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Abstract. Divide-and-conquer has been demonstrated as a simple and efficient
programming model for grid applications. In previous work, we have presented the
divide-and-conquer based Satin system and its load balancing algorithm, cluster-
aware work stealing (CRS). In this paper, we provide a detailed analysis of CRS with
respect to important properties of grid systems, namely scalability, heterogeneous
compute clusters, and dynamically changing network interconnects. Our results show
that CRS automatically adapts both to heterogeneous processor speeds and varying
network performance, resulting in efficient utilization of the computing resources.
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1. Introduction

In computational grids, applications need to simultaneously tap the
computational power of multiple, dynamically available sites. The crux
of designing grid programming environments stems exactly from the dy-
namic availability of compute cycles: grid programming environments
need to be both portable to run on as many sites as possible, and
they need to be flexible to cope with different network protocols and
dynamically changing groups of heterogeneous compute nodes.

The Global Grid Forum has investigated possible grid programming
models [11]. Recently, GridRPC has been proposed as a grid program-
ming model [16]. GridRPC allows writing grid applications based on
the manager/worker paradigm.

Unlike manager/worker programs, divide-and-conquer algorithms
operate by recursively dividing a problem into smaller subproblems.
This recursive subdivision goes on until the remaining subproblem
becomes trivial to solve. After solving subproblems, their results are
recursively recombined until the final solution is assembled. By allowing
subproblems to be divided recursively, the class of divide-and-conquer
algorithms subsumes the manager/worker algorithms, thus enlarging
the set of possible grid applications.

c© 2004 Kluwer Academic Publishers. Printed in the Netherlands.
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2 van Nieuwpoort et al.

Of course, there are many kinds of codes that do not lend themselves
well to a divide-and-conquer algorithm. However, we (and others) be-
lieve the class of divide-and-conquer algorithms to be sufficiently large
to justify its deployment for hierarchical wide-area systems. Compu-
tations that use the divide-and-conquer model include geometry pro-
cedures, sorting methods, search algorithms, data classification codes,
n-body simulations and data-parallel numerical programs [19].

Divide-and-conquer applications may be parallelized by letting dif-
ferent processors solve different subproblems. These subproblems are
often called jobs in this context. Generated jobs are transferred between
processors to balance the load in the computation. The divide-and-
conquer model lends itself well to hierarchically-structured systems
because tasks are created by recursive subdivision. This leads to a task
graph that is hierarchically structured, and which can be executed with
excellent communication locality, especially on hierarchical platforms.

In previous work [15], we presented our Satin system for divide-
and-conquer programming on grid platforms. Satin implements a very
efficient load balancing algorithm for clustered, wide-area platforms.
In [17], we presented Ibis, our new Java-based grid programming plat-
form that combines Java’s “run anywhere” paradigm with highly effi-
cient yet flexible communication mechanisms. There, we also presented
a case study in which we have run a Satin application on the testbed of
the EU-funded GridLab project [1], consisting of various heterogeneous
systems across Europe, connected by the Internet.

In this work, we present a detailed evaluation of Satin’s CRS al-
gorithm with respect to important properties of grid systems, namely
scalability, heterogeneous compute clusters, and dynamically changing
network interconnects. In Section 2, we briefly present Satin’s divide-
and-conquer programming model. Section 3 covers a detailed analysis
of Satin’s load-balancing algorithm, CRS. Section 4 discusses related
work, and in Section 5 we draw conclusions and outline future work.

2. Divide-and Conquer in Satin

Satin’s programming model is an extension of the single-threaded Java
model. To achieve parallel execution, Satin programs do not have to
use Java’s threads or Remote Method Invocations (RMI). Instead, they
use much simpler divide-and-conquer primitives. Satin does allow the
combination of its divide-and-conquer primitives with Java threads and
RMIs. Additionally, Satin provides shared objects via RepMI [12]. In
this paper, however, we focus on pure divide-and-conquer programs.
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interface Fib Inte r extends s a t i n . Spawnable {
public long f i b ( long n ) ;

}

class Fib extends s a t in . Sat inObject
implements Fib Inte r {
public long f i b ( long n ) {

i f (n < 2) return n ;

long x = f i b (n−1) ; // spawned
long y = f i b (n−2) ; // spawned
sync ( ) ;

return x + y ;
}

public stat ic void main ( St r ing [ ] args ) {
Fib f = new Fib ( ) ;
long r e s = f . f i b ( 1 0 ) ; // spawned
f . sync ( ) ;
System . out . p r in t ln ( ”Fib 10 = ” + re s ) ;

}
}

Figure 1. Fib: an example divide-and-conquer program in Satin.

