the effects of a wide range of memory optimizations at
the levels of the DL framework and pipeline-parallel training system.

mCAP does not affect the convergence speed and accuracy achieved
by the DL model compared to other partitioning approaches, because the per-
formed learning operations are identical, regardless of the selected partitioning.

Concretely, the contributions of this paper are as follows:

— We introduce a novel approach to DNN partitioning for multi-GPU training,
focusing purely on reducing peak memory usage to enable the training of
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larger DL models. By focusing on maximum model size instead of training
throughput, we make a different trade-off than existing approaches. We study
the effects of this trade-off on training throughput.

— We provide an overview of memory-optimization techniques present in mod-
ern DL frameworks and explain the shortcomings of existing attempts to
reach balanced peak memory usage across GPUs during DNN training.

— We use a novel profiling method, incremental profiling, for our partitioning.

— We present a prediction based partitioning algorithm that uses the profiling
data to obtain balanced peak memory usage between GPUs.

— We demonstrate that our approach enables the training of DL networks that
are up to 1.55 times larger than existing partitioning approaches.

2 Background and Related Work

Neural network training: the DNN training process consists of iterations in
which a forward pass and backward pass are performed for a single batch of
input data (a minibatch). When the forward and backward passes have been
performed, the weights of the model are updated, which concludes the iteration.

As DNNs continue to grow in size and computational demand, DNN training
is now moving towards high-performance computing infrastructures where mul-
tiple GPUs can be used simultaneously to train a DNN. State-of-the-art software
solutions for multi-GPU training perform pipeline-parallel training.

Figure [I] shows the three layers of the software stack: the DL framework
that implements the training operations, the pipelining system that implements
pipeline parallelism, and the application layer.

Application crvej0]1]2)3 3/2/1 0uU
GPU 1 0 1 2 3 3 2 1 0 U
Pipelining system oruz 0 123 3 210 u
GPU3 0|12 3/3/2|1 0 U
DL fram ewo I’k 3 Forward Backward [, ,| Weight _
pass pass update Time

Fig. 1: Pipeline-parallel DNN  Fig. 2: Pipelined DNN training as performed by
training software stack GPipe. Numbers indicate microbatch ids.

Existing memory optimizations: modern DL frameworks like PyTorch
|13] and TensorFlow [1] include optimizations that reduce the memory usage on
GPUs. With early deallocation of memory, the memory used for forward activa-
tions and gradients is released immediately after the backward pass and weight
update have been performed for a given layer, instead of for the complete neural
network. Another optimization at the level of the DL framework is activation
memory reuse, in which the memory where activations are stored during the
forward pass is re-used to store gradients in the backward pass.

An optimization that is not implemented at the level of the DL framework,
but at the level of the pipelining system, is activation recomputation. Here for-
ward activations are not kept in memory in between the forward and backward
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pass of a given layer, but discarded and recomputed again when they are needed
during the backward pass.

Several other works have proposed methods to reduce GPU memory usage
during training. In [18,/21,/25], the authors propose methods for memory pooling
and swapping (temporarily) unused data (like activations) in GPU memory to
main memory. In [2], the authors use Unified Memory capabilities to leverage
host memory for out-of-core DNN training. Our approach is orthogonal to such
approaches and can be used on top of training systems that implement these
optimizations at the level of the DL-framework or the pipelining system.

Pipeline Parallelism: in pipeline-parallel training, the neural network is
partitioned over the workers. For each minibatch, each worker performs the
forward and backward pass for their part of the network, and activations and
gradients are communicated between workers. As a result, the model size is no
longer limited by the memory size of a single worker. To increase throughput
minibatches are processed in a pipelined fashion. Multiple minibatches (or slices
thereof) are consecutively fed into a pipeline, and workers perform forward- and
backward-passes on these minibatches.

There are two types of pipeline parallelism. In intra-batch pipelining (such
as implemented by GPipe [6,/8] and DAPPLE [4]) a single minibatch is split
into multiple micro-batches, and the forward passes of these micro-batches are
fed into a processing pipeline. When all forward passes have completed, the cor-
responding backward passes are performed. Finally, all compute nodes update
their parameters (see Figure . Intra-batch pipelining does not introduce stal-
eness of weights and has a memory usage that is inversely proportional to the
number of workers. A disadvantage is the existence of a synchronization point,
which causes a “bubble” in the pipeline and idle time for the workers.

