Fast Parallel Java

J. Maassen and R. van Nieuwpoort
Department of Mathematics and Computer Science
Vrije Universiteit
Amsterdam, The Netherlands

August 25, 1998

vrije Universiteit amsterdam

Contents
1 Introduction
2 Related work

3 Overview of the runtime system

3.1 Design
3.2 Javaobjectsin memory
3.2.1 Objectsand arrays
3.2.2 Objectstubs 0

Remote method invocation (RMI)

4.1 Parallel programming with RMI

4.2 Javaextensions
4.2.1 Remote object creation
4.2.2 Variables in remote classes
4.2.3 Parameters to remote method invocations
4.2.4 Remote classes and inheritance
4.2.5 Remote exceptions
4.2.6 Nestedremoteclasses
4.2.7 Casting remote references

4.3 Serialization o
4.3.1 Why is serialization important?

4.4 Executingaremotecall 0.,
4.4.1 Generated marshallers,
4.4.2 Handling therequest
4.4.3 The generated unmarshaller
4.4.4 Buffer management oL
4.4.5 Fragmentation
446 Anexample o

Threads and locks
5.1 The implementation,

Garbage collection

6.1 Basic garbage collection techniques

6.2 Algorithm
6.2.1 Garbage detection,
6.2.2 Garbage reclamation oL

6.3 Implementation
6.3.1 Compiler support Lo
6.3.2 Detecting the garbage
6.3.3 Removing the garbage
6.3.4 Interaction with the user program

co 00 0o

10

11
11
12
13
13
14
15
16
16
17
19
19
20
20
23
24
26
27
27
28
29

32
33

7 Distributed garbage collection
7.1 Algorithm
7.2 Implementation,
721 Javalayer
7.2.2 Nativelayer L L

8 Results
8.1 Experimentalsetup
8.2 Lowlevel benchmarks
8.2.1 Low level RMI benchmarks
8.2.2 Garbagecollection
8.3 Applications e
8.3.1 Successive overrelaxation
8.3.2 Traveling Salesperson Problem
8.3.3 TIterative Deepening A*

9 Conclusion

10 Future work

11 Acknowledgements

A The distributed garbage collector

B Overview of the results
B.1 Network Throughput
B.2 Word count of the application sources
B.3 Seqgential application times
B.4 SOR e e
B.5 TSP . . . e e e
B.6 IDA* e e

C Panda RPC interface

References

43
43
44
44
45

47
47
48
48
50
52
52
56
59

62

62

62

63

64
64
65
65
66
70
71

72

73

1 INTRODUCTION

1 Introduction

There is growing interest in using Java for high-performance parallel program-
ming [1]. Java’s clean and type-safe object-oriented programming model makes
it attractive for writing reliable, large-scale parallel programs. Unfortunately,
there are also many obstacles that make Java a less than ideal choice.

Some problems concern sequential language constructs, like floating point
performance, lack of complex numbers and inefficient multidimensional arrays,
that possibly can be overcome through careful language revisions. A more
challenging problem for parallel processing is the bad performance of Java’s
primary interprocess communication mechanism: Remote Method Invocation
(RMI).

An empty remote method invocation takes about 1200 microseconds on a
Myrinet network with a latency of 30 microseconds, and about 1800 microsec-
onds over a Fast Ethernet network with a latency of 230 microseconds.

It is clear that if Java is ever to become successful in the area of parallel
processing, its communication performance must be improved dramatically.

Besides the communication performance problems, the programming model
of RMI is not designed for parallel programming, but for distributed program-
ming. It is the task of the programmer to explicitly set up connections before
RMI can be used. In a truly parallel system, the programmer should be bothered
as little as possible with setting up connections.

Our goal is to build a Java runtime system that provides a highly efficient,
easy to use communication mechanism similar to RMI (i.e., based on the idea of
invoking methods on remote objects), but without restricting ourselves to the
specific choices made by the current RMI design or implementation.

The system uses a native Java compiler rather than an interpreter or Just In
Time compiler (JIT). This compiler, Jcc, was implemented by Ronald Veldema,
as part of his Master’s thesis [24]. This compiler generates information that the
runtime system uses to speed up RMI, serialization, and garbage collection. The
runtime system was designed from scratch to implement remote method invoca-
tions efficiently, avoiding the high costs of serialization and thread management.
Jec RMI is implemented on top of Panda, a highly efficient communication layer
for Myrinet [6] and Fast Ethernet. The best round trip RMI latency obtained
by the system is 35 psec on Myrinet, and 235 usec on Fast Ethernet, using a
benchmark that invokes an empty method on a remote machine. The Jcc run-
time system has a throughput of up to 20 MByte/s for method calls with an
array of a primitive type as argument and no return value.

In this thesis, we describe the design of this runtime system. In Section 2,
we first look at related work. The general design of our system is described in
Section 3, followed by a more detailed description of RMI, threads and garbage
collection in Sections 4 to 7. Finally, in Section 8, we present the results of
several low-level benchmarks for our runtime system, and performance mea-
surements of some parallel applications.

2 RELATED WORK

2 Related work

JavaParty [17] provides a mechanism for parallel programming on distributed
memory machines. The remote keyword is used to identify which objects can be
called remotely. The JavaParty compiler generates the appropriate Java code
needed to implement the remote method invocations. It also supports object
migration. Allthough JavaParty significantly reduces the effort required to write
a parallel Java program, it is implemented in Java using RMIs, causing it to
have a comparable peformance.

Titanium [27] is a Java based language for high-perfomance parallel scientific
computing. It extends Java with features like immutable classes, multidimen-
sional arrays and an explicitly parallel SPMD model of communication. The
Titanium compiler translates Titanium into C. Allthough Titanium supports
both shared-memory and distributed-memory architectures, Titanium is not
garanteed to run efficiently on distributed-memory systems.

IceT [10] enables users to share Java Virtual Machines across a network. A
user can upload a class to another virtual machine using a PVM-like interface.
By explicitly calling send and receive statements, work can be distributed among
multiple JVMs.

Java/DSM [28] implements a JVM on top of ThreadMarks, an existing
distributed shared memory system. ThreadMarks is used to share data between
JVMs running on different machines. This approach has the advantage that no
explicit communication is necessary, and very fine grained distribution of data
is possible (an array can be distributed over multiple machines). However, this
approach does not exploit the Object Oriented model of Java, and does not
allow the programmer to make decisions about the parallelism in the program.

The Javelin [8] system supports internet based parallel computing using
Java. It does so, by running Java applets in web browsers. Therefore, the ap-
plications will be interpreted or compiled just in time. As the performance of
Java interpreters and JITs is still lower than the performance of compiled java
code, running the parallel programs as applets in web browsers restricts the use
of systems like Javelin. Another problem is that web browsers use RMIs over
TCP/IP, typically over slow Ethernets, so communication latencies are high.
The result of this is that Javelin can only be used for running embarrassingly
parallel programs. An advantage of running applets is that security is guaran-
teed.

In a paper in concurrency: practice and experience, R.R. Raje et al. describes
an implementation of java RMI, called ARMI, which supports asynchronous
method invocations, see [18]. The implementation uses the standard Java RMI
system and gains a speedup of about 30 % for asynchronous calls. This proves
that the concept is promising. Asynchronous RMIs will be a topic for future
investigation for the Jcc compiler.

3 OVERVIEW OF THE RUNTIME SYSTEM

3 Overview of the runtime system

To execute parallel Java programs efficiently, fast communication is essential.
The standard Java libraries offer network communication in the form of Data-
gram (UDP) and SocketIOStream (TCP) classes, and a higher level communi-
cation method, Remote Method Invocation (RMI) [29].

None of these libraries provides fast communication. Most of Java’s libraries
(including the network communication) are written Java. This causes essential
parts of the communication code to be interpreted, or, at best, to be compiled
by a JIT compiler at runtime. To access the system libraries, the Java Native
Interface (JNI) [21] is used. This imposes extra overhead, because Java objects
may have to be ’translated’ into normal (C) data structures.

Besides lacking speed, none of these libraries were designed to offer ade-
quate parallel programming support. Datagram and SocketIOStreams are too
low level to use. They only offer the means to exchange data. The program-
mer must create his own communication protocol, and all communication must
be programmed explicitly. RMI is easier to use, but is very client-server ori-
ented. The programmer must define communication interfaces and ezport server
objects to an object registry to enable client programs to bind to the server. Ex-
porting and binding of objects are a major source of programming overhead;
a significant part of the source code is dedicated to setting up communication,
and checking for exceptions.

JavaParty [17] offers a better solution for parallel programming. In Java-
Party, a number of computers can be used as a single parallel platform. A
running Java program can create remote objects on other machines. Remote
objects are identified by simply adding the remote keyword to a Java class.
Normal method invocations can be used on these remote objects, and no ex-
plicit binding or exporting of objects is required. Unfortunately, JavaParty
is uses Java RMI to implement communication, and therefore inherits all it’s
performance problems (see Figure 1).

User program

JavaParty

RMI

Sockets

JNI

System Libraries

Figure 1: The layers in a JavaParty program.

Performance can be gained by directly compiling a Java program to a binary
executable, thus avoiding the overhead of interpretation or JIT compilation of
the communication code. Even more performance can be gained by collapsing
the layers of Figure 1, and implementing a simpler communication mechanism.

By directly compiling a Java program to a binary executable, some of the
platform independence of Java is lost. However, the platform independence of
Java is not merely achieved by using byte-code executables. A strict language
definition and set of standard libraries ensure that a Java program will encounter

3.1 Design 3 OVERVIEW OF THE RUNTIME SYSTEM

the same programming environment, regardless which system the programmer
uses. Thus, provided that the source code of a Java program is available, a form
of platform independence is also achieved.

3.1 Design

Figure 2 illustrates the design of our Java runtime system. A native runtime
system is built directly on the system libraries. This native runtime system
contains the basic functionality required to run Java programs: memory man-
agement (including garbage collection), thread support, locks, I/O etc. Section
5 gives a short overview of the implementation of Java Threads, locks, and mon-
itors. Section 6 describes the garbage collection techniques used in the runtime
system.

User program
Java libraries Java libraries
distributed runtime
native runtime native runtime
system libraries T Y system libraries
machine 1 machine 2

Figure 2: The Java runtime system.

The Java libraries contain the mandatory Java packages java.lang, java.io,
java.util and java.net. The Java window libraries in java.awt have not been
implemented yet.

The distributed runtime system resides next to the native runtime system
and Java libraries. It is partly implemented in native (C) code, and partly im-
plemented in Java, for easy user access. Section 4 describes the implementation
of the distributed runtime system.

The distributed runtime system uses the Panda libraries for communication
[4]. The Panda libraries provide communication, threads, locks and condition
variables and timers to the user. It features advanced communication primitives,
like reliable multicasting and an RPC with at-most-once semantics. Panda is
developed at the Vrije Universiteit Amsterdam.

3.2 Java objects in memory

In this section, we will give a short description of the memory layout of objects
used by the Jcc compiler and our runtime system. See [24] for an in-depth
explanation of the Java object.

3.2.1 Objects and arrays

The memory layout of a Java object consists of an object header, containing
information necessary to use the object, followed by the data of the object (see
Figure 3). A Java array contains some additional information. To be able to
index the array, the size of the array elements is recorded in the element size

3 OVERVIEW OF THE RUNTIME SYSTEM 3.2 Java objects in memory

object header object header

data element size

element count

data

Java object Java array

Figure 3: The object and array layout.

field. The element count field stores the number of elements in the array and is
used for array bounds checking.

An object header starts with a pointer to the virtual method table. This table
contains pointers to all the methods of this object’s class and is extended with
type-dependent constant data, such as a table of reference offsets (see Section
6.3.1), and a table of parent type identifiers. A vtable is type-specific, and only
one copy of each type of vtable is present in memory, so objects of the same
type use a single vtable. See [24] for more information about the Java vtables.

In Java every object can be used as a lock in a synchronized statement, or
as a monitor using synchronized methods. To enable this behavior, a lock must
be associated with every object. The lock field is used to store a pointer to the
lock of this object (see Section 5).

Some Java objects are able to run in their own thread. A Thread object is
able to run any Java object implementing the Runnable interface. When the
start() method of the Thread object is called, a new thread is created by the
runtime system to run the code of the Thread object. The thread field in the
object header is used to store a pointer to the thread information needed to run
the Thread object (see Section 5).

The flag field is used to describe basic properties of the object. An array bit,
for instance, is set if the object is actually an array, and the finalized bit is set
when the object’s finalizer has been called by the garbage collector (See section
6.3.1).

Finally the type identifier and the size of the object are also stored in the
object’s header.

vtable * parent table *
lock * offset table *
thread * type class *
type id shadow vtable *
flag bits interface table *
object size method *
method *

Figure 4: An object header and vtable.

3.2 Java objects in memory 3 OVERVIEW OF THE RUNTIME SYSTEM

3.2.2 Object stubs

Besides the normal Java objects and arrays, the runtime system also supports
object stubs. An object stub can be used to represent an object, without actually
containing the data of the object. In the distributed runtime system object stubs
are used to implement remote objects (see Section 7.2.2).

object header

stub finalizer *

stub data

Figure 5: The object stub layout.

An object stub starts with a normal object header, containing the same type
identification and virtual method table as the normal object. The stub bit is
set in the flag field to indicate that this object is really a stub. When a method
of this stub is called, the call is rerouted to the shadow vtable of this stub.
The shadow vtable is contained in the normal vtable of the object (see Figure
4). It contains alternative implementations of the methods in the vtable. For
instance, in the stub of a remote object, the shadow vtable contains methods
which translate the call to a remote call, sending all parameters over the network
to the real object.

The stub finalizer is used by the garbage collector when the stub is removed
from memory. It enables the stub to free external resources before it is removed
(see Section 6).

10

4 REMOTE METHOD INVOCATION (RMI)

4 Remote method invocation (RMI)

The goal of Jcc is to support fast and easy parallel computing on a network
of distributed machines. In order to allow parallel programming in Java, we
need to have a distributed runtime system connecting the different CPUs. This
runtime system will provide the compiled Java code with an interface to do
remote method invocations.

4.1 Parallel programming with RMI

Parallel programming can be done with Java RMI [23], but this has a few draw-
backs. RMI is designed for distributed programming, and is therefore not really
suited for parallel programming. Object placement, for instance, is difficult be-
cause remote objects may only be created on the local CPU. For client-server
applications this is not a problem, but for parallel programming it is.

Another problem with the use of RMI for parallel programming is error
handling. The programmer is forced to write exception handling code for ev-
ery remote invocation, because the system may throw a “RemoteException”,
indicating communication failure. For distributed programming, this is the de-
sired behavior, because fault tolerance is required. For parallel programming
this is usually not needed, because reliable communication hardware or reliable
protocols will probably be used.