Satin expresses divide-and-conquer parallelism entirely in the Java
language itself, without requiring any new language constructs. Satin
uses marker interfaces to indicate that certain method invocations need
to be considered for parallel (so called spawned) execution, rather than
being executed synchronously like normal methods. Furthermore, a
mechanism is needed to synchronize with spawned method invocations,
namely to wait for their results. With Satin, this can be expressed using
a special interface, satin.Spawnable, and the class satin.SatinObject. This
is shown in Fig. 1, using the example of a class Fib for computing the
Fibonacci numbers. First, an interface FibInter is implemented which
extends satin.Spawnable. All methods defined in this interface (here
fib) are marked to be spawned rather than executed normally. Second,
the class Fib extends satin.SatinObject and implements FibInter. From
satin.SatinObject it inherits the sync method, from FibInter the spawned
fib method. Finally, the invoking method (in this case main) simply calls
Fib and uses sync to wait for the result of the parallel computation.

Satin’s byte code rewriter generates the necessary code. Concep-
tually, a new thread is started for running a spawned method upon
invocation. Satin’s implementation, however, eliminates thread creation
altogether. A spawned method invocation is put into a local work queue.
From the queue, the method might be transferred to a different CPU
where it may run concurrently with the method that executed the
spawned method. The sync method waits until all spawned calls in the
current method invocation are finished; the return values of spawned
method invocations are undefined until a sync is reached.
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Spawned method invocations are distributed across the processors
of a parallel Satin program by work stealing from the work queues
mentioned above. In [15], we presented a new work stealing algorithm,
Cluster-aware Random Stealing (CRS), specifically designed for cluster-
based, wide-area (grid computing) systems. CRS is based on the tra-
ditional Random Stealing (RS) algorithm that has been proven to
be optimal for homogeneous (single cluster) systems [6]. We briefly
describe both algorithms in turn.

2.1. Random Stealing (RS)

RS attempts to steal a job from a randomly selected peer when a pro-
cessor finds its own work queue empty, repeating steal attempts until it
succeeds [6, 19]. This approach minimizes communication overhead at
the expense of idle time. No communication is performed until a node
becomes idle, but then it has to wait for a new job to arrive. On a single-
cluster system, RS is the best performing load-balancing algorithm. On
wide-area systems, this is not the case. With C clusters, on average
(C − 1)/C × 100% of all steal requests will go to nodes in remote
clusters, causing significant wide-area communication overheads.

2.2. Cluster-aware Random Stealing (CRS)

In CRS, each node can directly steal jobs from nodes in remote clusters,
but at most one job at a time. Whenever a node becomes idle, it first
attempts to steal from a node in a remote cluster. This wide-area steal
request is sent asynchronously: Instead of waiting for the result, the
thief simply sets a flag and performs additional, synchronous steal re-
quests to randomly selected nodes within its own cluster, until it finds a
new job. As long as the flag is set, only local stealing will be performed.
The handler routine for the wide-area reply simply resets the flag and,
if the request was successful, puts the new job into the work queue.
CRS combines the advantages of RS inside a cluster with a very limited
amount of asynchronous wide-area communication. Below, we will show
that CRS performs almost as good as with a single, large cluster, even
in extreme wide-area network settings. A detailed description of Satin’s
wide-area work stealing algorithm can be found in [15].

3. Analysis of Cluster-aware Random Stealing (CRS)

In this section, we analyze the behavior of CRS. First, we compare CRS
with RS, the traditional random stealing algorithm. Next, we analyze
the sensitivity of CRS to varying WAN latency and bandwidth, followed
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Table I. Performance of RS and CRS with different simulated wide-area links
(time in seconds).

single 20 ms 20 ms 200 ms 200 ms

cluster 1 MByte/s 100 KByte/s 1 MByte/s 100 KByte/s

app. time %eff. time %eff. time %eff. time %eff. time %eff.