In inter-batch pipelining (such as implemented by PipeDream [10}/12]) com-
plete minibatches are fed into the pipeline without splitting them into smaller
entities (see Figure . Multiple copies of the model’s parameters are kept in
memory to make sure forward and backward passes on a particular minibatch
are performed with the same parameters. Inter-batch pipelining does not suffer
from idle time because there is no system-wide synchronization point. Despite
several improvements [12,/24], staleness and increased memory usage caused by
the need for multiple parameter versions remain disadvantages.

Partitioning algorithms for pipeline parallelism: PipeDream [10| pro-
poses a planner specific to inter-batch pipelining that outputs a balanced pipeline
in terms of per-stage (GPU) computation time. This is achieved by profiling
computation time per layer and estimating communication times with an an-
alytical model. GPipe [6] leaves the task of partitioning the DL model to the
programmer. TorchGPipe [8], an implementation of GPipe in PyTorch, pro-
vides automatic partitioning based on profiling the computation time needed for
the forward pass of each layer. DAPPLE’s |4] partitioner tries to achieve high
throughput by minimizing the pipeline latency, which is determined by the la-
tency of processing a single minibatch. RaNNC [23] is an intra-batch pipelining
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framework that performs automatic partitioning using atomic-level, block-level
and stage-level partitioning.

All of these partitioning approaches focus on finding the partitioning that
achieves the highest throughput. Contrary to existing work, our work proposes
a partitioning approach that aims for a balanced pipeline in terms of memory
usage, enabling training of larger models. To that end, it models the effects of
memory optimizations implemented in the pipelining system, such as activation
recomputation. Our approach currently targets intra-batch pipeline parallelism.

Other large-scale DNN training paradigms: MeshTensorflow [19] and
Megatron-LM [20] are systems that partition individual tensor operations over
multiple accelerators as opposed to layers. Megatron-LM does not provide au-
tomatic partitioning and only supports transformer models. In [11], the authors
combine tensor partitioning with pipeline parallelism, but do not improve the
memory footprint over existing approaches. ZeRO [16| partitions model states
over workers to save memory, but focuses on data and model parallelism.

3 Method

We propose mCAP, a partitioning approach for pipeline-parallel DNN training
that determines how the DL model is partitioned over the workers (GPUs). Our
partitioning approach focuses on achieving balanced peak memory usage across
all GPUs during DNN training, to enable the training of larger DL models. By
using a novel profiling strategy called incremental profiling mCAP automatically
captures and models the effects of a wide range of memory optimizations that
are present in DL frameworks, such as the ones described in Section [2| (early
deallocation and activation memory reuse). This makes our approach agnostic
to which framework is used at the DL framework layer. Moreover, by combin-
ing the incremental profiling strategy with our model-based prediction algorithm,
mCAP models the memory usage of intra-batch pipelining systems and the op-
timizations they implement (like activation recomputation).

This section discusses mCAP’s design and shows how the combination of in-
cremental profiling and our model-based prediction algorithm is capable of cap-
turing the memory behavior of intra-batch pipeline-parallel training systems.
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Fig. 4: Pipelined DNN training as performed by
PipeDream. Numbers indicate minibatch ids.
Fig. 3: Overview of mCAP. P
Figure [3| shows an overview of our partitioning approach. The approach con-
sists of three parts: incremental profiling, prediction, and recommendation. In
the profiling phase, we collect data about the peak memory usage of each GPU
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during training for several, specifically selected partitionings. From this profil-
ing data, we extract two statistics for each layer in the neural network. In the
recommendation phase, these statistics form the input to the predictor, which
accurately predicts the memory usage for a set of partitionings generated by
the recommender. The recommender applies a search strategy to find the par-
titioning(s) with the lowest peak memory usage across the GPUs based on the
predictions. We explain the workflow step-by-step.

3.1 Profiling

The profiling stage collects per-layer statistics that can be used in the prediction
stage. We instrumented pipeline parallel DNN training code to monitor the peak
memory usage for each GPU during the training process. Short profiling runs
are then performed in the same setup (DL framework, pipelining system, hyper-
parameters and hardware) as in the final training run for which we are finding
a memory-balanced partitioning. In these profiling runs all training stages are
executed: forward passes, backward passes and update steps. Therefore, they
automatically capture the effects of memory optimizations at the DL framework
level for all training stages.