One attempt to solve these and other problems is the JavaParty [17] system,
a Java extension for parallel programming, which is built on top of Java RMI.
Jec uses almost the same programming paradigm as the JavaParty. The im-
plementations of Jcc and JavaParty differ considerably, however, as Jcc RMI is
not built on top of Java RMI. Also, JavaParty uses an interpreter, whereas Jcc
uses a native compiler. Another difference is that JavaParty supports object
migration, while Jcc and Java RMI do not.

In the Jcc system, a security manager is not present. This is intentional
because our goal is high performance computing, not running secure applica-
tions in browsers. Besides hindering performance, security may sometimes also
hamper ease of use, another design goal of our system.

Heterogeneity is also not supported by the Jcc system at this moment. Thus,
it is not possible for big endian machines to communicate with little endian
machines. For clusters of identical machines, this is not a problem. The im-
plementation of heterogeneous communication, and the measurement of the
performance penalty that comes with it, is an area which requires future work.

Java RMI has both heterogeneous communication and a security manager.
Because JavaParty is built on top of RMI, it also has these features.

In both the Jcc and the JavaParty programming models, the only thing
needed to convert a normal object into a remote object is to add the remote
modifier to the class declaration. This greatly simplifies the conversion of se-
quential to parallel programs.

To illustrate the difference between Java RMI and our programming model,
a simple “helloworld” application is shown in Figures 6 and 7 for Java RMI
and in Figure 8 for Jcc RMI. Another indication is the number of words in the
parallel applications we used to bechmark the runtime system, this is shown in
Appendix B.2.

11

4.2 Java extensions 4 REMOTE METHOD INVOCATION (RMI)

import java.rmi.x;
import java.rmi.server.UnicastRemoteObject;

public interface HelloServer extends java.rmi.Remote {
String sayHello() throws java.rmi.RemoteException;

¥
public class HelloServerImpl extends UnicastRemoteObject implements HelloServer {

public String sayHello() throws RemoteException {
return "Hello, world!";

}

public static void main(String args[]) {
// Create and install a security manager.
System.setSecurityManager (new RMISecurityManager());

try {
HelloServerImpl server = new HelloServerImpl("HelloServer");
Naming.rebind("//" + InetAddress.getLocalHost() + "/HelloServer", server);
} catch (Exception e) {
System.out.println("HelloServerImpl error: " + e.getMessage());

}

Figure 6: Hello world using RMI, server side.

import java.rmi.*;
import java.rmi.server.UnicastRemoteObject;

class HelloClient {
public static void main(String argll) {

try {
HelloServer server = (HelloServer)Naming.lookup("//" + getCodeBase().getHost() + "/HelloServer");
System.out.println(server.sayHello());

} catch (Exception e) {
System.out.println("Hello exception: " + e.getMessage());

}

Figure 7: Hello world using RMI, client side.

remote class Hello {

public String sayHello() {
return "Hello, World !";

}
public static void main(String argll) {
// Create new remote objects on CPU 4.

RuntimeSystem.setTarget (4);
new Hello().sayHello();

Figure 8: Hello world using Jcc.

4.2 Java extensions

The most important Java extension is the introduction of the “remote” keyword.
We believe that a new keyword is easier to use and learn than using non intuitive
“magic” interfaces such as java.rmi.Remote, as used with Java RMI. When a

12

4 REMOTE METHOD INVOCATION (RMI) 4.2 Java extensions

class is tagged with the new remote keyword, every call to a method in this class
will be translated into a remote procedure call instead of a local call. In Jcc, the
only place where a remote keyword can be legally placed is in the list of class
modifiers. This is done because this is enough to allow parallel programming,
and we want to modify the Java language as little as possible.

4.2.1 Remote object creation

Java RMI uses a centralized registry to locate remote objects. This central
registration of remote objects is needed because Java RMI has a somewhat
different programming model than Jcc’s remote calls. When using Java RMI,
objects accepting remote calls will always be created on the local CPU, because
this is logical for client-server based computing. When other objects want to
invoke methods of the remote object, they must get a remote reference to it.
One way to acquire this reference is to ask the registry for it.

In the Jcc programming model, remote objects may be created on any CPU
known to the runtime system, including the local CPU. It is thus possible for
code being executed on CPU 1 to create a remote object on CPU 4. There is no
centralized naming service to find and create remote objects. Host lookup is in-
stead performed by the runtime system, which maintains a list of hosts willing to
accept RPCs. Targeting a specific CPU is performed by invoking RuntimeSys-
tem.setTarget(processorNumber). Which machine is bound to a given processor
number is a task of the underlying runtime system. The distributed runtime
system can also place objects automatically using a number of policies. At this
point, only round robin placement is implemented. When required, the user
may implement other scheduling policies using the setTarget() method.

4.2.2 Variables in remote classes

In Jec-RMI, the only way to access the state of a remote object is by method
invocation. This means that one cannot access the fields of a remote class from
outside the class. If an attempt is made, a compile time error occurs. Some
examples of this behavior are shown in Figure 9. Both standard Java RMI and
JavaParty have the same behavior as Jcc in this respect. With Java RMI this
follows from the language definition. All methods which may be called remotely
are specified in an interface. Variables cannot be declared in an interface and
can thus not be accessed remotely.

It is possible to implement semantics, where access of non-static class fields
is allowed. We chose not to do this, because the compiler does not really know
the use of the fields. Some fields are never accessed from outside the class, others
require synchronized access. Synchronized get/set-methods could be generated
for each class field, but this may add unnecessary overhead. The programmer
has to provide the wanted get/set-methods when they are needed. This is not
a problem, because the use of get/set-methods is considered good programming
style for object oriented languages.

Static variables, however, are the exception to this rule, for both Jcc and
JavaParty. The location of static variables can be determined at runtime, be-
cause they are allocated on one processor only. Static variables may be accessed
just like when using normal classes and are shared between all instances of the
class on all CPUs. Java RMI does not support static variables.

13

4.2 Java extensions 4 REMOTE METHOD INVOCATION (RMI)

remote class A {
int var;

void foo() {
var = 1; // OK, var is in my class.
¥
}

class test {
remote int i; // NOT allowed, only classes may be remote.

public static void main(String argll) {
A a = new AQ);
a.var = 1; // NOT allowed, var is a variable in a remote class.

Figure 9: The remote keyword and local variables.

4.2.3 Parameters to remote method invocations

Object migration (as in JavaParty) is not implemented in Jcc. Neither is it
present in standard Java RMI. References to remote objects, however, may be
passed around as a parameter to both local and remote method invocations.
They can also be used as return value. While call-by-value is used by normal
parameters to remote calls, remote references are passed by reference. This is
the same as in the standard Java RMI and JavaParty system. The reason for
this is that remote objects cannot be serialized easily, as they potentially reside
on another machine.

A performance problem with JavaParty occurs when a method in a remote
class calls a method in the same class. Because the called method was defined
in a remote class the parameters to the call will be serialized, even though the
called method resides in the same class on the same machine. An example
program is shown in Figure 10.

remote class A {

void bar(String s) {
System.out.println(s);
}

void foo() {
String s = new String("this string is passed by value");
bar(s);

Figure 10: Calls within remote classes.

The string parameter will now be passed using call by value and not call by
reference, as in non-remote classes. This way, when a method in a remote class
is called, the parameters to the call will always be passed by value, resulting
in clear semantics. As will be discussed in Section 8.3.2, JavaParty programs
that use many calls to remote methods within the same class (e.g., a recursive
method in a remote class) have a very high serialization overhead. Performance
of serialization and marshalling is better in the Jcc system, but some unnecessary
overhead remains.

14

4 REMOTE METHOD INVOCATION (RMI) 4.2 Java extensions

In order to solve this problem, the local modifier was introduced. Methods
in remote classes may be marked with this modifier to indicate call by reference
must be used for parameter passing. This implies that the method may no
longer be called from another machine. An example of the use of the local
modifier is shown in Figure 11. The difference between methods tagged with
the local modifier and static methods is that static methods can only access
static variables. Local methods can access all class fields.

Another option to solve the problem would be the introduction of a “by _ref”
modifier, which can be put in front of the parameters in the formal parameter
list. This allows the programmer to specify for every parameter whether it
should be be passed by reference.

remote class A {
int i;

local void bar(String s) {
i =1; // Allowed, ’i’ is a field in my class.
System.out.println(s);

}

static void staticBar() {
i =1; // NOT allowed, ’i’ is not declared in static context.

}

void foo() {
String s = new String("this string is passed by reference");

bar(s); // Call by reference will be used, because bar is marked "local".
¥
¥
class B {
A a;

void faa() {
a.bar("some text"); // NOT allowed, bar is marked local in class A.

}

Figure 11: The local modifier.

4.2.4 Remote classes and inheritance

In Jcc, remote classes can also be inherited from, provided the new sub-class
is also remote. A compile time error occurs if the programmer attempts to
extend a remote class with a non-remote class. This way, class hierarchies of
remote classes can be built and no runtime checking has to be done to see
whether a class is possibly remote because it inherits from a remote class. More
importantly, the semantics of remote classes remain clear. A strange situation
occurs when a remote class is extended with a non-remote class. It becomes
unclear whether the programmer is allowed to call the methods of the local
subclass from another machine and whether call by value or call by reference is
used for the invocations.

In our current implementation it is illegal to call methods from a non-remote
base class of a remote class from outside the remote class. An example is shown
in Figure 12.

15

4.2 Java extensions 4 REMOTE METHOD INVOCATION (RMI)

remote class A {}
class B extends A {} // NOT allowed, ’B’ is not declared remote, while A is.
remote class C extends A {} // Allowed, both A and C are remote.

class D {
void foo() {}
¥

remote class E extends D {
void bar() {}

void faa() {
foo(); // OK, calling local method of our base class.
¥
¥

class Test {
public static void main(String argll) {
new E().foo(); // NOT allowed, foo is declared in a non-remote base class.
new E().bar(); // OK, bar is remote.

Figure 12: Inheritance and remote classes.

The A class was not declared remote, so “foo()” may not be called remote.
This still holds when A is extended by a remote class. It was defined this way,
because there are no marshallers generated for the A class, since A was not
marked remote. Marshallers contain code to serialize the parameter list to a
call and will be explained in Section 4.4.1. This may easily be circumvented by
generating the marshallers for all classes, whether they are declared remote or
not. We chose not to do this, because the executable sizes would be enlarged
significantly by this. It is now clear why “foo()” may be called by the “faa()”
method. Both methods are in the same class and may thus be called locally like
a normal method invocation, without using marshallers.

4.2.5 Remote exceptions

Remote exceptions are supported in Jcc RMI. When the Java code executed
in a remote call throws an exception, that exception will be sent back over the
network to the caller of the remote method. An example of using an exception
in a remote method is demonstrated in Figure 13. The difference with standard
Java RMI is that the runtime system does not throw exceptions when the un-
derlying communication mechanism fails. Thus only exceptions thrown by the
Java program have to be caught. When a communication error does occur, the
system will just give an error message and exit. For parallel programming this
is normally not a problem because reliable communication hardware or reliable
protocols will probably be used.

4.2.6 Nested remote classes

In Java, classes may be nested. In Jcc, the programmer is not allowed to make
a nested class remote. The compiler will give an error when this is tried. The
reason for this is that in Java a nested class can access fields from the parent
class. Allowing this would imply that the remote class would require a remote

16

4 REMOTE METHOD INVOCATION (RMI) 4.2 Java extensions

remote class A {
void foo() throws Exception {
throw Exception("This is a remote exception");

}

void faa() {
}
}

class Test {
public static void main(String argll) {
try {
new A().foo();
} catch (Exception e) {
System.out.println("an Exception occurred: " +e.toString());

}

new A().faa(); // No exceptions have to be caught.

Figure 13: Exceptions and remote classes.

reference to a local class, as is shown in Figure 14. When using standard Java
RMI, this is not a problem, because the user has only the interface to the
remote class. Variables may not be specified in an interface and can thus not
be accessed. The other way around, however, is allowed. It is permitted for a
normal nested class to access fields of a parent remote class. An example of this
is the nested class in Figure 15.

class A {
int a;

void foo() {}
// This remote inner class is NOT allowed.
remote class B {

int b = a; // The a field is a variable from the outer A class.

}

Figure 14: Remote inner classes.

remote class A {

int a;
class B {
void foo() {
a = 2;
}
}

Figure 15: Inner classes in remote classes.

4.2.7 Casting remote references

It is not allowed in the Jcc system to cast a remote object to a local object.
The reason for this, is that the compiler would no longer be able to distinguish

17

4.2 Java extensions 4 REMOTE METHOD INVOCATION (RMI)

between remote and local classes and thus again allow access to fields in the
object. This may again be avoided, but expensive runtime checks to find out
whether a local object is really a remote object cast to a local object would
be needed. When using JavaParty or Java RMI, the programmer is allowed to
write a cast from a remote class to a local class. A runtime exception will be
thrown when this is done incorrectly.

18

4 REMOTE METHOD INVOCATION (RMI) 4.3 Serialization

4.3 Serialization

The Java serialization mechanism [22] offers the possibility of writing arbitrarily
complex objects to a stream and reading them back. When doing this, a deep
copy is made of the object, meaning that not only the object passed to the write
call is serialized, but also all objects this object has a reference to. In this way,
an entire tree of objects is written to the stream with one write call. Consider,
for example, a linked list. When the first element in the list is written, the entire
list will automatically be serialized, because the first element has a reference to
the second, which has a reference to the third, etc.

One potential problem springs to mind: What if the data structure to be
serialized has duplicates or cycles? We have to prevent objects to be serialized
more than once. The solution is not really difficult, but it does require some
administration. We maintain a list of objects that have already been serialized.
If we encounter a reference to an object that has already been serialized, we
just write some offset to the previously written object to the stream. It is
evident that we must be able to find out whether an object has been serialized
before as fast as possible, therefore we use a hash-table to store the references
to previously encountered objects.

4.3.1 Why is serialization important?

Serialization is an important aspect of the runtime system because it is used to
implement RMI. Because any object may be passed as a parameter to a remote
invocation, it is evident there must be some way to send the object to the remote
CPU. Serialization is thus used to implement the call by value semantics of RMI,
which we will discuss in Section 4.4.

In most current Java implementations, a large part of the serialization code
is written in the Java language itself, which is interpreted (or compiled just-in-
time), and thus quite slow. Because serialization is also used for implementing
RMI, it is imperative for the performance of a distributed system that it be
implemented efficiently. Therefore, in Jcc, the serialization code is completely
native, and written in C. For even better performance, a large part of this code
is generated at compile time by the Jcc compiler. This has the advantage that
we don’t have to inspect the object at runtime, asking it what fields it has,
because this is already known at compile time.