integrate

RS 71.8 99.6 78.0 91.8 79.5 90.1 109.3 65.5 112.3 63.7

CRS 71.8 99.7 71.6 99.9 71.7 99.8 73.4 97.5 73.2 97.7

N-queens

RS 157.6 92.5 160.9 90.6 168.2 86.6 184.3 79.1 197.4 73.8

CRS 156.3 93.2 158.1 92.2 156.1 93.3 158.4 92.0 158.1 92.2

TSP

RS 101.6 90.4 105.3 87.2 105.4 87.1 130.6 70.3 129.7 70.8

CRS 100.7 91.2 103.6 88.7 101.1 90.8 105.0 87.5 107.5 85.4

ray tracer

RS 147.8 94.2 152.1 91.5 171.6 81.1 175.8 79.2 182.6 76.2

CRS 147.2 94.5 145.0 95.9 152.6 91.2 146.5 95.0 149.3 93.2

by a scalability analysis for larger numbers of clusters. We investigate
the impact of heterogeneous and dynamically changing WAN connec-
tions on the behavior of CRS. We conclude our analysis by discussing
two variations of CRS: cluster-aware multiple random stealing (CMRS)
and adaptive cluster-aware random stealing (ACRS).

For our analysis, we use multiple, virtual clusters within a single,
large cluster computer. The wide-area network in between virtual clus-
ters has been simulated with our Panda WAN simulator [9]. This setting
allows us to evaluate the behavior of our load balancing algorithms in an
undisturbed and reproducible environment. We would like to emphasize
that our performance results have been obtained by running Satin
applications in parallel on a real cluster system; only the wide-area
network is simulated by inserting additional delay for those messages
that cross the borders of the virtual clusters. The results presented
in this section have been obtained on 200 MHz Pentium Pro’s with a
Myrinet network, running the Manta parallel Java system [13].

3.1. Comparison of RS and CRS

We compare the behavior of RS and CRS by running four different
Satin applications as described in the following. A summary of our
comparison can be found in Table I. The run times shown in this table
are for parallel runs with 64 CPUs each, either with a single cluster
of 64 CPUS, or with 4 clusters of 16 CPUs each. We simulated the
combinations of 20 ms and 200 ms roundtrip latency with bandwidth
capacities of 100 KByte/s and 1000 KByte/s.
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6 van Nieuwpoort et al.

In Table I, we compare RS and CRS using four parallel applications,
with network conditions degrading from the left (single cluster) to the
right (high latency, low bandwidth). For each case, we present the par-
allel run time and the efficiency. With ts being the sequential run time
for the application, with the Satin operations excluded, (not shown)
and tp the parallel run time as shown in the table, and N = 64 being
the number of CPUs, we compute the efficiency as in Equation (1).

efficiency =
ts

tp · N
∗ 100% (1)

Adaptive integration numerically integrates a function over a given
interval. It sends very short messages and has also very fine grained
jobs. This combination makes RS sensitive to high latency, in which
case efficiency drops to about 65%. CRS, however, successfully hides
the high round trip times and achieves efficiencies of more than 97%
in all cases.

N Queens solves the problem of placing n queens on a n × n chess
board. It sends medium-size messages and has a very irregular task
tree. With efficiency of only 74%, RS again suffers from high round
trip times as it can not quickly compensate load imbalance due to the
irregular task tree. CRS, however, sustains efficiencies of 92%.

TSP solves the problem of finding the shortest path between n cities.
By passing the distance table as parameter, is has a somewhat higher
parallelization overhead, resulting in slightly lower efficiencies, even
with a single cluster. In the wide-area cases, these longer parameter
messages contribute to higher round trip times when stealing jobs from
remote clusters. Consequently, RS suffers more from slower networks
(efficiency > 70%) than CRS which sustains efficiencies of 85%.

Ray Tracer renders a modeled scene to a raster image. It divides a
screen down to jobs of single pixels. Due to the nature of ray tracing,
individual pixels have very irregular rendering times. The application
sends long result messages containing image fractions, making it sen-
sitive to the available bandwidth. This sensitivity is reflected in the
efficiency of RS, going down to 76%, whereas CRS hides most WAN
communication overhead and sustains efficiencies of 91%.

To summarize, our simulator-based experiments show the superior-
ity of CRS to RS in case of multiple clusters, connected by wide-area
networks. This superiority is independent of the properties of the appli-
cations, as we have shown with both regular and irregular task graphs
as well as short and long parameter and result message sizes. In all
investigated cases, the efficiency of CRS never dropped below 85%.