The profiling runs are performed with a specifically selected set of partition-
ings. The selected set of partitionings is such that for each layer I, we run (with
I>n>=0):

(a) a partitioning where layer [ is the only one on a GPU, and;
(b) a partitioning where layers n to [ — 1 are placed on a GPU, and;
(c) a partitioning where layers n to [ are placed on a GPU.

Figure [5| shows examples of partitionings described by requirements (a), (b)
and (c). During selection of these partitionings, we keep n as small as possible.

The above selection requirements ensure that we can extract two metrics for
each layer [ in the DL model from the profiled data: (1) the peak memory usage
when layer [ is the only one on a GPU and (2) the effect on peak memory of
adding layer [ to an existing set of layers on a GPU. We extract the former
directly from the partitionings described by requirement (a) and call this metric
mem__isolated(l), while we extract the latter from the difference in peak mem-
ory usage between the partitionings described by requirements (b) and (c), and
call it mem__added(l). These two per-layer metrics capture the data needed to
accurately predict the memory usage for all possible partitionings.
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quirements (a), (b) and (c). vations during the forward pass.
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It is important to make the distinction between mem __isolated(l) and
mem_added(l) because a layer’s contribution to peak memory usage depends
on its position on the GPU it is assigned to. Inspection of these metrics for
AmoebaNet-D(36, 544) showed that the difference between the two metrics is
significant, ranging to hundreds of Megabytes per layer. The difference is caused
by optimizations such as activation recomputation and the presence of commu-
nication buffers to send the activations of the last layer on a GPU to the next
GPU in the pipeline. The next subsections show how our predictor models the
effects of such optimizations on memory usage, using both metrics as input.

3.2 Peak memory usage for intra-batch pipelining with activation
recomputation

This subsection describes how the recomputation optimization implemented in
most intra-batch pipelining systems (including TorchGPipe) affects the peak
memory consumption. Optimizations such as recomputation do not simply lower
the peak memory consumption for each layer individually, but influence peak
memory in a more complex manner. We created our prediction algorithm to
model such influences of recomputation and other (potentially future) optimiza-
tions in intra-batch pipelining systems on peak memory usage.

The peak memory consumption on a GPU in a pipelined system is constituted
by two main factors: the memory needed for the weights of the layers hosted by
the GPU, and the memory needed for the activations generated by those layers.
In intra-batch pipelining, the memory needed for a layer’s weights is constant.
Recall from Section [2] that with activation recomputation, a layer’s activations
are discarded as soon as the activations for the next layer have been computed.
The activations for the former layer are then recomputed when they are needed
again in the backward pass. As a result, the amount of memory required to
store activations fluctuates during the forward and backward passes of a single
microbatch. Hence, the peak memory consumption of the GPU is determined by
the one layer on the GPU that requires the most memory for its activations.

Figure [f] illustrates this principle of fluctuating memory usage in the forward
pass in a simplified situation, where an example neural network of 5 layers is
trained on a single GPU. At time ¢y, memory is used to store the weights of all
layers and the activations generated by layer lyp. At time ¢1, the activations of
layer Iy are discarded, and the activations of layer [; are stored (which consume
more memory). In this example, the layer that generates the most activations
is layer ls, which means the peak memory consumption for this neural network
during the forward pass is dictated by that layer. This principle extends to the
backward pass in similar fashion.

3.3 Prediction

To find the partitioning with the lowest peak memory usage across all GPUs, we
predict the peak memory usage for a set of partitionings. This set is determined
by the recommender (see section and forms the input to the predictor,
together with the per-layer data described in Section[3.1} The predictor estimates
the peak memory usage for each partitioning in the set as shown in listing
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Our partitioning algorithm automatically models the effects that different
layers have on the peak memory consumption on a GPU, as described in Section
B:2] by means of its design. When predicting the memory usage for a given par-
titioning, it first considers the peak memory usage that is obtained when only
the first layer that is assigned to the GPU, is placed (which corresponds to the
mem __isolated statistic). Figure a illustrates this situation. It then models the
changes in peak memory consumption that are caused by adding the remaining
layers to the GPU, by adding the mem __added statistic layer-by-layer. Two sce-
narios exist for each added layer: it generates less activations than the preceding
one (Figure mb) and the peak memory of the GPU is only affected by the added
layer’s weights, or it outputs more activations than the preceding layer (Fig-
ure c), and the peak memory usage increases due to the added layer’s weights
and activations.