Another point where our implementation differs significantly from the stan-
dard Java implementations is the protocol used for the serialized object layout.
We have implemented our own simple and fast protocol, resulting in better per-
formance. This has one disadvantage, as we now are no longer compatible with
other Java implementations. The result is that we cannot read a file containing
serialized objects according to the Java serialization standard [22], and cannot
communicate through RMI with Java virtual machines. The programming in-
terface, however, is still compatible, so any Java source file using serialization
can be compiled unchanged with our compiler, as only the underlying protocol
differs.

When Java objects use serialization to save state in files, the potential prob-
lem arises that the version of a class reading the data is different than the version
that wrote the data. To solve this problem, The Java serialization protocol sup-
ports versioning. This is not an issue with parallel programming, because all

19

4.3 Serialization 4 REMOTE METHOD INVOCATION (RMI)

hosts run the same executable. Therefore, versioning is currently not supported
in the Jcc protocol. Another difference between the Jcc protocol and the Java
protocol is the treatment of strings. In the Java protocol, strings are represented
in UTF-8 [26] encoding. The Jcc protocol treats strings just like normal objects.
The array of characters containing the string data is serialized like any other
array of a primitive type.

4.3.2 Duplicate detection in serialized objects

In order to detect duplicates, the serialization code uses a hash table when
writing the objects, to store all references that have been seen so far. Each time
we serialize some reference, which may also be an array or an interface pointer,
we search the hash table to see if we encountered it before. It is important
that this search be fast, as it might occur often when serializing complex data
structures. If the reference is not found in the hash table, we add the reference
and an index number, which is the current number of entries in the hash table.
Next, we call the appropriate function to serialize the object referenced to. If
the reference was present, however, an opcode is stored, indicating this reference
was already seen, followed by the index number which was stored together with
the reference in the hash table.

When deserializing, we use a reference table, which is an array of pointers
and a count. Each time we have deserialized and created an object, we put the
reference to this object in the table. When we encounter the opcode representing
an object which is already seen, we read the following index number. Because
objects are serialized and deserialized in the same order, it can now easily be
seen that the index number is the index in the reference table, which contains
the reference to the earlier deserialized and created object. So instead of trying
to deserialize the reference, we just return the reference at the now known index
in the reference table.

4.3.3 Generated serialization code

When compiling a source file, the Jcc compiler generates code to serialize and
deserialize all classes in the file. The generated C code will directly store the
passed object’s primitive types into a buffer and call the appropriate generated
serializers for fields referencing other objects. Because arrays are objects in Java,
but there is no such thing as an Array class, arrays must be treated separately,
as there is no code generated to serialize them. Hence, the code to serialize
arrays was hand-crafted in C. To get an idea of the generated code, consider
this example class “Monkey,” shown in Figure 16.

class Monkey {
int i, j;
double d;
long[] longArray;
String string;

int foo(int p, String s) {
// do something here...
¥

Figure 16: A simple Java class.

20

4 REMOTE METHOD INVOCATION (RMI) 4.3 Serialization

The C code generated by the Jcc compiler will look like the code fragment
in Figure 17. Although this is greatly simplified pseudo code, it does give an
indication of what the real code is like. The address of the buffer pointer is
passed to every write-call and not the buffer pointer itself, because the write-
call increments the buffer pointer by the amount of data that was written to
the buffer.

void packageClass_Monkey(char* buffer, flush_function_t flush_function) {
writeInt (&buffer, 345987346, flush_function); // unique class id
writeInt (&buffer, i, flush_function);
writeInt (&buffer, j, flush_function);
writeDouble (&buffer, d, flush_function);
writeArray(&buffer, longArray, flush_function);
packageClass_String(&buffer, string, flush_function);

Figure 17: The generated code to serialize the Monkey class.

Special care was taken to optimize for one dimensional arrays of primitive
types. All other arrays contain pointers to arrays or objects. For arrays of
primitive types however, the relevant data is stored adjacently. This means
that the data may just be written to the serialization buffer with one “mem-
cpy().” Therefore, in our system it doesn’t matter whether arrays of integers or
arrays of doubles are serialized, both are just copied entirely. The standard Java
serialization mechanism always loops over all entries in the array to call the ap-
propriate method to serialize the entry, even for primitive types. Both the code
to serialize the array and the code to write the primitive types are programmed
in Java and are interpreted (or compiled just in time with a JIT-compiler). It
is clear that this method is significantly slower than the method used in the Jcc
runtime system. This method has one drawback however. Because the array
data is copied to the serialization buffer, the internal representation of the ele-
ments is preserved. Therefore, a little endian machine is not able to deserialize
data from a big endian machine, and vice versa.

Because RMI is discussed later, see Section 4.4, we will explain our seri-
alization implementation using the Java ObjectInputStream and ObjectOut-
putStream classes, which allow the serialization of objects to any stream. An
ObjectOutputStream is created by calling the class constructor with an Out-
putStream object as parameter. The OutputStream may be any stream, for
instance a FileOutputStream for writing to disk, or a SocketOutputStream
for sending objects over the network. We may now call the newly created
ObjectOutputStream’s writeObject method, with any object implementing the
java.io.Serializable interface as parameter. In Java, arrays are also serializable
objects, so they can be passed directly, without encapsulating them in an ob-
ject. An example Java program using object streams on top of a file stream is
shown in Figure 18.

From the ObjectOutputStream’s writeObject method, a native call to the
runtime system is done to serialize the object. The native serialization is always
done to some buffer, and not directly to the passed stream. When we run out
of buffer space, a user defined native flush function is called, after which the
serializing process is continued. When serializing to an ObjectOutputStream,
the flush function will do a virtual call back to Java, calling the ObjectOut-
putStream’s flush method. This is needed because we do not know at compile

21

4.3 Serialization 4 REMOTE METHOD INVOCATION (RMI)

import java.io.*;

class Test implements Serializable {
int i;
double d;
long[] longArray;

}

class TestObjectStream {
public static void main(String args[1) {
ObjectOutputStream oos;
FileOutputStream fos;
ObjectInputStream ois;
FileInputStream fis;

Test t = new Test();
try {

fos
oos

= new FileOutputStream("filename", false);
= new ObjectOutputStream(fos);
oos.writeObject(t);

oos.writeObject(new int[201);

oos.close();

new FileInputStream("filename");
new ObjectInputStream(£fis);

o

Py

%}
non

t = (Test) ois.readObject();
int[] array = (int[]) ois.readObject();
ois.close();

} catch (Exception e) {
System.out.println("Error: " + e.getMessage());
System.exit(1);

Figure 18: An example Java program using object streams.

time what kind of stream we are serializing to. The ObjectOutputStream class
serializes data to an instance of the OutputStream class, which may be extended
by another class.

After the flush function is called, the serialization process continues. When
we are actually marshalling parameters to a remote call, the flush function is
entirely native, and will send a packet to the remote CPUs over the network.
The flush function in respect to network packet fragmentation will be discussed
in more detail in Section 4.4.5.

The deserialization process is exactly the reverse of the serialization process.
Instead of a flush function, the deserialization code uses a fill function. It is the
responsibility of the fill function to deliver the next data chunk. The fill function
will for instance read the next block from disk, when a FileInputStream is used
for deserializing.

22

4 REMOTE METHOD INVOCATION (RMI) 4.4 Executing a remote call

4.4 Executing a remote call

The primary goal of the Jcc runtime system is high performance. In order to
achieve this for remote method invocations, it is important that the call request
message is built fast and that it does not have to go through a large number
of layers to get to its destination. In the Java RMI implementation, however,
many different layers are used, most of which are interpreted (or compiled just
in time). JavaParty is built on top of the RMI system and consists therefore of
even more layers. Both systems suffer from bad performance.

To solve the performance problem, two techniques can be used. Layers may
be collapsed into fewer layers and the layers can be implemented using native
code instead of interpreted Java. In the Jcc runtime system we have used both
techniques. The layer structure of Java RMI, JavaParty and Jcc is shown in
Figure 19. The white layers are written in Java and are interpreted, the grey
layers are native code.

JavaApplication
Java Application JavaParty System
JavaRMI JavaRMI
ObjectStream ObjectStream
DataStream DataStream
FileStream FileStream JavaApplication
SocketStream SocketStream Native Serialization
Native socket layer Native socket layer Native Pandainterface
TCP/IP TCP/IP Myrinet Network

Java RMI layer structure

JavaParty layer structure

Jec layer structure

Figure 19: Structure of the different RMI systems.

The Java IOStream layers (the layers “ObjectStream” to “SocketStream” in
Figure 19) are passed four times for each remote method invocation: twice for
packing and unpacking the request message, and twice for packing and unpack-
ing the reply.

The Jcc runtime system uses only four layers to implement RMI. All layers
are compiled code, the top level (the user program) is compiled Java code, the
bottom three are compiled C code. Note that the Java IOStream classes are
not used with Jcc. The generated serialization code was designed to write the
serialized objects to a buffer, instead of directly to a stream.

The code to build a message for a remote method invocation request, called
marshalling code, is generated by our Jcc compiler. To serialize the parameters
passed to the method invocation to a buffer, the generated serialization code,
as described in Section 4.3.3, is used. This buffer, containing the serialized
parameters and a small header, will then be sent over the network using the
Panda RPC interface. This interface is shown in Appendix C.

When it arrives at the remote location, the buffer will be deserialized by the

23

4.4 Executing a remote call 4 REMOTE METHOD INVOCATION (RMI)

generated unmarshalling code. The flow of control in the Jcc runtime system
when executing a remote call request is shown in Figure 20. This is the most
complex case, when a thread is created to handle the call request. The rounded
boxes denote Java code, the grey boxes generated code. The implementation of
the Jcc RMI will be discussed in more detail in the following sections.

Local CPU
Java method Generated marshaller request message
executes RM| builds request
and sendsit to
remote CPU
extract message,
return essag
next statement result or exception reply m e
reguest message
Remote CPU
User handler may start
thread and exit, or cal
function directly
Generated marshaller New handleCall thread calls
extracts message, generated unmarshaller
Javamethod execute Java method
return reply message
return to handleCall thread build reply, send it back

Figure 20: Flow of control of a remote call.

4.4.1 Generated marshallers

The Jcc compiler generates the code to do a remote call, for both the client and
the server side. The generated code first creates the hash table and reference
table to store all references seen during serialization of the parameters for this
call and the return value, so that duplicates can be detected. To achieve good
performance, it is important to make the execution paths that are simple and
occur frequently as fast as possible. Since remote calls with simple parameters
occur quite often, we have tried to optimize these calls. Therefore, the tables to
detect duplicates are only created when at least one of the parameters to the call
is an object or array. Because the marshalling code is generated, we can detect at
compile time whether a remote method has only parameters of primitive types.
When only primitive types are passed to the remote call, there is no possibility
of duplicates, and thus no tables are needed. There are more optimizations like
this possible, for instance when only primitive arrays are passed, but these are
not yet implemented. The creation of the tables is expensive, because they have

24

4 REMOTE METHOD INVOCATION (RMI) 4.4 Executing a remote call

to be allocated and also cleared in the case of the hash-table, so the optimization
for the case of simple parameters does improve overall performance, as we will
see later. The hash-table has to be cleared because the entries are not stored
adjacently, but are scattered over the table. Thus, all slots in the table have to
be set to zero at the start of the marshalling process, to indicate the slots are
empty.

After the creation of the tables, a buffer is allocated to hold the serialized
parameters, and the header that is put in front of them. This header contains
five fields, as shown in Figure 21.

CPU number

opcode

create thread flag

remote reference

vtable index

Figure 21: The header of a call message.

The CPU number is an integer, that identifies the CPU doing the call. It is
needed by the remote CPU to send a reply message. The possible opcodes are
displayed in Table 1. For a remote call, the call-opcode is put in the header,
to indicate the message that follows is a remote call request. Because remote
method calls and remote constructor invocations (opcode “new”) are treated
exactly the same in our system, we will proceed to describe the implementation
of remote calls.

opcode meaning

quit Stop runtime system, exit program.

new The message that follows is a remote new request.

call The message that follows is a remote call request.
return_void This is a reply from a void method invocation.
return_exception | The remote method or constructor has thrown an exception.
result_new The message that follows is the reply from a remote new.
result_call The message that follows is the reply from a remote call.
ge_call Used for distributed garbage collection.

Table 1: Possible opcodes in message headers.

The create thread flag is used to optimize remote calls to methods that are
guaranteed to terminate quickly. For such methods, the runtime system does
not create a thread to handle the request. There are two cases in which a thread
will be created: the method contains a loop or executes a call. Note that this is
conservative. When there is a possibility the method will block (the call might
be “wait()”, or call “wait()” indirectly), or consume a lot of time, a thread is
created. This is done because the message may be received by the client in a
signal handler. The user handler will be described in more detail in Section
4.4.2.

25

4.4 Executing a remote call 4 REMOTE METHOD INVOCATION (RMI)

When the create thread flag is set, the runtime system at the receiving side
will create a thread, which will handle the unmarshalling of the parameters and
the actual invocation of the Java method. When the flag is not set, the user
handler will take care of the unmarshalling and the invocation of the Java func-
tion. This way, no thread creation or thread switch is needed to do the remote
call. Even with a fast thread package, this improves performance substantially.
In object oriented languages such as Java, there are many method calls that
just return some field in the class, or the result of a simple computation. These
calls will benefit from this approach. Again, we tried to make the paths that
are simple and occur frequently as fast as possible.

The remote reference field in the call header message is the reference to the
object on the remote CPU on which we want to invoke the call. This reference
is stored in the stub for the remote object, which will be created as a result
of a remote new operation (a constructor invocation). The layout of the stubs
was described in Section 3.2. We have chosen to directly use the reference to
the remote object, because of performance reasons. This has one drawback,
however: object migration will be hard to implement with this approach. When
object migration is required, an extra level of indirection will be needed. This
means an extra lookup, with some performance penalty.

The last field in the header is an index in the object’s vtable, where the
pointer to the requested method is stored. The object and vtable layout were
explained in Section 3.2. Together with the remote reference field, the vtable
index field forms a unique identification for the method to be executed.

After the call-header, the parameters of the remote call will be stored in
the message using the serialization mechanism described earlier. Note that the
serialization code was also generated, so the entire process of doing the remote
invocation is native code. Because the marshalling code has been generated by
the compiler, there is no need to inspect the parameters passed to the remote
call at runtime. The compiler has created a sequence of calls to the correct
generated serialization routines.

When the request message has been built, it is sent to the remote CPU,
using the Panda remote procedure call interface. We have also built a runtime
system that uses TCP/IP sockets, but the underlying communication channels
do not concern us here.