Although we are able to identify the individual effects of wide-area
latency and bandwidth, these results are limited to homogeneous In-
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Figure 2. Left: the effect of latency (one-way) on the raytracer, bandwidth is fixed
to 100 KByte/s. Right: the effect of bandwidth on the raytracer, one-way latency is
fixed to 100 ms.

tel/Linux clusters (due to the Manta compiler). Furthermore, we only
tested clusters of identical size. An evaluation on a real grid testbed,
with heterogeneous CPUs, JVMs, and networks has been presented
in [17]. In the following, we analyse the behaviour of Satin using em-
ulated wide-area network connections. This excludes disturbing third-
party traffic, yielding reproducible results and fair comparisons of the
investigated approaches.

3.2. Sensitivity to WAN bandwidth and latency

We now investigate the behavior of Satin’s CRS algorithm under differ-
ent WAN bandwidth and latency conditions. We focus on the raytracer
application. From the group of test applications presented above, the
raytracer is the one which is the most sensitive to WAN bandwidth.
With other applications, effects will be similar but less pronounced.
Again we analyze a system of four virtual clusters of 16 CPUs each.

Figure 2 (left side) shows the effect of latency on the raytracer ap-
plication. It is clear that the CRS algorithm is insensitive to the WAN
latency, as it is asynchronous. Even with a one-way WAN latency of
one second, the run time of the raytracer with the CRS algorithm is
only 167.1 seconds. For comparison, on one cluster of 64 nodes (i.e.,
without WAN links), the application takes 147.8 seconds. This means
that even with WAN links with a one-way latency of one second, the
overhead compared to a single cluster is only 13%.

The effect of WAN bandwidth on CRS is more significant, as is
shown in Figure 2 (right side). While reducing the bandwidth from
100 KByte/s, the run times increase almost linearly, down to about 20
KByte/s. At this point, the speedup relative to the sequential version
still is 50.8. When the bandwidth is further reduced, the run time
increases exponentially. With a WAN bandwidth of only 1 KByte/s, the
raytracer runs for 569.2 seconds, the speedup relative to the sequential
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version then is 15.6. Thus, with this low bandwidth, running on multiple
clusters does not make sense anymore, as the same run time can be
achieved on a single cluster of 16 machines. The other applications show
similar behavior, but the bandwidth at which the run times begin to
increase exponentially is even lower.

These results are promising, as CRS can tolerate very high WAN
latencies. CRS also works well with low WAN bandwidths. However,
there is a certain amount of WAN bandwidth that an application re-
quires. If the bandwidth drops below that point, the run times increase
exponentially. This bandwidth is very low for the applications we tried,
20 KByte/s for the raytracer which is the most demanding of our
test applications. Furthermore, we believe that WAN bandwidth keeps
improving, so this will become less of a problem. Latency however, is
ultimately bound by the speed of light. It is therefore more important
that CRS can tolerate high WAN latencies.

3.3. Scalability analysis

We now investigate the scalability of CRS to more than four clusters.
It is interesting to know how large the clusters should minimally be to
achieve good performance with CRS on hierarchical wide-area systems.
Therefore, we measured the performance of the raytracer (because this
application uses the most WAN bandwidth) with differently sized clus-
ters. We keep the total number of machines in the runs the same,
so we can compare the run times. With clusters of size one (all links
are WAN links), the system is no longer hierarchical, so we can quan-
tatively investigate how much the load balancing of the applications
benefit from our assumption that systems are hierarchical in nature.
We present measurements on 32 nodes, because of a limitation of the
Panda cluster simulator.

The run times of the raytracer with differently sized clusters are
shown in Figure 3. The numbers show that CRS scales quite well to
many small clusters. Even when using 16 clusters of only two nodes,
the run time is only increased with 5% relatively to one single cluster
(from 288.9 seconds to 303.1 seconds). When the system is no longer
hierarchical (i.e., 32 clusters of one node), performance decreases con-
siderably. In that case, CRS (like RS) uses only synchronous stealing,
and is always idle during the WAN round-trip time.