for gpu in GPUs:

layers = RetrieveLayers(p, gpu)

GPU peak mem = GPUg GPUg GPUg

mem _isolated (layers [0]) Peak Peak Peak

for layer in remaining layers: Laye’spr:;‘i"cq;on Layers pr;:l?c;;on Layers pr;:licTion

GPU_peak _mem += 0 0 1 0 1
mem _added(layer)

StorePeak (p, gpu, GPU_peak mem) 9] a 8) I
per _ GPU_peaks = RetrievePeaks(p) H 8 n 8 n
overall peak = max(per GPU_peaks) ﬂ O a O a

.. . C . (a) (b) (c)
LIStlng 1 . 1 . Pea‘k memory predlCtlon Activations layer L Wewghls layer L
for a given partitioning.

Fig. 7: Model-based prediction scenarios.

3.4 Recommendation

mCAP supports two mechanisms to search for the partitioning with the lowest
peak memory usage across all GPUs: Brute-Force (mCAP-BF) and Bayesian
Optimization (mCAP-BO).

mCAP-BF predicts the peak memory usage for all possible Py = (éj
partitionings (where L is the number of layers to partition over G GPUs), and
selects the partitioning with the lowest peak memory usage from the prediction
outcomes. We apply a tie-breaking rule if there are multiple partitionings with
the same lowest predicted peak memory usage. For each remaining candidate,
we exclude the GPU with the highest peak memory usage GPUpeqr in that
partitioning and select the candidate that has the best balanced (lowest) peak
memory usage across the remaining GPUs. This is a realistic alternative selection
criterion if the prediction for GPU,eqr Was inaccurate.

mCAP-BO applies Bayesian Optimization to search for the partitioning with
the lowest predicted peak memory usage. Each GPU forms a dimension of the
search space and the parameter range is determined by the number of layers
that can be placed on the GPU.

The choice between mCAP-BF and mCAP-BO can be made based on the
value of P,;;. mCAP-BF is guaranteed to find the partitioning with the lowest



mCAP: Memory-Centric Partitioning for Large-Scale DNN Training 9

predicted peak memory usage in the search space and is cost efficient enough for
limited values of P,;;. When P,j; is large (because the DL model has many layers
and/or many GPUs are used), it pays off to use mCAP-BO. While mCAP-BO is
not guaranteed to find the partitioning with the lowest peak memory usage from
the full search space, it is less expensive in terms of execution time for larger
values of P, (see Section .

3.5 Implementation

We have implemented our partitioning approach for TorchGPipe. We have in-
strumented the training loop’s code to capture the peak memory usage for each
GPU during the training process using built-in facilities of PyTorch. Our code
instrumentation has no impact on GPU memory usage, as the recorded data is
stored in main memory. Moreover, the impact on training throughput is negli-
gible, because recording the required data is a lightweight operation.

We chose to implement memory profiling at the level of the DL framework
(PyTorch) because it allows us to differentiate between memory that is actually
in use and memory that is reserved (cached) by PyTorch. Lower level tools
(CUDA or other NVIDIA tools) would not allow us to make this distinction.

Currently the selection of the partitionings used for incremental profiling is
partially automated and partially a manual process (if some configurations run
out of memory, a different set is chosen). Additionally, we extend the network
with dummy layers to enable running the partitionings described in Section [3.1
for each layer in the neural network. We plan the implementation of a fully
automated version of this process for future work.

We use the DDLBench benchmarking framework [7] to run our experiments.
We extended the code of the benchmarking suite and TorchGPipe to param-
eterize some variables of the training process, such as the partitioning to use.
We use scikit-optimize to implement the Bayesian Optimization process for the
mCAP-BO recommendation mode.

4 Experiments

4.1 Experimental Setup

We apply our partitioning approach to two DL models. First, we do experiments
with a relatively small neural network, VGGI11 [22], to evaluate to what extent
mCAP is able to find an optimally memory-balanced partitioning. We then do
experiments with a larger, scalable DL model, AmoebaNet-D [17], to see how far
we can increase the size of the neural network without running out of memory.
We perform this experiment for the partitioning recommended by mCAP and
compare the results to the partitioning chosen by TorchGPipe’s throughput-
oriented partitioner.