4.4.2 Handling the request

On the receiving side, Panda calls a user defined handler with the request mes-
sage as an argument. This function may be called from a lower level signal
handler, which restricts the behavior of the user handler. The Panda RPC in-
terface is shown in Appendix C. Panda polls the network interface to find out
whether a new packet has arrived, when the application is idle. The user han-
dler will only be called from a signal handler when the network interface is not
polled. An interrupt is generated when a message comes in and the application
has not polled the network for some time. This interrupt will be converted to
a Unix signal, which will call the user defined handler. The OpenThreads [12]
thread package assures that only one signal handler is active at a time. Multi-
ple user handlers may be active at the same time, however, as the application
may be polling. Panda, and the optimizations used in the implementation are
explained in [15].

26

4 REMOTE METHOD INVOCATION (RMI) 4.4 Executing a remote call

The user handler is not allowed to wait for the arrival of another message,
because this message may be received in a signal handler, and only one signal
handler may be active at one time. It is illegal for instance, to block on a mutex,
when the corresponding unlock operation is done in another remote call. It is
also undisirable for the user handler to run for a long time, again because one
signal handler may be active at once. Incomming messages must be stalled
while a signal handler is running and the apllication is not polling. Therefore,
when the Java method may potentially block or run a long time, a thread has
to be started to handle the request message, see Section 4.4.1. When the thread
is started, the user handler exits immediately. Because the create thread flag
in the call header is used to determine whether we need to start a thread or
not, the call header is at least partly processed in the user handler, to decode
the opcode and the create thread flag. The HandleCall or HandleNew function,
which will process the request, will either be called directly from the handler or
from the newly created thread. In one of these functions, the message header
will be decoded further.

Next, the generated unmarshaller will be called. For every method in a
remote class, a pointer to the unmarshaller resides in the shadow vtable of the
object, see Section 3.2. The remote object reference and vtable-index of the
unmarshaller were packed in the call header, so we can find a pointer to the
correct unmarshal function.

4.4.3 The generated unmarshaller

The generated unmarshaller will simply decode all parameters to the remote call
from the request buffer by calling the correct deserialization routines. When the
deserialization is finished, the requested Java method can be called. This is not
difficult, because the Jcc native interface is quite simple, as Jcc is a native
compiler and not an interpreter. As a result, The Jcc native interface is easier
to use and more efficient than the standard JNI [21] (Java Native Interface).
For a more detailed description, see [24].

The return value from the Java function (or, when thrown, the exception)
will be serialized to a buffer. This buffer will then be sent to the CPU that
requested the call, using the appropriate Panda call. The remote CPU has now
finished the handling of the request.

The reply from the remote invocation will be received in the generated mar-
shal function where the request originated, because the Panda RPC interface
is a synchronous communication primitive. The generated code will deserialize
the reply and return the result back to Java. When the reply buffer contained
an exception, this will also have to be passed on to the Java code. The Jcc
native interface provides the means to throw an exception from native code to
Java.

4.4.4 Buffer management

One of the most important and also most difficult issues when implementing
remote calls is the management of the buffers needed for serialization and du-
plicate detection. Allocating a buffer with malloc is expensive, and on some
systems (e.g., BSDI) malloc is not thread-safe or signal-safe. The Java language
makes heavy use of multi-threading, and what is worse, the request handler

27

4.4 Executing a remote call 4 REMOTE METHOD INVOCATION (RMI)

function may be called from a signal handler. This implies that buffer man-
agement has to be both thread- and signal-safe. To make things even more
complicated, remote calls may be nested in our system. This means that the
Java code in a remote method may do a remote call itself. The result is that a
remote call may be executed from the generated unmarshal function. Another
problem is that several request handler functions may be active concurrently
when messages arrive at the same time. The conclusion is that not only buffer
management, but the entire system must be both thread- and signal-safe.

To protect shared buffers, locks are needed. They are quite expensive, how-
ever, and have to be avoided.

Several buffer management policies were examined. We considered allocat-
ing one buffer for serializing remote method invocation requests for each CPU
in the system. This fails when two threads on the local machine want to com-
municate with the same remote CPU, since the request buffer cannot be reused
until the reply has arrived, because the Panda RPC mechanism is synchronous.
Allocating one buffer for each running thread was also considered, but this does
not work when remote calls are nested. It is clear that none of these policies is
correct. Buffers have to be allocated for each call and cannot be shared. Panda
has a fast malloc implementation, but measurements show that a significant
amount of time is still spent allocating and freeing buffers. This is the price
that has to be paid for a system that is completely thread- and signal-safe. All
parts of the serialization and marshalling code are now safe, without a single
lock in it. There is one lock in the Panda malloc implementation, however.

An important issue for performance of network throughput and latency is
to minimize the number of buffer copies. Memory to memory copies are expen-
sive and must be avoided, especially when the network has a relatively large
throughput compared to the memory bus, as is the case with the combination
of Pentium Pro and Myrinet network we use. The number of buffer copies was
minimized by serializing and marshalling directly from the Java data structures
to the buffer, which also holds the call header. The entire message is directly
built into one buffer, which will directly be passed to Panda (or written to a
TCP/IP socket). For the reverse process, the same holds. Deserialization will
extract information out of the Panda buffer, and copy the data directly to the
Java data structures.

4.4.5 Fragmentation

Fragmentation is the splitting of the buffers into chunks that will fit in the
network packets. The splitting of the serialized data buffer is handled by the
flush function. This function is passed as an argument to the serialization and
marshalling code, as was described in Section 4.3.3. For the socket version of the
runtime system, for example, the buffer is written to a TCP/IP socket when
the flush function is called. The buffer may then be reused to serialize the
rest of the data. With the Panda version of the runtime system, an optimistic
approach was implemented. A Myrinet network, which has a round-trip of
about 30 microseconds at the user level, was used. The Panda RPC interface
provides a synchronous communication function. When sending a request to
a remote machine, the caller will block until the reply message has arrived.
Arbitrarily large data buffers may be sent using the RPC primitive. Because of
the synchronous communication and the latency of 30 microseconds, it is faster

28

4 REMOTE METHOD INVOCATION (RMI) 4.4 Executing a remote call

to do a realloc() to increase buffer size in the flush function, instead of writing
the data to the network. When the system does run out of buffer-space, the
flush function doubles the buffer-size, and the serialization process will continue.
Reallocating the buffer is faster than 30 microseconds, so this approach is faster
than doing multiple network writes. Panda also provides asynchronous, one way
communication primitives. When using these, it would probably be faster to
send a packet in each call of the flush function. This will be examined in the
future.

Another solution would be to traverse the data structures to be serialized in
advance, to count the number of bytes that will be used for serialization. This
model has some performance overhead, but has the advantage that the required
buffer space is known in advance. We chose to take the optimistic approach,
and assume that a reasonable sized buffer will probably suffice for most remote
method invocations. Comparing both models is a topic for future investigation.

4.4.6 An example

Consider the “RemoteMonkey” class in Figure 22. The “foo()” method may be
called from another machine, therefore Jcc generates marshal and unmarshal
code for it.

remote class RemoteMonkey {
int i;
String s;
synchronized int foo(int i, String s) {
this.i i;
this.s s;

System.out.println("i = " + i);

return ixi;

Figure 22: A simple remote class.

The generated marshaller for the “foo()” method is shown in Figure 23 in
pseudo code. Because “foo()” has a String as parameter, which is an object in
Java, a hash-table is created to detect duplicates. Note that the create thread
flag in the call-header is set. This is done because “foo” contains a method
call (“System.out.println()”) and might therefore potentially do a “wait()”, or
block on a synchronization statement. When a remote exception is thrown, a
reference table must be created, to detect duplicates in the exception object.
The programmer may define his own exceptions in Java, so it is not guaranteed
that the thrown exception does not contain a cycle. The writeObject call will
serialize the string object to the buffer at the current position.

Pseudo code for the generated unmarshaller is shown in Figure 24. The
call-header is already unpacked when this unmarshaller is called. Because the
create thread flag in the call-header was set, this unmarshaller will run in a
new thread started by the runtime system. The marshaller itself does not know
about this. Note that the remote reference field is a valid reference for the
machine the unmarshaller will run on. This remote reference will be passed to

29

4.4 Executing a remote call 4 REMOTE METHOD INVOCATION (RMI)

marshal_foo(int i, class_Stringx s) {

alloc_buffers(&inBuffer, &outBuffer);
hashTable = create_hashTable();

writeCallHeader (&outBuffer, OPCODE_CALL, CREATE_THREAD, flush_function);
writeInt (%outBuffer, i, flush_function);
writeObject (&ZoutBuffer, s, flush_function, hashTable);
flush(); // Send request.
opcode = readInt(&inBuffer, fill_function);
if (opcode == OPCODE_EXCEPTION) {
referenceTable = create_referenceTable();
exception = read_object(&inBuffer, fill_function, referenceTable);
free_buffers();
kill_hashTable(hashTable) ;
kill_referenceTable(referenceTable) ;
THROW_EXCEPTION (exception) ;
} else {

result = readInt(&inBuffer, fill_function);

free_buffers(inBuffer, outBuffer);
kill_hashTable (hashTable) ;

RETURN(result);

Figure 23: The generated marshaller for the “foo” method.

the unmarshaller as a parameter. When the Java “foo()” method is called, the
reference parameter is used as “this” pointer.

30

4 REMOTE METHOD INVOCATION (RMI) 4.4 Executing a remote call

unmarshal_foo(javaObject *this) {
alloc_buffers(&inBuffer, &outBuffer);
referenceTable = create_referenceTable();

i = readInt(&inBuffer, fill_function);
s = readObject(&inBuffer, fill_function, referenceTable);

result = CALL_JAVA_FUNCTION(foo, this, i, s, &exception);
if (exception) {
hashTable = create_hashTable();

writeInt (&outBuffer, OPCODE_EXCEPTION, flush_function);
write_object (&outBuffer, exception, flush_function, hashTable);

flush(); // Message is created, now write it to the network.
free_buffers(inBuffer, outBuffer);
kill_hashTable (hashTable);
kill_referenceTable (referenceTable);

} else {
writeInt (&outBuffer, OPCODE_RESULT_CALL, flush_function);
writeInt (%outBuffer, result, flush_function);

flush(); // Message is created, now write it to the network.

free_buffers(inBuffer, outBuffer);
kill_referenceTable (hashTable);

Figure 24: The generated unmarshaller for the “foo” method.

31

5 THREADS AND LOCKS

5 Threads and locks

Java uses an object-oriented version of threads. A Thread object is used as a
wrapper for the native thread implementation. The start method of a Thread
object creates a new native thread and starts executing the run method of the
Thread. There are two ways for the programmer to create a new thread. One is
to declare a class to be a subclass of Thread, overriding the run method. When
the thread is started the new run method will be called. The second way is
for a class to implement the Runnable interface, forcing it to contain the run
method. To start the thread, a new Thread object must be created, passing the
Runnable object as a parameter. When the thread is started the run method
of the Runnable object will be called.

In Java, every object can be used as a lock in a synchronized statement, or
as a monitor using synchronized methods. Java locks can be used recursively,
enabling the same thread to lock an object a number of times (see Figure 25).
If a thread tries to lock an object which is already locked by a different thread,
it will block until the lock is released.

class LockExample {
String s = "Lock me";

void lock() {
// s is now unlocked.

synchronized(s) {
// s is now locked once.

synchronized(s) {
// s is now locked twice.

}

// s is now locked once.
}

// s is now unlocked.

Figure 25: Using an object as a recursive lock.

If synchronized methods are used, an object will behave like a monitor (see
Figure 26). The object is locked when a thread enters a synchronized method,
and unlocked when the method returns. This will ensure that at any given
time, only one thread is executing a synchronized method. Because the locks
are recursive, a synchronized method can call another synchronized method in
the same object without causing a deadlock. A thread can block inside a monitor
(e.g., to wait for a condition), using the wait method. By calling this method,
the thread will be blocked and the object unlocked, allowing other threads to
call synchronized methods of the object. The notify method can be used to
wake up a single waiting thread in this object. The notifyAll method will wake
up all waiting threads. When a thread is notified, it locks the object (blocking
if necessary) and continues execution of the synchronized method. Note that
the wait, notify and notify All methods can only be used inside a synchronized
method or synchronized statement.

32

5 THREADS AND LOCKS 5.1 The implementation

class MonitorExample {
synchronized void sleep() {

try {
wait();
// The calling thread will now block until it is notified.
} catch (Exception e) {
// Don’t care.
}
}

synchronized void wakeup() {

notify();
// If there is a blocked thread, it will now continue.

}

Figure 26: Using an object as a monitor.

5.1 The implementation

Jec’s threads are implemented using Panda threads, which are built on a user
level thread package called OpenThreads [12]. OpenThreads delivers basic func-
tionality, like thread creation and destruction, and thread priorities.

When the start method of a Thread object is called, the runtime system
creates a new Panda thread. This Panda thread calls the run method of the
Thread object, thus starting the Thread or Runnable object. Besides start-
ing the thread, the runtime system also records information about the thread,
including the Thread object, the Panda thread, and the location of the stack
of the Panda Thread. This information is used by the garbage collector (see
Section 6.3.2). When the thread exits, this information is removed.

Thread

Object

Thread Object *

Panda thread ¥ |————— thread |

stack

information \

stack

Figure 27: Thread information.
The implementation of the Java lock uses the locks and condition variables

Panda provides. A Panda lock is a mutez, which can be locked and unlocked
atomically. If a thread attempts to obtain a lock which is already taken, it is

33

5.1 The implementation 5 THREADS AND LOCKS

blocked and inserted into a list of threads waiting for the lock. When the lock
is released, a waiting thread is removed from the list and allowed to continue.
Using a Panda condition variable, a thread can wait for a longer period of time.
Other threads can signal the condition variable to wake up a single waiting
thread, or broadcast the condition variable to wake up all waiting threads. Each
condition variable is associated with a Panda lock, and the combination acts like
a monitor. Before an operation can be performed on a condition variable, the as-
sociated lock must be taken. If the operation blocks, the lock will automatically
be released.

panda lock *

lock count

lock owner *

panda condition *

Figure 28: The Java lock.

In addition to a Panda lock and condition variable, the Java lock contains a
thread identification to identify the owner of the lock, and a counter to record
the number of times the lock is acquired recursively.

When a thread tries to lock an object it checks the owner field of the Java
lock to see if it already owns the lock. If so, it is sufficient to increase the lock
counter. If it does not own the lock, it tries to acquire the Panda lock, blocking
if it is already taken, and sets the counter to one. When unlocking, the counter
is decreased. If the counter reaches zero, the Panda lock is released and the
owner field cleared. Otherwise the Panda lock remains locked.