We also investigated the performance of the raytracer on systems
with differently sized clusters. Because of the way CRS selects steal
targets in remote clusters, all nodes in the system have the same chance
of being stolen from. This way, machines in smaller clusters are not
favored over machines in larger clusters, and a good load balance is
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Figure 3. Run times of the raytracer on 32 nodes, with differently sized clusters.
One-way latency used is 100 ms, bandwidth is 100 KByte/s.

achieved. Compared to RS, CRS performs much better. When a sys-
tem with two clusters, one of size 16, and one of size 48 is used (for
a total of 64 nodes), with a one-way WAN latency of 100 ms and
a bandwidth of 100 KByte/s, the speedup of RS is only 42.6, while
CRS achieves a speedup of 54.3. The speedup is not as good as the
speedup of CRS on four clusters with the same WAN link speed (59.7),
because the total WAN bandwidth in the system is much lower (one
link with 100 KByte/s, instead of six links with 100 KByte/s each). If
the WAN bandwidth of the asymmetrical system is increased to 600
KByte/s, the speedup of CRS increases to 58.4, only slightly less than
the symmetrical system, while RS achieves a speedup of 53.6.

When the system is made even more asymmetrical, for instance a
system with three clusters of 8 nodes and one cluster of 40 nodes (i.e.,
64 in total), again with 100 ms one-way WAN latency and 100 KByte/s
bandwidth, CRS still performs good with a speedup of 54.7, while RS
achieves only 45.8.

3.4. Heterogeneous and dynamic wide-area networks

We now present a case study in which Satin runs across various em-
ulated WAN scenarios. Again we use the Panda system to emulate
a grid on a single large cluster, with various user-defined performance
scenarios for the wide-area links of the emulated grid. We give a detailed
performance evaluation of several load-balancing algorithms in Satin
using this system.

We evaluate Satin’s work-stealing algorithms by running our four
test applications (as introduced in Section 3.1) across four emulated
clusters. We use the following nine different WAN scenarios of increas-
ing complexity.
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10 van Nieuwpoort et al.

1. The WAN is fully connected. The latency of all links is 100 ms
(one-way); but the bandwidth differs between the links.

2. The WAN is fully connected. The bandwidth of all links is 100 KB/s;
but the latency differs between the links.

3. The WAN is fully connected. Both latency and bandwidth differ
between the links.

4. Like Scenario 3, but the link between clusters 1 and 4 drops every
third second from 100 KB/s and 100 ms to 1 KB/s and 300 ms,
emulating being busy due to unrelated, bursty network traffic.

5. Like Scenario 3, but every second all links change bandwidth and
latency to random values between 10% and 100% of their nominal
bandwidth, and between 1 and 10 times their nominal latency.

6. All links have 100 ms one-way latency and 100 KB/s bandwidth.
Unlike the previous scenarios, two WAN links are missing, causing
congestion among the different clusters.

7. Like Scenario 3, but two WAN links are missing.

8. Like Scenario 5, but two WAN links are missing.

9. Bandwidth and latency are taken from pre-recorded NWS [18]
measurements of the real DAS system.

Figure 4 shows the speedups achieved by the four applications, on
four clusters of 16 nodes each, with the WAN links between them
being emulated according to the nine scenarios described above. For
comparison, we also show the speedups for a single cluster of 64 nodes.
The work stealing algorithms RS and CRS are compared.

The most important scenario is Scenario 9, because that is a replay
of NWS data, and thus is an indication of the performance of CRS in
a real production system. We use a replay of measured data instead of
running on the real wide-area systems to ensure deterministic results,
allowing a fair comparison between the load-balancing algorithms.

RS sends by far the most WAN messages. The speedups it achieves
are significantly worse, compared to a single, large cluster. This is es-
pecially the case in scenarios in which high WAN latency causes long
idle times or in which low bandwidth causes network congestion.

CRS always performs better than RS. Due to its limited and asyn-
chronous wide-area communication, it can tolerate even very irregular
WAN scenarios, resulting in speedups close to a single, large cluster.
However, there are a few exceptions to the very high speedups achieved
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Figure 4. Speedups of 4 Satin applications with 2 load-balancing algorithms and 9
different, emulated WAN scenarios.

by CRS which occur whenever the WAN bandwidth becomes too low
for the application’s requirements. This happens with Scenarios 4, 8,
and 9. But even in those cases, CRS still outperforms RS.

The measurements show that CRS performs better in scenarios with
missing links (i.e., Scenario 6 and 7) than in scenarios with slow links
(i.e., Scenario 4). This is caused by the routing of messages in the
underlying system. When the simulator is configured with a non-fully
connected network, the messages are routed around the missing links.
When a link is just slow, this does not happen, and the slow link
between two clusters is always used, instead of routing messages around
the slow link.