We perform multiple experiments using a single DL model with an adjustable
size, rather than with multiple different fixed-sized models, because we want to
obtain a precise comparison between the maximum trainable model size with
mCAP and TorchGPipe’s partitioner. We compare to a throughput-oriented
partitioner because, to the best of our knowledge, no other memory-oriented
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partitioners exist for pipeline-parallel training. We do not compare to solutions
that are orthogonal to pipeline-parallel training with our partitioning approach.
Examples of orthogonal solutions are leveraging host memory to virtually in-
crease the GPU memory size, through activation and weight swapping or Unified
Memory techniques [2,/18,21}25].

We note that the statistical performance (how fast the neural network learns
and achieved accuracy) is not affected by the choice of partitioning. The learning
operations performed by the pipelining system are mathematically identical, re-
gardless of the partitioning. We do therefore not explicitly evaluate the statistical
performance of the partitioning selected by mCAP. We use randomly generated
images of 224x224 pixels as training data in our experiments, consistent with
images from the ImageNet dataset [3].

The training runs performed in the profiling stage only have to last a very
limited number of epochs and can be performed with a small dataset size. This
is because the peak memory usage is steady after the first epoch and the peak
memory usage is not dependent on the size of the dataset. In our experiments,
the time required for profiling is in the order of minutes per profiling run. The
number of required profiling runs is L —G+1. The time needed by the prediction
algorithm ranges from seconds to minutes, depending on the number of possible
partitionings and the recommendation mode. We consider this overhead negligi-
ble, given that the final run for which we are searching a balanced partitioning
typically lasts several days to weeks. Moreover, the aim of our approach is to
enable training of larger models, not to increase throughput.

The Bayesian Optimization process of mCAP-BO performs 75 iterations, uses
scikit-optimize’s gp _hedge acquisition function with the sampling acquisition
optimizer, i and kappa set to 1000 to favor exploration over exploitation and
the default Matérn kernel.

Our experiments are performed on nodes containing 4 NVIDIA Titan RTX
GPUs with 24 GB GDDR6 memory. The GPUs are connected to the host
through PCle 3.0 x16. We use PyTorch version 1.5.0 and TorchGPipe as the
pipelining system.

4.2 VGG11

We perform experiments with VGGI11 to evaluate how accurate our prediction
algorithm is. We first use VGG11 because it is a relatively small network (132.9
million parameters) with a limited number of layers (30), so the amount of
possible partitionings of the model over 4 GPUs is also limited (3654). It is
therefore feasible to perform training runs for all possible partitionings, to get an
overview of the memory usage and computational performance for all datapoints
in the partitioning space. This experiment is only focused on validating that our
approach selects a partitioning with a low peak memory usage from the full
partitioning space.

Figure [[0]shows the achieved peak memory usage and throughput of training
VGG11 for all possible partitionings on a 4-GPU node, with TorchGPipe. Each
run performs 2 training epochs with a training dataset size of 5000 samples, an
overall batch size of 1104, consisting of 12 microbatches of 92 samples each, the
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Stochastic Gradient Descent optimizer with a momentum of 0.9, a weight decay
of 1 x 10~ and a learning rate of 0.1. The partitionings selected by mCAP and
TorchGPipe’s automatic partitioner are highlighted. Given the limited number
of possible partitionings, we use the mCAP-BF recommendation mode.

Our approach selects the partitioning (3-3-5-19) with the 3rd-lowest peak
memory usage of all partitionings. Our predictor slightly underestimates the
peak memory usage of the selected partitioning and deems it equivalent to the
partitionings with the lowest peak (the horizontal green line). The tie-breaking
rule then works in favor of the selected partitioning. Its peak memory usage
is 1.05x higher than the lowest peak, while that is 1.10x for the partitioning
selected by TorchGPipe’s partitioner. That partitioning (6-2-5-17) achieves 0.84x
the throughput of the best performing partitioning, which is the one selected by
our approach. These observations confirm that mCAP selects a partitioning from
the full partitioning space that has relatively low peak memory usage.

Figure [8la shows the per-GPU peak memory usage of mCAP’s and TorchG-
Pipe’s partitioning (predicted and measured). The partitioning selected by mCAP,
while being the one with the 3rd-lowest memory usage, is still relatively unbal-
anced (the standard deviation is 0.95). We attribute this to the small partition-
ing space of VGG11. Because the network is split at the level of layers and the
number of layers in VGG11 is limited, a partitioning with an (almost) perfectly
balanced memory usage simply does not exist (the standard deviation of the best
performing partitioning amongst the ones with the absolute lowest peak memory
usage is still 0.73). We study the memory gain in a more realistic scenario, with
a larger network, in Section [1.3]
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Figure [0] shows a histogram of the error between peak memory usage as
predicted by our prediction algorithm and the actual peak memory consumption,
for all 3654 possible partitionings. Our predictor is able to predict the peak with
an error margin smaller than 14% error in 90% of the cases.