The wait, notify and notifyAll methods can be implemented directly using
the Panda wait, signal and broadcast calls. A wait saves the lock counter and
calls the Panda wait on the condition variable in the lock, causing the Panda
lock to be released automatically. When the waiting thread is notified (by using
a Panda signal or broadcast), the lock is acquired and the counter restored.

34

6 GARBAGE COLLECTION

6 Garbage collection

Garbage collection is an essential part of a Java runtime system. The Java
language does not offer any way of explicitly removing objects. It is the task of
the garbage collector to detect which objects are no longer in use, and free the
memory occupied by these objects.

Before the memory used by a Java object can be freed, the garbage collector
must call the finalizer of the object. A finalizer is a special method finalize()
enabling an object to free external resources before it is removed, for example,
close a file, remove a window or flush a cache. Although every object in Java
has a finalizer, most objects directly inherit the empty finalizer from the Object
class. See [20] for a complete description of Java finalizers.

The overhead of the garbage collector can have a major impact on the per-
formance of a program. When very large numbers of objects are created, a
significant part of the execution time of the program is used by the garbage
collector. Some of this overhead can be reduced by collecting information about
objects at compile time. Section 6.3.1 describes the compiler support delivered
by Jecc to the garbage collector.

In addition to normal Java objects the garbage collector also has to deal with
object stubs. Object stubs are structures which, viewed by the program, look
and behave like normal objects, but don’t actually contain the data or methods
the real object contains. Object stubs are used to implement remote objects
(see Section 3.2) and could be used to implement other features, like persistent
objects.

6.1 Basic garbage collection techniques

Over the years a wide variety of garbage collection techniques have emerged.
See [25] for an overview of garbage collection techniques for procedural and
object-oriented languages.

An object is considered garbage if it is no longer reachable by the running
program via any path of reference traversal. Live objects are potentially reach-
able by the running program and are preserved by the collector. A garbage
collector consists of two parts:

1. Garbage detection, which distinguishes live objects from garbage.

2. Garbage reclamation, which removes unused objects.

Many variations of garbage collection are possible, given this basic two-part
operation. Two possible ways two implement garbage detection are reference
counting and tracing.

In a reference counting system, each object has an associated count of the
references to it. Each time a reference is added (e.g., copied by an assignment)
the counter is incremented. When a reference is destroyed the count is decre-
mented. If an object’s count reaches zero, the object has become unreachable,
and can be removed. In a tracing system the garbage collector periodically tra-
verses the references the program could traverse to determine which objects can
be reached. Objects not reached in this traversal are considered garbage and
are removed from memory.

35

6.1 Basic garbage collection techniques 6 GARBAGE COLLECTION

A problem with reference counting is efficiency. Each operation on a refer-
ence introduces overhead. Assignment of a reference implies that one object’s
count must be decreased while another object’s count must be increased. When
a reference is passed as a parameter to a function the count must be increased,
only to be decreased again when the function returns. Figure 29 shows the
overhead of the assignment of two references, A = B.

if (A '= null) {
decrease count of object referenced by A

}

if (B '= null) {
increase count of object referenced by B

Figure 29: Assignment overhead in reference counting.

Cycles are another problem with reference counting. Each object in a cycle
will always be referenced by at least one other object in the cycle. The reference
count of the objects in a cycle will never return to zero, even if none of the
objects is reachable from the program. The memory occupied by these objects
can never be reclaimed by simple reference counting. See [25] for an overview
of solutions to this problem.

A problem with tracing garbage collectors is the identification of references
in memory. The garbage collector must extract each reference to an object from
memory, to be able to mark the object as ’live.” One approach is conservative
garbage collection [7]. In a conservative garbage collector, all of the used mem-
ory is scanned. Each word in memory is tested to see if it could be a reference.
If a possible reference is found the referenced block in memory is marked and
considered ’live.” Note that if the word was actually a non-reference value, it
it possible for garbage to be considered ’live’, thus decreasing the efficiency of
the garbage collector. Although conservative garbage collection is easy to im-
plement and can be added to a system with little effort, the runtime overhead
is large. Another approach is to add compiler support to mark each reference in
memory, enabling the garbage collector to find each reference with little effort,
and preventing a non-reference value to be mistakenly interpreted as a reference.

Another problem with tracing garbage collectors is that the cost of garbage
collection is proportional to the amount of memory used. All live objects must
be identified and all garbage objects collected. If the number of objects in
memory is very large a collection pass could take considerable time. Incremental
garbage collectors attempt to solve this problem by interleaving the tracing with
the running program. After tracing a number of times, all live objects have been
marked and the garbage can be removed. The difficulty with incremental tracing
is that while the garbage collector is tracing out the graph of reachable objects,
the running program may mutate the graph. The change can cause the garbage
collector to 'skip’ a part of the graph. These ’skipped’ objects will be considered
garbage and removed (see Figure 30).

The incremental garbage collector must have some way of keeping track
of the changes made in the graph of objects between traces. See [25] for an
overview of algorithms used to solve this problem.

36

6 GARBAGE COLLECTION 6.2 Algorithm

1. GC starts scanning. 3. Program moves A

nulll nulll
GC GC

d@ﬂnul]l nulll
GC | E— GC

2. GC scanned 3 objects 4. GC done, A skipped

Figure 30: Graph mutation during garbage collection.

6.2 Algorithm

The garbage collection algorithm we use is based on the mark-sweep algorithm.
The mark-sweep algorithm is a tracing garbage collection algorithm which traces
all garbage in a single pass. The algorithm is named for the two phases that
are used to collect the garbage. In the mark phase, the object graph is traced,
marking all the live objects found. In the sweep phase, all unused objects are
swept from memory. We chose this algorithm because it is easy to implement
and, with sufficient compiler support, has adequate performance.

6.2.1 Garbage detection

The live objects are the objects that are reachable by the running program. To
find these objects, the root set must be determined first (see Figure 31). The
root set is the set of objects that are considered live at the start of the garbage
collection. This set includes all objects that do not have to be referenced to
stay alive, such as static objects, running threads, and objects referenced from
the stack by method variables and parameters. The root set can be used to find
all reachable objects.

root set = empty
for each object X {
if X is a thread {
add X to root set
for each object Y referenced from the stack of X {
add Y to root set
¥
}
if X is static {
add X to root set
}

Figure 31: Creating the root object set.

Each object in the root set is a reachable object. In addition, each object
referenced from a reachable object is also reachable. The set of live objects can

37

6.3 Implementation 6 GARBAGE COLLECTION

now simply be found by traversing every path of references from the root set.
Any object not reachable from the root set is garbage, because there is no way
the running program can reach that object. The space used by these objects
can now be reclaimed safely (see Figure 32).

alive set = empty
for each object X in root set {
add X to alive set
for each object Y referenced from X {
add Y to root set
}

Figure 32: Creating the live object set.

6.2.2 Garbage reclamation

After the garbage detection phase, we are left with a set of objects no longer
used by the program. For each of these objects, the garbage collector must
check if the object can safely be removed.

If an object has not been finalized yet, the garbage collector calls the object’s
finalizer and returns the object to the used object set. If the object has already
been finalized it is removed and the memory is reclaimed (see Figure 33).

dead set = (all objects not in live set)
for each object X in dead set {
if X is finalized {
remove X from memory
} else {
finalize X
add X to alive set

Figure 33: Collecting the unused objects.

Note that the object is not immediately removed after calling the finalizer.
It is possible for an object to be reachable again after finalization [20]. In the
finalize method, the object could have been assigned to some global reference
or passed as a parameter to some global object, returning it to the set of objects
reachable by the running program. Only if an object is finalized and unreachable
can it safely be removed. The finalize method will only be called once for each
object. It is the responsibility of the programmer to prevent irregular behavior
when a finalized object returns to the set of live objects. See [20] for the complete
description of Java finalizers.

6.3 Implementation
6.3.1 Compiler support

To reduce garbage collection overhead, information about objects is recorded
at compile time. To aid the garbage collector in determining the root set,
the location of global object references in the program is determined by the
compiler. The compiler produces an array containing pointers to the locations

38

6 GARBAGE COLLECTION 6.3 Implementation

of the static object references. All static objects can now be found at runtime
by simply scanning the entire array and checking each reference for an object
(i.e., not null). An example is given in Figure 34.

class Monkey {
static Monkey m;
static String s = "Banana';

r— - ——=-—- - - l | r— - - - - l
| static array +——» pointer 0 —— ref. m (null)
pointer 1
\.— —————— A
I L J

Figure 34: The static reference table.

When a class is compiled, the compiler checks several properties of the class
which have an effect on the way objects of this class are treated by the garbage
collector. The following properties are recorded in a special flag field in the
object :

e Does the object contain any references ?
e Does the object contain a trivial (empty) finalizer ?

e Is the object an array ?

These properties can be used by the garbage collector to optimize the col-
lection. An object without any references does not have to be scanned while
determining the set of live objects, since no other object can be reached from
it. An object with a trivial finalizer can be removed when it becomes unreach-
able, without calling the finalizer first. Because the finalize method is empty it
does not have any effect on the state of the program or the reachability of the
object. If an object is an array it will contain a block of data of a single type.
If this type is an object type, the compiler will register that the array contains
references. Only arrays containing references must be scanned by the garbage
collector.

If an object contains references, the location of each reference within the
object is recorded in a reference offset table for the class of this object. The
offset table is saved in the vtable of the object and therefore one table is shared
by all objects of the same type (see Section 3.2). When the live object set is
determined, the garbage collector knows the location of each reference within
each object. It is therefore not necessary to conservatively scan the entire object
for possible references (see Figure 35).

6.3.2 Detecting the garbage

To separate the garbage from the live objects the root set must first be de-
termined. In addition to the global object references retrieved from the static
reference table, running threads and local reference variables are also part of
the root set. The garbage collector uses the thread information saved when
the threads are started (see Section 5). The thread information contains the
location of the thread’s stack, and the location of its current stack pointer. This

39

6.3 Implementation 6 GARBAGE COLLECTION

class Monkey {

int valuel;

Monkey m;

int value2;

String s = "Banana";

int value3;

¥
offset object vtable offset table
0 vtable
offset table 28

24 int valuel 36
28 Monkey m
32 int value2 (null)
36 String s
40 int value3

Figure 35: The reference offset table.

allows the garbage collector to determine which part of the thread’s stack is in
use (see Figure 36). Since the garbage collector runs in a separate thread (see
Section 6.3.4), the current stack pointer of all other threads will be saved in
memory and are thus up-to-date.

Stack information structure

Stack base *

Stack top **

stack

stack top *

Panda thread information structure Panda thread stack

Figure 36: Stack information.

To find the objects referenced by local reference variables, all threads’ stacks
are scanned. Each word on a stack is checked to see if it contains an object
reference. Because all objects are recorded in a hash table the cost of scanning
the stacks is reduced.

Note that the stack is scanned conservatively, meaning that each word on
the stack which could be an object reference is treated as such. It is possible
for a normal integer value to mistakenly be interpreted as an object reference.
This will affect the efficiency of the garbage collector. Some objects will be
added to the root set even if they are not reachable by the running program.
The correctness is not affected however. The size of stacks in Java programs is
usually quite small, because arrays and objects are allocated on the heap. The

40

6 GARBAGE COLLECTION 6.3 Implementation

extra time involved in conservatively scanning the stack is therefore limited.

A root list can now be created containing the root set by adding all static
objects and thread objects to the list and scanning the stack of each thread.
Each object inserted into the root list is marked by setting a few bits in its flag
field (see Section 3.2). By checking these bits before inserting the object, double
insertions are prevented. Each object inserted into the root list is removed from
the object hash-table.

After the root list is created, the live set of objects is determined by scanning
all references in the objects in the root set. Because each object contains a
reference offset table (see Section 6.3.1) the object does not have to be scanned
conservatively. Each scanned object is removed from the root list and added
to a live object hash-table. Each referenced unmarked object is marked. If
the referenced object contains any references itself it must be scanned and is
added to the root list. Otherwise it can be added to the live object hash-
table immediately. This process continues until the root list is empty and each
reachable object has been scanned. The live object hash-table now contains all
reachable objects. All object remaining in the object hash-table are garbage and
can be collected.

6.3.3 Removing the garbage

Removing the garbage now consists of traversing the object hash-table to find
the remaining objects. If an object is already finalized or has a trivial finalizer
(an empty finalizer directly inherited from Object) it can be removed from
memory. Otherwise the object’s finalizer is called and the object is added to
the live object hash-table. If it remains unreachable it will be removed on the
next garbage collection pass.

Object stubs will be removed after calling a special stub finalizer. A stub
finalizer is a function which is attached to the stub when it is created. The stub
finalizer serves the same purpose as a normal Java finalizer; it enables the stub
to free external resources. A stub for a remote object, for instance, has a stub
finalizer which notifies the real remote object that the stub is being deleted (see
Section 7).

When a garbage object is removed, the memory used is not released imme-
diately. The garbage object is inserted into an object cache. This object cache
contains unused objects, sorted by size. When a new object is created, the
cache is checked for an unused object of the appropriate size. If such an object
is found, it is reused by initializing its data to the proper values. This way the
cost of actual memory allocation is saved. When the system runs out of memory
the object cache is cleared, enabling the underlying memory allocation system
to merge the unused objects back into the heap (See Section 8 for benchmarks
of the object cache).

6.3.4 Interaction with the user program

The garbage collector runs in a separate thread. This thread is started when the
runtime system is initialized at the start of the program’s execution, and sleeps
until it is signaled by the program. The program can either directly start the
garbage collector by calling System.gc() or indirectly by creating a new object.
When a new object is created the new function tests if the amount of memory

41

6.3 Implementation 6 GARBAGE COLLECTION

used has passed a arbitrarily chosen threshold. If so, the garbage collection
thread is signaled and the currently running thread of the program waits for
the garbage collection thread to finish. At the end of garbage collection, a new
threshold will be calculated, and the suspended thread is allowed to continue.

Because the garbage collector is running in a multi-threaded environment,
the mark phase of the garbage collection must be atomic. Otherwise, while
the garbage collector is tracing the graph of reachable objects, a thread of the
running program may mutate the graph. This problem is similar to the problems
with incremental garbage collection. To prevent this problem, no other thread
is allowed to run during garbage detection, to insure that no object references
are changed. Once all live objects have been identified, the program threads
are allowed to run again. The garbage reclamation does not have to be atomic,
because only the garbage collector can reach the garbage objects.