A careful analysis of the scenarios where CRS performs suboptimally
shows that CRS does not work well on systems that are highly asym-
metrical. We will explain this using two additional extreme Scenarios
10 and 11, which are shown in Figure 5. In these scenarios, there are
two orders of magnitude between the slowest and the fastest WAN
links, and the slow links have a bandwidth of only 1 KByte/s. The
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Figure 5. Emulated WAN Scenarios 10 and 11.

scenarios are not realistic, but were deliberately chosen to emphasize
the shortcomings of CRS in asymmetrical systems. Scenario 10 is highly
asymmetrical, because there is only one extremely slow link, between
Clusters 1 and 2. Scenario 11 is similar to Scenario 10, but it is made
symmetrical by also using a slow link between Clusters 3 and 4. Thus,
the total bandwidth of Scenario 11 is lower than that of Scenario
10. Therefore, one would expect that applications perform better on
Scenario 10.

We investigate these scenarios using the raytracer, because this ap-
plication uses the most WAN bandwidth. As shown above, the raytracer
needs about 20 KByte/s of WAN bandwidth per link, therefore the slow
WAN links are likely to become a bottleneck. The speedup of CRS with
Scenario 10 is 19.9, while the speedup with Scenario 11 is 26.4, with 64
nodes each. CRS achieves a lower speedup on Scenario 10, even though
this scenario has more total bandwidth than Scenario 11!

This behavior can be explained as follows: when a node in Clus-
ter 1 issues a wide-area steal attempt, it has a 33% chance of stealing
from Cluster 2, as CRS uses random stealing. However, due to the low
bandwidth between Cluster 1 and 2, the wide-area steals from a node
in Cluster 1 to a node in Cluster 2 will take longer than a steal attempt
from a node in Cluster 1 to a node in Cluster 3 or 4. Thus, nodes in
Cluster 1 will spend a larger amount of time stealing from nodes in
Cluster 2 than they will spend stealing from nodes in Clusters 3 and 4,
even though the WAN links to Clusters 3 and 4 are faster. This leads
to the underutilization of the fast WAN link between Clusters 1 and 3
and between 1 and 4, while the slow link between Cluster 1 and 2
is overloaded. To summarize: even though the chance that a node in
Cluster 1 issues a wide-area steal to a node in Cluster 2 is 33 %, the
amount of time spent stealing from Cluster 2 is larger than 33 % of
the total wide-area stealing time, because steal attempts to nodes in
Cluster 2 take longer than steal attempts to nodes in the other clusters.
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This behavior results in load imbalance, as the nodes in Cluster 1
spend a large fraction of the time stealing over the slow WAN link,
while nodes in Cluster 3 and 4 both spend 33% of their time stealing
from nodes in Cluster 1 (both Clusters 3 and 4 have three WAN links,
and all their links have the same speed). Thus, the nodes in Clusters 3
and 4 drain the work out of Cluster 1.

The same thing happens with Cluster 2: the work is drained by
the nodes in the Clusters 3 and 4 while the nodes in Cluster 2 are
stealing from nodes in Cluster 1, using the slow WAN link. The fact
that Cluster 1 and 2 are lightly loaded leads to a downward spiral: it
takes longer to steal over the slow WAN links, and the chance of getting
work back is small, as the target cluster is being drained via the fast
WAN links.

For highly dynamic or asymmetrical grids, more sophisticated al-
gorithms could achieve even better performance than CRS does. Some
improvements on CRS are investigated in the remainder of this section.

3.5. Cluster-aware multiple random stealing (CMRS)

To improve the performance of CRS on the aforementioned Scenarios
4, 8 and 9, we experimented with letting nodes send multiple wide-area
steal requests to different clusters in parallel. The rationale behind
this is that more prefetching of work, and prefetching from different
locations, might alleviate the asymmetry problem described above.

We implemented this as an extension of CRS. Each node gets a
number of WAN credits to spend on wide-area steal requests. In fact,
CRS is a special case of CMRS: it is CMRS with only one WAN credit.
CMRS works best when the available credits are used for different
clusters. This way, the algorithm does not spend multiple WAN credits
to attempt to steal work from the same cluster.