4.3 AmoebaNet-D

We now experiment with a larger network (AmoebaNet-D) to see how much
reduction in peak memory usage and potential network growth our partitioner
realistically achieves.
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Fig. 10: Memory usage and throughput of all possible partitionings. The parti-
tionings selected by mCAP (yellow) and TorchGPipe (red) are highlighted.

AmoebaNet-D(L, F) has 2 parameters that determine the size of the neural
network: L and F' for layers and filters respectively. We first apply our parti-
tioning approach to AmoebaNet-D(36, 544). With these parameters, the neural
network has 1.06 billion trainable parameters.

We perform the training runs in this experiment with an overall batch size of
32, consisting of 4 microbatches of 8 samples each. The input data and remaining
training- and hyperparameters are identical to the ones used before. We use the
mCAP-BO recommendation mode (and mCAP-BF for reference).

Figure b shows the per-GPU peak memory usage of AmoebaNet-D(36, 544)
for mCAP’s partitioning (predicted and measured) and TorchGPipe’s partition-
ing. mCAP’s partitioning is considerably more balanced in peak memory usage.
The measured peak has a standard deviation of 0.53 across all GPUs, while
that is 3.15 for TorchGPipe’s partitioning. mCAP’s partitioning reaches a 35%
reduction in peak memory usage compared to TorchGPipe’s partitioning.

Our experiments showed that mCAP-BO recommends the same partitioning
for AmoebaNet-D(36, 544) as mCAP-BF, validating the effectiveness of mCAP-
BO in navigating the search space. It also reduces the prediction time by 2.6x
compared to mCAP-BF (from 99.5 to 38.8 seconds). We expect this gain to
increase when more GPUs or DNNs with even more layers are used.

Next, we determine how far we can scale the network up with mCAP’s par-
titioning. We use the F' (filters) parameter to increase the number of trainable
parameters in AmoebaNet-D. To find the maximum value for F' that we can
train with mCAP’s partitioning, we perform a binary search.

Figure shows the peak memory usage (and throughput) for each suc-
cessful training run of the binary search, plotted against the network size of
AmoebaNet-D. The size of the DL model is expressed in the number of train-
able parameters, which is determined by L and F'. The peak memory usage is
consistently higher for TorchGPipe’s partitioning, and grows faster with net-
work size than for mCAP’s partitioning. The maximum trainable network size
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for mCAP’s partitioning is 1.55 times larger than for TorchGPipe’s partitioning
(3.61B vs 2.32B trainable parameters).

Figure [IT] also shows the achieved throughput for each value of F' used in the
scaling experiment. Although it is not our focus, mCAP’s partitioning achieves
10.5% higher throughput on average than TorchGPipe’s partitioning.
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Fig. 11: Peak memory usage and achieved throughput for AmoebaNet-D.

5 Conclusion and Future Work

We proposed mCAP, a partitioning approach for multi-GPU pipeline-parallel
DNN training that focuses purely on achieving balanced peak memory usage
across GPUs. mCAP uses a combination of incremental profiling and model-
based prediction. Through profiling our approach automatically captures the
effects of memory optimizations implemented at the DL framework level and
can thus (after re-implementation of the memory profiling) be applied in combi-
nation with any modern DL framework. mCAP’s model-based predictor targets
intra-batch pipelining systems and can be easily adjusted to support inter-batch
pipelining systems as well. Applying mCAP does not affect the statistical per-
formance compared to other partitioning approaches, because the performed
learning operations are mathematically identical.

We demonstrated that mCAP recommends a partitioning with a low peak
memory usage from the full partitioning space. mCAP provides the brute-force
recommendation mode for limited search spaces and the Bayesian Optimiztion
mode to efficiently find a memory-balanced partitioning in a large search space.
mCAP can train neural networks that are 1.55 times larger than existing parti-
tioning solutions. We plan to automate partitioning selection and network ma-
nipulation for the incremental profiling phase for future work. We also plan to
port Bayesian Optimization to the GPU to further reduce mCAP-BQO’s runtime.
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