42

7 DISTRIBUTED GARBAGE COLLECTION

7 Distributed garbage collection

In a distributed system, local garbage collection is not enough, since remote
references cross machine boundaries. When an object is only referenced by
remote references from other machines, the local garbage collector may conclude
that the object is no longer reachable, and remove it from memory. It is the
task of the distributed garbage collector to prevent the local garbage collector
from removing remote objects while they are still in use on other machines.

7.1 Algorithm

The distributed garbage collector uses reference counting to record the ’live-
ness’ of the remote objects. Reference counting is one of the easiest distributed
garbage collection algorithms to implement. Note that the problem with cycles
encountered in local reference counting is also present in distributed reference
counting. The distributed garbage collection algorithm described here is not
able to detect unused distributed cycles. See [9] and [13] for more advanced
implementations of distributed garbage collection.

When a remote object is created its reference count is initialized to one. If
the reference to the remote object is sent to another machine, the remote object
is notified by sending it a message, and its reference count increased. If an
object containing a remote reference is removed, the remote object is notified
again and its reference count decreased. When the reference count of an object
has reached zero, the object is released by the distributed garbage collector, and
will be removed from memory by the local garbage collector on its next pass.

A problem can arise when a reference count to an object reaches zero while
a reference to the object is still contained in a message somewhere. When this
reference in transit reaches its destination, the object it references is no longer
valid (see Figure 37).

Fr— = = r— = = Fr— == Fr— ==

C— -
|
Lol
| I I
[ref. B T -
rel. B
| |
| |
1. Object A sends ref. B to C. 2. Object A removes its ref. B. 3. Object B is already deleted.

Figure 37: A reference in transit.

To ensure this problem will not occur, the reference count of an object must
include all references in transit. This can easily be achieved by increasing the
reference count of a remote object before the remote reference is sent to another
machine (see Figure 38). A message is sent to the owner of the remote object to
increase the reference count. When the reference count has been increased, the
owner acknowledges the message. The remote reference can now be sent to the

43

7.2 Implementation 7 DISTRIBUTED GARBAGE COLLECTION

other machine. Note that this solution has a negative effect on the performance,
because an extra message is required for every remote reference sent to another
machine.

1. Object A send INC to B. 2. Object A sends ref. B. to C

T
|
| I I

r 5 L= ==

ref B._

F—T—nA

| |

| |

L - Lo

3. Object A removes its ref. B. 4. C now contains the ref. B.

Figure 38: A reference in transit with increased count.

7.2 Implementation

The distributed garbage collector is a combination of native and Java code.
The native code is used to implement remote references and the communica-
tion between the distributed garbage collectors. The Java code implements the
administrative part of the distributed garbage collection.

7.2.1 Java layer

The distributed garbage collector maintains a static hash table, in which it
stores information about the remote objects located on this machine. For each
of the remote objects a RemoteObjectCounter object is created and inserted
into the hash table. The RemoteObjectCounter maintains the reference count
for the remote object and a reference to the remote object. Because the hash
table containing the RemoteObjectCounter is static, it will be included in the
root set of the local garbage collector. The hash table and all objects reachable
by it will therefore not be considered garbage.

The distributed garbage collector has a number of methods called by the
native layer when a message is received, as shown in Table 2.

44

7 DISTRIBUTED GARBAGE COLLECTION 7.2 Implementation

method function

addRemoteObject(Object 0) | Add remote object o to the hash table.
addRemoteUser(Object o) Increase the reference count for remote object o.
removeRemoteUser(Object 0) | Decrease the reference count for remote object o.

Table 2: Methods in the distributed garbage collection class.

When the reference count in a RemoteObjectCounter reaches zero it is re-
moved from the hash table. Because the remote object is no longer reachable
from the static hash table, it will be removed by the local garbage collector
on its next pass. See appendix A for the source code of the Java layer of the
distributed garbage collector.

7.2.2 Native layer

The native layer uses object stubs (see Section 3.2) to represent remote objects
on other machines. A remote object stub contains the address of the remote
object. A remote object address consists of a CPU number and the memory
address of the object on the owner machine (see Figure 39).

object stub

object reference

cpu number

Figure 39: The remote object stub.

The stub finalizer added to the remote object stub will be called by the local
garbage collector when the object stub is removed. The remote object stub will
be passed as a parameter. The finalizer uses the remote object address in the
stub to send a remove message to the owner CPU (see Figure 40).

void remote_stub_finalizer(stub s)

{
create dgc message
message—->opcode = remove;
message->src = this CPU
message—>data = s->object;
send message to s—>cpu;

}

Figure 40: The remote object stub finalizer.

When a remote object stub is marshalled to be sent to another machine, a
similar function is called to send an add message to the owner CPU. The owner
CPU will send an acknowledgement when the reference count of the object is
increased, after which the remote object stub can safely be sent to another
machine.

When a CPU receives a message for the distributed garbage collector, it
decodes the message and calls the appropriate Java method. The Java layer of

45

7.2 Implementation

7 DISTRIBUTED GARBAGE COLLECTION

the distributed garbage collector can then update the information on the remote

object (see Table 3).

opcode | Java method to call | meaning

add addRemoteUser() Increase reference count.

remove | removeRemoteUser() | Decrease reference count.

collect | System.gc() Request to start local garbage collection.

Table 3: Possible opcodes in distributed garbage collection messages.

The collect message is used to request the local garbage collector to start
on a specific CPU. This can be used to force all machines to start the local
garbage collector at the same time, which may improve the efficiency of some

distributed programs.

46

8 RESULTS

8 Results

8.1 Experimental setup

The system we have tested on has been designed by the Advanced School for
Computing and Imaging (ASCI).! It is called DAS, for Distributed ASCI Super-
computer. The main goal of the DAS project is to support research on wide-area
parallel and distributed computing. (Additional information on the system can
be found at http://www.cs.vu.nl/ "bal/das.html).

The platform is a homogeneous cluster of 128 Pentium Pro processor boards,
running the BSD/OS (Version 3.0) operating system from BSDI. Each node
contains a 200 MHz Pentium Pro, 128 MByte of EDO-RAM and a 2.5 GByte
IDE disk. The Pentium Pro processors have an 8 KByte, 4-way set-associative
L1 instruction cache and an 8 KByte 2-way set-associative data cache. The L2
cache is 256 KBytes large and is organized as a 4-way set-associative, unified
instruction/data cache.

All boards are connected by two different networks: Myrinet [6] and Fast
Ethernet (100 Mbit/sec Ethernet). We have used both the Myrinet and Fast
Ethernet network for all Jcc performance tests, and only the Fast Ethernet for
the other Java implementations, including JavaParty.

Myrinet is a 1.28 Gbit/sec network. It uses the SAN (System Area Network)
technology, consisting of LANai-4.1 interfaces (with 1 MByte SRAM memory)
connected by 8-port Myrinet switches. The Myrinet switches are connected
using a 2-dimensional torus topology (i.e., a grid with “wrap-around”). The
Fast Ethernet network uses SMC EtherPower 10/100 adaptors, KTT Networks
KF1016TX hubs, and a single NuSwitch FE-600 switch. The Fast Ethernet
network uses segments with 12 or 14 processors each, connected by the switch.
The switch has a delay of about 12 microseconds for small packets. The entire
system is packaged in a single cabinet and was built by Parsytec (Germany).

Panda [4] on DAS uses Myrinet for communication, using the LFC [5] mes-
sage passing layer. LFC provides packet unicast, packet broadcast, fetch-and-
add, interrupt management and a microsecond timer. Panda is a portable sys-
tem for parallel and distributed programming. It provides threads, messages,
Remote Procedure Call, and group communication. The Panda RPC interface
has a latency of 30 microseconds, and a throughput of up to 50 MByte/s with
empty reply messages, both on the Myrinet network.

On the DAS we tested the following systems:

e Java sockets on Fast Ethernet

e Java RMI on Fast Ethernet

JavaParty on Fast Ethernet

e Jcc on Fast Ethernet and Myrinet

For Java sockets, Java RMI and JavaParty the SUN Java interpreter was
used (JDK version 1.1.5). JavaParty version 0.97 (August 1997) was used.
Unfortunately, we do not have a full Myrinet port of Java Sockets, RMI, and

IThe ASCI research school is unrelated to, and came into existence before, the Accelerated
Strategic Computing Initiative.

47

8.2 Low level benchmarks 8 RESULTS

JavaParty yet, so the measurements with these systems had to be done using
Fast Ethernet and TCP /IP. We have also tried the Kaffe JIT compiler version
0.92, but this version did not support RMI.

8.2 Low level benchmarks
8.2.1 Low level RMI benchmarks

In order to test the performance of the remote method invocation implemen-
tation, some low level benchmarks were done. The first benchmark is a Java
program which measures the throughput for a remote method invocation with
an array of a primitive type as argument, and no return type. The reply message
is empty, so the one-way throughput is measured. In Jcc, all arrays of primitive
types are serialized with a memcpy(), so the actual type does not matter. The
resulting measurements are shown in Figure 41, the actual data in Appendix
B.1.

60 T T T T T T T T T

Panda Myrinet bare <—
Panda Myrinet copy -+-

Jcc myrinet -53--

Panda Fast Ethernet bare -
50 Panda Fast Ethernet copy -4--
Jcc Fast Ethernet -~

X

100 200 300 400 500 600 700 800 900 1000

Figure 41: Network throughput in Mbytes/s.

The highest line in the figure the measured throughput of the Panda RPC
interface, with the same message size as the remote method invocation. Second
comes the throughput of the Panda system, with memory-to-memory copies on
both the sending and receiving side. This simulates the Jcc RMI implementa-
tion, where, on the sending site, the array has to be copied from the Java array
object to the serialization buffer, and on the receiving side from the deserializa-
tion buffer into the newly created Java array.

The measurements show that the memory-to-memory copies have a large
impact on the performance on the Myrinet network. For array sizes of a hundred

48

8 RESULTS 8.2 Low level benchmarks

kilobytes or more, the throughput is more than halved by the two memory copies
on the Myrinet network. On the slower Fast Ethernet network, the impact on
performance is much less. The measurements also show that the throughput of
Jcc at the Java program level is not much lower than the Panda throughput with
two buffer copies. The throughput difference can be explained by the overhead
of packing and unpacking the call headers, and the creation of the Java array
object.

For the second benchmark, we have measured the time an empty remote
method invocation without any arguments takes. Also examined were calls
with one to three empty Java objects as parameter. The results are shown in
Table 4.

Ttem / parameters none | 1 object | 2 objects | 3 objects
Buffers on CPU 0 1.5 1.5 1.8 1.7
Buffers on CPU 1 1.1 1.1 1.3 1.4
Marshalling on CPU 0 0.8 0.9 1.4 1.9
Unmarshalling on CPU 1 1.8 4.2 5.7 6.9
Class descriptor search — 1.5 2.9 4.4
Object creation — 1.6 3.0 4.4
Panda RPC 30.0 30.0 30.0 30.0
Total 35.2 40.7 46.1 50.7

Table 4: Jcc remote call performance in microseconds.

All measurements were done by inserting timing calls, using the Pentium Pro
performance counters. These counters have a granularity of 5 nanoseconds. An
empty remote method invocation takes about 35 microseconds when using Jecc
over Myrinet. Only 5 microseconds are added to the latency of the Panda RPC,
which is 30 microseconds. When passing primitive data types as a parameter
to a remote call, the latency grows with less than a microsecond per parameter,
regardless of the type of the passed parameter.

When passing an object as a parameter to a remote call, the latency does
increase considerably, as now some tables must be created by the runtime system
in order to detect possible cycles in the passed object. The measurements show
that almost all time that is taken by adding an object parameter is spent at
the remote side of the call, deserializing the call request. The marshalling of
the request on the calling side, however, is affected much less by the object
parameters.

The Empty remote call time for Jcc over Fast Ethernet is 230.2 microsec-
onds, while Java RMI takes 1827 microseconds, so Jcc RMI is about 8 times
faster. On Myrinet, an empty Java RMI takes 1228 microseconds, while Jcc
takes 35, Jcc RMI is thus a factor 35 faster. The relative Java RMI serialization
overhead becomes more significant when the latency of the network decreases.
For distributed programming, the bad performace of the remote method invoca-
tion is not really a problem, but for paralell programming, fast communication
is critical.

Thread creation overhead is 16.0 microseconds with the Jcc runtime, so
not starting a thread for every call does help a lot. The low unmarshalling
time for empty call is due to not creating the tables for duplicate detection.
Measurements show that this saves about 2 microseconds for an invocation

49

8.2 Low level benchmarks 8 RESULTS

with primitive types as parameters, so it is clear that this optimization helps.

The class descriptor search will find the meta class data for the class of the
object parameter, given the unique class identifier. The meta class contains
the information which is constant for the class. Amongst other fields, a pointer
to the virtual method table of the object is contained in the meta class. This
pointer is needed for object creation, as it must be stored in the created object
header.

8.2.2 Garbage collection

We have used the following programs to test the performance of the garbage
collection, object and array creation and the object cache.

e G(CTest!l measures the time required to create 100,000 objects without
saving their references.

e (GCTest2 measures the time required to create a linked list of 100,000
objects.

o G(CTest3 creates a linked list of 100,000 objects and measures the time
required to collect these objects.

o GCTest4 creates a linked list of 10,000 objects. The reference to the list
is released and the garbage collector called. This is repeated 100 times,
and the total time require is measured.

e UCSD is the Garbage collection test of the Java Benchmark created at
the University of California [11]. This test creates 200,000 objects, each
containing an array of a semi-random size between 1 and 4000 bytes.

o IDA is the Tterated Deepening A* application described in Section 8.3.3.

The garbage collection threshold used by our garbage collector in these pro-
grams is 4 megabytes. The maximum amount of memory the program was
allowed to use was 32 megabytes. All test except IDA use a finalizer in the test
object created to count the number of objects removed.

GCTestl | GCTest2 | GCTest3 | GCTest4 UCSD IDA
Java Interpreter
Time (sec) 0.75 34.70 0.74 51.49 25.17 | 274.43
Objects removed 97816 0 100000 9992004 | 198247 -
Kaffe JIT
Time (sec) 0.30 0.31 0.71 212.23 - -
Objects removed 07 07 07 07 - -
Jcc compiler
Time (sec) 0.38 0.52 0.10 4.50 8.49 79.02
Objects removed 0 0 100000 990000 198821 -
Jcc compiler (no cache)
Time (sec) 0.38 0.50 0.10 4.04 8.57 | 100.52
Objects removed 0 0 100000 1000000 | 199071 -

Table 5: Test results.
Table 5 shows the measured time and objects removed is all the programs.

Note that Kaffe does not seem to call the finalizers of the objects and fails to
run the UCSD and IDA tests (it threw a ” OutOfMemoryError” exception). The

50

8 RESULTS 8.2 Low level benchmarks

Java interpreter was the only one able to reuse the objects in GCTestl. Our
garbage collector was not invoked, because the garbage collection threshold was

not passed.