Measurements of the applications with CMRS have shown that it
always performs worse than CRS. We believe this is the result of
inefficient use of the available WAN bandwidth. Precious bandwidth
is wasted on parallel wide-area steal request, while the first request
may already result in enough work to keep the cluster busy. Moreover,
CMRS does not solve the problem of asymmetry. In fact, it only worsens
the situation, because, in Scenarios 10 and 11, the nodes in Cluster 3
and 4 also steal in parallel over the fast links. More prefetching drains
the amount of work in Clusters 1 and 2 even faster.

3.6. Adaptive cluster-aware random stealing (ACRS)

Another approach we investigated to improve the performance of CRS
on the aforementioned Scenarios 4, 8 and 9, is actively detecting and
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Table II. An example of modifying the wide-area steal chances
in ACRS.

Cluster t (ms) 1 / t % chance of stealing from cluster

2 110 0.009 42.86

3 200 0.005 23.81

4 130 0.007 33.33

total 440 0.021 100.00

circumventing slow links. Key is that the algorithm should balance the

amount of time that is spent on steal requests to all remote clusters.
The algorithm should also adapt to changes in WAN link speeds over
time. We call the resulting algorithm Adaptive Cluster-aware Random
Stealing (ACRS). Adaptivity can be implemented by changing the
stochastic properties of the algorithm.

ACRS is almost identical to CRS. However, ACRS measures the
time each wide-area steal request takes. The chances of sending a steal
request to a remote cluster depends on the performance of the WAN
link to that cluster (in this case, we use the time that the last steal
request to that cluster took). Because we want the algorithm to prefer
fast links over slow links, we do not calculate the chance distribution
using the steal time, but use the inverse (1/t) instead.

chancec =
1
tc∑
i

1
ti

∗ 100% (2)

In Equation (2), the probability for stealing from cluster c, called
chancec, is calculated as the inverse of the time tc needed for the most
recent steal request from c, divided by the sum of the inverse times ti

for all clusters, and multiplying the result with 100%. An example is
shown in Table II. In this example, the distribution of probabilities of
Cluster 1 in a system with four clusters is shown. The second column
shows the time the last steal request to the destination cluster took.
The numbers show that ACRS indeed has a preference for the fast
links. Other performance data than the last steal request completion
time could also be used, such as WAN-link performance data from the
NWS.

The speedups of the four applications from Section 3.1 with ACRS
on the nine different emulated WAN scenarios are shown in Figure 6.
The slow WAN links are still a bottleneck (the chance of stealing over
them is not zero), but the speedups of the raytracer with ACRS are
significantly better than the speedups with CRS. Adaptive integra-
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Figure 6. Speedups of 4 Satin applications with ACRS and 9 different, emulated
WAN scenarios.

tion, N-queens and the traveling salesperson problem perform nearly
optimal in all scenarios with ACRS. For example, the speedup of adap-
tive integration with Scenario 9 (the WAN links are configured using
NWS data) improves from 47.9 to 63.5. The raytracer, which is more
bandwidth sensitive than the others, also improves with ACRS. The
scenarios that performed worst with CRS, 4, 8 and 9, perform signifi-
cantly better with ACRS: the speedup of Scenario 4 improves from 36.6
to 42.4, Scenario 8 improves from 42.7 to 52.1, and Scenario 9 goes from
a speedup of 53.9 to 60.1. The performance of the other scenarios is also
slightly better. The performance of ACRS with the real-life Scenario 9,
the playback of NWS data, is nearly perfect for all four applications.

ACRS also improves Satin’s performance in the two extreme Sce-
narios 10 and 11, shown in Table III. The speedup of the raytracer
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Table III. Speedups for the raytracer with CRS and
ACRS, with different scenarios.

Scenario description speedup CRS speedup ACRS

9 NWS 53.9 60.1

10 asymmetrical 19.9 30.2

11 symmetrical 26.4 29.5

in Scenario 10 goes from 19.9 with CRS to 30.2 with ACRS, while
the performance with Scenario 11 goes from 26.4 to 29.5. These results
show that ACRS does not suffer from the asymmetrical systems as CRS
does, as the speedup in Scenario 10 now is better than the speedup in
Scenario 11.