GCTestl GCTest2 GCTest3 GCTest4 UCSD IDA
GC Passes 0 1 3 100 120 399
Objects/arrays :
Used 100,042 | 100,042 | 100,108 | 1,000,042 | 400,222 | 26,382,169
Created 100,042 | 100,041 | 100,107 20,041 5.255 72.146
Removed 0 1| 100,001 990,001 | 395,972 | 26,362,461
Total time required: (sec)
GC pass - 0.12 0.28 1.91 0.81 20.18
Creating root set - 0.00 0.00 0.01 0.01 0.14
Mark phase - 0.12 0.11 0.01 0.02 2.49
Sweep phase - 0.00 0.17 1.90 0.78 17.55
Average time required: (msec)
GC pass - 117.89 92.11 19.14 6.82 50.57
Creating root set - 0.13 0.15 0.08 0.11 0.34
Mark phase - 115.28 36.15 0.09 0.17 6.23
Sweep phase - 2.47 55.79 18.97 6.54 44.00

Table 6: Garbage collector performance

Table 6 shows the performance of the garbage collector for each of the test
programs. Note that in GCTest1 the garbage collector was never invoked. Only
in the last three programs, GCTest4, UCSD and IDA, is the garbage collector
invoked frequently. In GCTest4 and IDA this is caused by the large number of
objects created, and in UCSD by the size of the objects created (arrays with
an average size of 2431 bytes). In UCSD the number of objects in memory at
garbage collection time is relatively small compared to GCTest4 of IDA. This is
reflected in the time required for a garbage collection pass: 6.82 milliseconds in
UCSD compared to 50.57 milliseconds in IDA and 19.14 in GCTest4. Most of
this time is actually spent in the sweep phase, removing the objects, because the
average number of objects removed in each sweep phase is very large: almost
10 thousand objects for GCTest4, and over 66 thousand objects for IDA. The
time required to create the root set and mark the live objects is usually much
smaller. Only when most objects in memory are ’alive’, does the mark phase
become expensive. This can clearly be seen in GCTest2 were the mark phase is
actually the most expensive part of the garbage collection.

Table 7 shows the overhead of object and array creation, and the performance
of the object cache. Because only GCTest4, UCSD and IDA use the garbage
collector frequently, they are the only programs using the object cache. The
cache hit ratio in these three programs is high, about 98%. Most of the objects
are continually reused. The average time required to create a new object or
array varies in each of the programs. When a new object or array is created,
the entire object or array is zeroed by using memset(). The time required
depends on its size. The arrays created in UCSD have an average size of 2431
bytes, while the arrays in IDA have an average size of only 16 bytes. This is
clearly reflected in the time required to create and zero the array. When objects
or arrays are retrieved from the object cache they must be zeroed again to
remove the old data. This increases cost of retrieving an array from the cache.
Nevertheless reusing objects and arrays from the cache is cheaper than creating
new ones. Note that the single retrieval of an object from the cache in GCTest2
and GCTest3 is very expensive, this is probably due to caching effects. When

51

8.3 Applications 8 RESULTS
GCTestl GCTest2 GCTest3 GCTest4 UCSD IDA
Objects/arrays :
Used 100,042 100,042 100,108 | 1,000,042 | 400,222 | 26,382,169
Removed 0 1 100,107 990,001 | 395,972 | 26,362,461
Created object/arrays
Total 100,042 100,042 100,107 20,041 5,255 72,146
Objects 100,028 100,027 100,063 20,027 3,472 10,338
Arrays 14 14 44 14 1,783 61,808
Average 'new’ time (usec)
Object (new) 3.70 3.68 3.69 3.60 4.78 6.29
Array (new) 21.13 23.18 8.29 22.92 94.30 6.27
Object (cached) - 5.03 13.59 1.12 1.29 1.52
Array (cached) - - - - 32.88 1.38
Total new’ time (sec) 0.37 0.37 0.37 14.48 6.96 37.27
Cache performance
Hits 0 1 1 980,001 | 394,967 | 26,310,023
Misses 100,042 100,041 100,107 20,041 5,255 72,146
Hit rate (%) 0 0 0 98.00 98.69 99.73
Retrieved from cache
Arrays 0 0 0 0 | 198,317 | 22,551,585
Objects 0 1 1 980,001 | 196,650 3,758,438

Table 7: Object creation performance.

the object cache is used infrequently, each access will cause a cache miss on the
machines cache.

8.3 Applications
8.3.1 Successive overrelaxation

Successive Overrelaxation is an iterative algorithm for solving Laplace equations
on a grid. The sequential algorithm works as follows. For all non-boundary
points of the grid, SOR first calculates the average value of the four neighbors
of the point:

1 1 l,c—1 -1 1 —1l,c—-1
ovtr,e) = A Lot gl £ Lo 1 4ol ~ Tt gl ~Le=1]

Then the new value of the point is determined using the following correction:

glr, el = glr,] + w(av(r, ¢) - g[r, c]) (2)

w is known as the relazation parameter and a suitable value can be calculated
in the following way:

2
w= e P
1 + \/1 — (COS totalcolummns tcos totalrows)2

3)

2

The entire process terminates if during the last iteration no point in the grid
has changed more than a certain quantity.

The parallel implementation of SOR is based on the Red/Black SOR al-
gorithm as used in Orca [2]. The grid is treated as a checkerboard and each
iteration is split into two phases, red and black. During the red phase only the
red points of the grid are updated. Red points only have black neighbors and
no black points are changed during the red phase. During the black phase, the
black points are updated in a similar way. Using the Red/Black SOR algorithm

52

8 RESULTS 8.3 Applications

the grid can be partitioned among the available processors, each processor re-
ceiving a number of adjacent rows. All processors can now update different
points of the same color in parallel. Before a processor starts the update of
a certain color, it exchanges the border points of the opposite color with its
neighbor. After each iteration, the processors must decide if the calculation
must continue. Each processor determines if it wants to continue and sends its
vote to the first processor. The calculation is terminated only if all the proces-
sors agree to stop. This means a processor may continue the calculation after
the termination condition is reached locally.

Figure 42 shows a parallel SOR using four processors. Each processor com-
municates with its neighbors using two shared buffer (bin) objects. A bin object
can only contain one row of the grid. If a processor attempts to insert a row
into a filled bin, it blocks until the bin is emptied by the other processor. After
the bin is read, the blocked processor continues and inserts the new row into
the bin. If a processor attempts to read from an empty bin, it blocks until the
bin is filled by the other processor.

0=
(cpuo) (cpu1) (cruz2) (crus)
rid 0 grid 1 rid 2 grid 3

Figure 42: Parallel SOR.

The application was implemented using the four platforms (Java sockets,
RMI, JavaParty and Jcc) and tested on the DAS processor pool, using grid
sizes of 512x512, 1024x512 and 2048x512 on 1, 2, 4, 8, 12, 16, 24 and 32 nodes.
Due to some problems with the runtime system, the JavaParty version did not
run on 24 or 32 nodes.

Note that only the Jcc version was tested using both Fast Ethernet and
Myrinet. The other platforms use Fast Ethernet for communication.

Tables of the measured values are found in Appendix B and show the total
execution time, speedup, calculation time, and the percentage of the execution
time spent in communication code, for the programs on the different platforms.

As can be expected, the programs compiled with the Jcc compiler are signif-
icantly faster than any of the interpreted programs. For example, the 2048x512

53

8.3 Applications 8 RESULTS

SOR on a single processor takes 1687.1 seconds using the Java sockets version,
while the Jcc version only takes 390.0 seconds, approximately 4.3 times as fast.
In Figure 50, the calculation time required for 2048x512 SOR on 16 nodes is
shown. Note that the Jcc Myrinet version of SOR is faster than the Jcc Fast
Ethernet version. Since Myrinet is a switched network, collisions do not occur
when the number of messages increases. Fast Ethernet, however, does suffer
from collisions. This can be seen clearly in Figure 43. The speedup is computed
relative to the same program on a single CPU.

SOR speedup

35 T T T T T T T T T T T T T T T T

perfect <-—
sockets —+z

30

25

20 -

speedup

15 |

10 |

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
number of processors

Figure 43: Speedup for 2048x512 parallel SOR

The speedup of Jcc Fast Ethernet collapses when more than 16 nodes are
used. As can be seen in Figure 44 the Jcc Fast Ethernet and Jcc Myrinet
versions perform equally well on less than 16 nodes. When more than 16 nodes
are used, the execution time of Jcc Fast Ethernet approaches the execution time
of the interpreted Java sockets version, indicating that the network performance
is the problem. The Jcc Myrinet version does not suffer from this problem and
shows a good speedup on all tests.

Note that JavaParty performs better than RMI, even though JavaParty uses
RMI to implement its communication. This is caused by the different imple-
mentation of the communication of SOR in JavaParty and the ’hand crafted’
RMI version. The code generated by the JavaParty compiler is more efficient.
The sockets version shows the best speedup of the interpreted versions, although
the speedup on 32 nodes is only 17.5. Because of its good performance on fewer
nodes, the Jcc Fast Ethernet version has the worst speedup on 32 nodes, only
3.9. Due to the advantages of the fast switched network, the Jec Myrinet version
performs the best; a speedup of 27.3 on 32 nodes.

54

8 RESULTS 8.3 Applications

time (s)

SOR execution times

1800 T T T T T T T T T T T T T T T T
sockets —<—
RMI —+-

1600 | JavaParty -8---

Jcc (Fast Ethernet) -
Jcc (Myrinet) -&--

1400

1200

1000

800

600

400

200

0 1 1 1 L;;% B S i Wb sl e *7;1;'**r—*¢* ST Ty S SRS 'Y

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
number of processors

Figure 44: Execution time for 2048x512 parallel SOR

55

8.3 Applications 8 RESULTS

8.3.2 Traveling Salesperson Problem

We have implemented a replicated workers style parallel program for the Trav-
eling Salesperson Problem (TSP), which uses one server (that hands out jobs)
and several clients (that execute jobs). TSP is a well known graph searching
problem, in which one has to find the shortest path that visits all nodes (cities)
exactly once. All nodes share one JobQueue and one global minimum path
length, which is replicated on all client CPUs. Jobs consist of a partial path
of cities. It is up to the clients to examine all possible paths, beginning with
the partial path in the job. If a client finds a better path, the global minimum
must be updated. A lower minimum allows the clients to prune more paths, so
it is important to inform all processors of the new minimum as fast as possible,
in order to avoid unnecessary calculations. This is why minimum updates are
broadcast. When a job is finished, the client asks the server for a new one. If
all jobs are done, the server may print the global minimum, which is now the
length of the shortest possible path.

This approach is nondeterministic, because the calculation time at a node
depends on the global minimum, which may be updated by all nodes. So the
time a job takes, depends on the speed of the other nodes. If a fast node happens
to find a low minimum in a short time, a large part of the search tree can be
pruned. This might influence the measurements. This can be circumvented,
however, as the algorithm can easily be made deterministic. All that has to
be done, is to initialize the global minimum with the shortest path that can
be found. No client will be able to find a path shorter than the minimum, so
minimum updates will never be done. Measured was the deterministic version
of the algorithm, with an input file which contained fifteen cities.

The measurements are shown in Figures 45 and 46. The actual times that
were measured are shown in Table 25. We did not measure TSP and IDA*
execution times on more than 16 machines, because the problem size is too
small. TSP runs for less than three seconds on 16 processors with Jec, IDA*
for less than seven. Also, JavaParty did not start on more than 16 CPUs.

The Jcc version of sequential nondeterministic TSP is about seven times
faster than the interpreted Java version. This makes it more difficult to get the
same speedups with Jcc as for instance the socket version has, because the Jcc
version of program runs much shorter. In this shorter time, the same amount of
communication has to be done. The Jcc version is, however, still amost seven
times faster than the sockets version and more than fourteen times faster than
the JavaParty version on sixteen CPUs, all on Fast Ethernet.

On one CPU, the Jcc version is twelve times faster than the JavaParty ver-
sion. The bad speedup of the JavaParty version is partly due to the underlying
Java RMI system, which has about the same speedup. Still, the Java RMI ver-
sion is about 1.7 times faster than the JavaParty version. This can be explained
by the recursive remote call problem, as described in Section 4.2.3. A part of the
TSP program source is shown in Figure 47. The “calculateSubPath” method is
a recursive method that implements the TSP problem. Because it is declared
inside a remote class, call by value is used to call the method. It has only two
integers and a small integer array of at most fifteen (i.e., the number of cities)
elements. Due to the slow serialization mechanisms in Java, especially for ar-
rays, as described in Section 4.3.3, the overhead to the recursive call is high.
The measurements indicate that both TSP and IDA*, which is also recursive

56

8 RESULTS 8.3 Applications
deterministic TSP execution times
450 T T T T T T T
sequential <—
sockets -+~
400 + RMI -8--
JavaParty -
Jec Fast Ethernet -2
350 |- Jec Myrinet - |
300 R
- 250 i
)
[}
£
= 200 —
150) i
Dx b N
100]
*\\\\\H_\ .
B T
50 TR e -
. B e
TN T B A, L
0 I T e ™ L
2 4 6 8 10 12 14 16
number of processors
Figure 45: TSP execution time in seconds.
deterministic TSP speedup
16 T T T T T T T
linear speedup —<—
sockets —+---
14 RMI -8--
JavaParty -
Jcc Fast Ethernet 4~
Jcc Myrinet -
12 |
10 |
o
p=}
3 8
[
(=X
2]
6 -
4 -
2 b a -
B
O 1 1 1 1 1 1 1

6 8 10 12 14 16
number of processors

Figure 46: TSP speedup.

57

8.3 Applications 8 RESULTS

public remote class Client extends RemoteThread {
// some methods and variables...

void calculateSubPath(int hops, int length, int[] path) {
int me, dist;

if (length >= min) return;

if (hops + 1 == nrCities) {
if (length < min) {
minimum.set (length);
min = length;
¥
return;

}

// Path really is a partial route.
// Call calculateSubPath recursively for each subtree.
me = path[hops];

for(int i=0; i<nrCities; i++) {
if ('Server.present (i, hops, path)) {
path[hops+1] = i;
dist = distanceTable.distance(me, i);
calculateSubPath(hops+1, length+dist, path);

}

// more methods...

Figure 47: Recursion in a remote class.

(explained in Section 8.3.3), suffer badly from this problem.

Because this performance problem was noticed, we introduced the local mod-
ifier in Jec, described in Section 4.2.3. When tried, it turned out that the ver-
sions of TSP and IDA* with the local modifier, where call by reference is thus
used for the recursive method call, ran at the same speed as the version where
the calls were marshalled, and thus call by value was used. This is remarkable,
because more code is executed. This is probably due to caching effects, but
requires future investigation. The local modifier probably will increase perfor-
mance when more complex data structures are passed.