There is a solution that might even perform better than ACRS.
It is possible to use source routing for the WAN links at the Satin
runtime system level. This way, the runtime system could route WAN
steal messages around the slow links. With Scenario 10, for instance,
messages from cluster one to cluster two could be routed via Cluster 3.
However, this scheme also has several disadvantages. Besides WAN link
performance data, global topology information is also needed for the
routing of the messages. This information should be gathered during
the run, because Internet routing tables may be updated at any time.
This leads to a large run time overhead. Moreover, the system is much
more complicated than CRS and ACRS, which perform sufficiently,
except for very extreme, artificial scenarios.

4. Related work

The AppLeS (short for application-level scheduling) project provides
a framework for adaptively scheduling applications on the grid [4].
AppLeS focuses on selecting the best set of resources for the application
out of the resource pool of the grid. Satin addresses the more low-level
problem of load balancing the parallel computation itself, given some
set of grid resources. AppLeS provides (amongst others) a template for
master-worker applications, whereas Satin provides load balancing for
the more general class of divide-and-conquer algorithms.

Many divide-and-conquer systems are based on the C language.
Among them, Cilk [5] only supports shared-memory machines, Cilk-
NOW [7] and DCPAR [8] run on local-area, distributed-memory sys-
tems. The Java classes presented by Lea [10] can be used to write
divide-and-conquer programs for shared-memory systems. Satin is a
divide-and-conquer extension of Java that was designed for wide-area
systems, without shared memory.
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Alt et al. [2] developed a Java-based system, in which skeletons are
used to express parallel programs, one of which for expressing divide-
and-conquer parallelism. Although the programming system targets
grid platforms, it is not clear how scalable the approach is: in [2],
measurements are provided only for a local cluster of 8 machines.

Most systems described above use some form of random stealing
(RS). It has been proven in [6] that RS is optimal in space, time
and communication, at least for relatively tightly-coupled systems like
SMPs and clusters that have homogeneous communication performance.
In previous work [15], we have shown that this property cannot be ex-
tended to wide-area systems. We extended RS to perform asynchronous
wide-area communication interleaved with synchronous local communi-
cation. The resulting randomized algorithm, called CRS, does perform
well in loosely-coupled systems.

Another Java-based divide-and-conquer system is Atlas [3]. Atlas is
a set of Java classes that can be used to write divide-and-conquer pro-
grams. Javelin 3 [14] provides a set of Java classes that allow program-
mers to express branch-and-bound computations, such as the traveling
salesperson problem. Like Satin, Atlas and Javelin 3 are designed for
wide-area systems. Both Atlas and Javelin 3 use tree-based hierarchical
scheduling algorithms. We found that such algorithms are inefficient for
fine-grained applications and that CRS performs better [15].

5. Conclusions and future work

Satin makes it possible to write divide-and-conquer applications in
Java, and is targeted at clustered wide-area systems. To achieve high
performance, Satin uses CRS, a special grid-aware load-balancing al-
gorithm. In this paper, we have thoroughly analyzed the behavior of
our CRS algorithm. We have demonstrated its superiority compared to
the traditional RS in hierarchically organized, cluster-based grid envi-
ronments. We have shown that CRS is almost insensitive even to very
high WAN latencies, while each Satin application requires a specific,
but rather low, minimal WAN bandwidth. We have also demonstrated
the scalability of CRS to large numbers of possibly small clusters and
found only minor performance degradation. We found CRS to be fairly
robust to heterogeneous and dynamically changing WAN connections,
except for cases of highly asymmetrical connections. Asymmetry leads
to load imbalance and in consequence to application slowdown. Based
on our findings, we have discussed two possible improvements to CRS,
namely cluster-aware multiple random stealing (CMRS) and adaptive
cluster-aware random stealing (ACRS). We have shown that ACRS
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indeed helps improving application speedups in cases of asymmetry.
Our measurements presented in [17] show that Satin’s CRS algorithm
indeed outperforms the widely used RS algorithm by a wide margin on
a real heterogeneous grid.

Our next step in building grid programming environments is to add
fault tolerance to Satin. The divide-and-conquer paradigm presents
several advantages when implementing fault tolerance. Function ex-
ecution will always produce the same outputs if given the same inputs,
a property also known as referential transparency. The outcome of a
computation does not depend on the computation order. Therefore,
the work lost in a crash of a process can be redone at any time during
execution of the application. Exploiting this feature of the divide-
and-conquer paradigm makes it possible to create a fault tolerance
low-overhead mechanism based on redoing the work lost by crashed
processors. We strongly believe that, with these additions, Satin will
become even better suited as a grid programming environment.
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