58

8 RESULTS 8.3 Applications

8.3.3 Iterative Deepening A*

IDA* is an abbreviation for Iterative Deepening A*, which is a combinatorial
search algorithm. IDA* was described by R.E. Korf [14] and integrates itera-
tive deepening with the heuristic control of A* to obtain linear bounds for a
heuristic search [16]. A parallel, asynchronous version of IDA* is described in
[19]. We started with an existing IDA* version in Orca, described in [3]. We
use the algorithm to solve random instances of the 15-puzzle, and as we want a
deterministic algorithm, all solutions of a particular length are examined.

The application, like TSP, uses a job queue and a shared variable containing
the number of solutions found so far. One important difference between the IDA
and TSP implementations, however, is that with IDA, all clients can generate
new jobs while calculating. The jobs vary widely in complexity, so load balancing
is of much more importance than with TSP. The job queue is distributed over
all nodes, and work stealing is used to balance the load.

The order of the jobs in the queue is important, because jobs are split up in
parts, which are put back at the tail of the queue. So, at all times, the largest
jobs are at the front of the queue. Whenever a client tries to get a job locally,
the job queue makes sure it gets a small one. When a client is stealing a job
from another node, it wants a large one, so it won’t have to steal again soon, as
this is an expensive operation.

The work stealing algorithm works as follows. First a node looks in its own
queue for a job. If there is a job, the node gets it, in LIFO order. If a node
does not have a job in its queue, it tries to steal a job from the other clients, in
FIFO order. When there are N clients, only log(N) queues are checked, in order
to keep the algorithm scalable. When no other investigated client had any jobs
left, the stealing node must tell the master it is idle. When all clients are idle,
and no solutions are found, we start over with a larger bound. Every time a
client adds a job to its local queue, it must announce this to the master CPU,
which can then inform all idle clients.

In contrast to the TSP implementation, with our IDA* implementation, we
do calculate on the master CPU. This makes the implementation a little harder,
but it makes more sense, as the job queue is no longer centralized and residing
at the master, but distributed. As a result, the master has less work to do than
for TSP, making it worthwhile to participate in the calculation of boards.

The sequential Jcc version is about 3.5 times faster than the Java version,
as shown in Table 27. Figures 48 and 49 show that the Jcc version of IDA*
also has the best speedup. This is remarkable, because the Jcc version of the
program runs only for about seven seconds on sixteen CPUs.

Not only does IDA* only give an indication of RMI performance, it is also
a stress test for the garbage collector (see Section 8.2.2).

To give an overview, the execution times of all implemented parallel pro-
grams is shown in Figure 50.

59

8.3 Applications 8 RESULTS
IDA execution times
600 T T T T T T T
sequential <—
sockets -+~
RMI -&--
) JavaParty -
500 = Jcc Fast Ethernet -2
Jcc Myrinet -
400 - g
z
) 300 8 B
E b
200 1
100 g .
e Bl]
ey
********************* T,
0 1 1 [e —— I
2 4 6 8 10 12 14 16
number of processors
Figure 48: IDA* execution time in seconds.
IDA speedup
16 T T T T T T T
linear speedup —<—
sockets -+---
14 RMI -8-- -
JavaParty -x
Jcc Fast Ethernet -4-—-
Jcc Myrinet -
12
10 |-
o
p=}
3 8 |
[
(=X
2]
6 -
4 B P
s .
e B
’/{’
2 | A) i
. .-
@
O 1 1 1 1 1 1 1
2 4 6 8 10 12 14 16

number of processors

Figure 49: IDA* speedup.

60

8 RESULTS 8.3 Applications

250,0

200,0
m
T
c

8 1500
Q
L
)
E
c
S

5 100,0
o
Q
X
)

50,0

0,0 -
TSP IDA SOR
application
B Sockets BRMI []JavaParty [0Jcc (Fast Ethernet) B Jcc (Myrinet)

Figure 50: Execution time of the parallel programs on 16 CPUs in seconds.

61

11 ACKNOWLEDGEMENTS

9 Conclusion

In this thesis, we have given a description of a runtime system used to implement
a fast parallel Java system. To implement the runtime system, we have used
efficient low level communications software (Panda), and a native compiler for
Java (Jcc). Various optimizations were made in the runtime system (using
compiler support if necessary):

e Serialization code is generated at compile time (in C).

e A simple and efficient serialization and marshalling protocol which avoids
unnecessary copying. It makes only two copies, one at the sender and one
at the receiver.

e Simple remote operations are optimized:

— No thread creation if a method is simple.
— Prevent duplicate detection when possible.

The runtime system uses a simple and efficient garbage collection scheme
based on the mark and sweep algorithm. An object cache is used to make
object creation more efficient. A simple reference counting garbage collector is
used for distributed garbage collection.

By using this runtime system we have shown that fast communication and
and easy-to-use parallel programming is certainly possible in Java, making Java
a candidate for high-performance parallel applications.

10 Future work

Future work on this runtime system and fast parallel Java include:
e Support for SUN’s RML.
e Support for heterogeneous environments.
e The use of asynchronous communication primitives for implementing RMI.
e Asynchronous RMI.
e RMI multicast.

e Implement and research the effects of more advanced local and distributed
garbage collection algorithms.

e Add other features to the Java language needed for high-performance com-
puting, like efficient multi-dimensional arrays and array operations (which
will require language extensions).

11 Acknowledgements

We would like to thank Henri Bal for his support and guidance, Aske Plaat for
his support and fifteen (well, ok, 14.8) applepies, Raoul Bhoedjang for proof-
reading this document, Ronald Veldema for his work on the Jcc compiler, and
all other people at the computer systems group at the Vrije Universiteit.

62

A THE DISTRIBUTED GARBAGE COLLECTOR

A The distributed garbage collector

import java.util.Hashtable;
class Distributed_GC {
/* A somewhat trivial distributed garbage collector */
static Hashtable RemoteObjectHash = new Hashtable();
static void addRemoteObject(Object o) {
RemoteObjectHash.put (o, new RemoteObjectCounter(o));
}
static void addRemoteUser(Object o) {
RemoteObjectCounter temp = (RemoteObjectCounter) RemoteObjectHash.get(o);
if (temp !'= null) {
temp.counter++;
} else {
System.err.println("ERROR (addRemoteUser) : Unknown remote object reference");

}
¥

static void removeRemoteUser(Object o) {
RemoteObjectCounter temp = (RemoteObjectCounter) RemoteObjectHash.get(o);

if (temp != null) {
temp.counter--;

if (temp.counter == 0) {
RemoteObjectHash.remove (o) ;
}
} else {
System.err.println("ERROR (addRemoteUser) : Unknown remote object reference");

}
}
class RemoteObjectCounter {
/* Used to count the number of remote users */

Object ro;
int counter;

RemoteObjectCounter(Object ro) {

this.ro = ro;
this.counter = 1;

63

B OVERVIEW OF THE RESULTS

B Overview of the results

B.1 Network Throughput

array size (Kbytes) | Panda | Panda + copy | Jcc
Myrinet

1 14.6 13.5 | 11.1
5 36.3 28.5 | 17.1
10 45.2 33.2 | 20.6
50 55.7 35.0 | 20.1
100 49.9 22.3 | 19.0
250 39.1 15.8 | 12.0
500 31.2 14.4 | 11.2
750 30.3 14.4 | 12.2
1000 30.0 144 | 13.1
Fast Ethernet

1 2.8 2.8 2.6
5 5.8 5.5 4.9
10 7.1 6.6 5.9
50 9.5 8.4 7.3
100 10.0 8.0 7.1
250 10.2 7.3 6.6
500 10.3 7.3 6.5
750 10.3 7.3 6.5
1000 10.3 7.3 6.5

Table 8: Jcc network throughput in Mbytes/s.

64

B OVERVIEW OF THE RESUL'BS2 Word count of the application sources

B.2

B.3

Word count of the application sources

application | sequential | sockets | RMI | JavaParty | Jcc
SOR 4212 | 17666 | 17905 10283 | 9754
TSP 489 1551 | 1047 775 | 775
IDA 1036 2837 | 2204 1562 | 1562

Table 9: Number of words of the source code.

Seqgential application times

application time
SOR JDK | 1688.44
SOR Jcc 390.00
TSP JDK 213.54
TSP Jcc 32.50
IDA JDK 271.13
IDA Jcc 76.83

Table 10: Execution times sequential applications in seconds.

65

B.4 SOR

B OVERVIEW OF THE RESULTS

B.4 SOR
hosts | time (sec) | speedup | calculation time (sec) | communication (%)
1 348.55 1.00 348.43 .04
2 187.19 1.86 174.67 6.69
4 108.95 3.19 87.18 19.98
8 66.09 5.27 43.37 34.38
12 51.69 6.74 28.98 43.93
16 54.76 6.36 21.99 59.84
24 42.88 8.12 14.72 65.67
32 51.48 6.76 11.35 77.95
Table 11: Results for Socket SOR (512x512)
hosts | time (sec) | speedup | calculation time (sec) | communication (%)
1 811.53 1.00 811.39 .02
2 422.04 1.92 406.13 3.77
4 227.76 3.56 202.70 11.01
8 128.39 6.32 101.12 21.25
12 94.16 8.61 67.55 28.26
16 76.54 10.60 50.54 33.97
24 65.59 12.37 33.95 48.24
32 60.81 13.34 25.54 58.01
Table 12: Results for Socket SOR (1024x512)
hosts | time (sec) | speedup | calculation time (sec) | communication (%)
1 1687.11 1.00 1686.95 .01
2 864.24 1.95 844.57 2.28
4 446.14 3.78 421.54 5.52
8 238.99 7.05 210.18 12.06
12 169.38 9.96 140.32 17.16
16 133.78 12.61 105.01 21.51
24 100.99 16.70 70.40 30.29
32 96.00 17.57 52.91 44.89

Table 13: Results for Socket SOR (2048x512)

66

B OVERVIEW OF THE RESULTS

B.4 SOR

hosts | time (sec) | speedup | calculation time (sec) | communication (%)
1 350.99 1.00 350.31 .20
2 186.23 1.88 177.65 4.61
4 103.84 3.38 88.41 14.86
8 65.94 5.32 45.18 31.49
12 47.85 7.33 30.17 36.93
16 46.38 7.56 23.23 49.91
24 71.64 4.89 15.59 78.24
32 94.27 3.72 11.63 87.67
Table 14: Results for RMI SOR (512x512)
hosts | time (sec) | speedup | calculation time (sec) | communication (%)
1 814.49 1.00 813.68 A1
2 422.66 1.92 410.33 2.92
4 233.00 3.49 207.02 11.16
8 127.03 6.41 103.48 18.54
12 95.71 8.50 69.43 27.46
16 91.31 8.91 53.16 41.78
24 95.70 8.51 35.79 62.60
32 132.50 6.14 26.96 79.66
Table 15: Results for RMI SOR (1024x512)
hosts | time (sec) | speedup | calculation time (sec) | communication (%)
1 1688.44 1.00 1687.53 .06
2 922.89 1.82 850.25 7.88
4 457.40 3.69 427.29 6.59
8 259.23 6.51 213.91 17.49
12 201.71 8.37 143.64 28.80
16 211.30 7.99 107.92 48.93
24 163.87 10.30 73.46 55.17
32 165.65 10.19 55.50 66.50
Table 16: Results for RMI SOR (2048x512)
hosts | time (sec) | speedup | calculation time (sec) | communication (%)
1 358.62 1.00 357.92 .20
2 188.38 1.90 178.69 5.15
4 107.36 3.34 90.05 16.13
8 71.61 5.00 46.52 35.04
12 62.23 5.76 31.77 48.94
16 53.20 6.73 24.46 54.03

Table 17: Results for JavaParty SOR (512x512)

67

B.4 SOR

B OVERVIEW OF THE RESULTS

hosts | time (sec) | speedup | calculation time (sec) | communication (%)
1 826.40 1.00 825.61 .10
2 428.08 1.93 414.79 3.11
4 229.24 3.60 208.55 9.03
8 132.97 6.21 106.12 20.20
12 100.06 8.25 71.91 28.14
16 85.37 9.67 55.00 35.58
Table 18: Results for JavaParty SOR (1024x512)
hosts | time (sec) | speedup | calculation time (sec) | communication (%)
1 1701.20 1.00 1700.10 .07
2 936.60 1.81 855.54 8.66
4 459.05 3.70 432.84 5.71
8 255.98 6.64 219.19 14.38
12 180.69 9.41 147.98 18.11
16 150.03 11.33 112.28 25.17
Table 19: Results for JavaParty SOR (2048x512)
hosts | time (sec) | speedup | calculation time (sec) | communication (%)
1 80.39 1.00 80.30 A1
2 42.46 1.89 40.67 4.22
4 22.12 3.63 20.02 9.47
8 12.99 6.18 10.19 21.51
12 10.32 7.78 6.57 36.31
16 21.04 3.81 4.92 76.61
24 80.54 .99 3.26 95.96
32 80.27 1.00 2.44 96.96
Table 20: Results for Jcc-FastEthernet SOR (512x512)
hosts | time (sec) | speedup | calculation time (sec) | communication (%)
1 187.51 1.00 187.42 .06
2 95.96 1.95 94.31 1.72
4 49.11 3.81 46.61 5.10
8 27.32 6.86 24.01 12.11
12 19.83 9.45 15.50 21.87
16 16.68 11.23 11.59 30.51
24 83.21 2.25 7.66 90.79
32 95.53 1.96 5.72 94.01

Table 21: Results for Jcc-FastEthernet SOR (1024x512)

68

B OVERVIEW OF THE RESULTS

B.4 SOR

hosts | time (sec) | speedup | calculation time (sec) | communication (%)
1 390.00 1.00 389.91 .03
2 198.20 1.96 196.56 .83
4 100.34 3.88 97.71 2.63
8 53.46 7.29 49.93 6.60
12 37.11 10.50 32.37 12.78
16 31.10 12.53 24.24 22.05
24 93.91 4.15 16.12 82.84
32 99.35 3.92 12.05 87.87
Table 22: Results for Jcc-FastEthernet SOR (2048x512)
hosts | time (sec) | speedup | calculation time (sec) | communication (%)
1 78.32 1.00 78.23 12
2 40.34 1.94 39.10 3.09
4 20.85 3.75 19.50 6.46
8 11.18 7.00 9.64 13.70
12 8.53 9.17 6.37 25.32
16 6.17 12.68 4.71 23.62
24 5.24 14.94 3.11 40.58
32 3.90 20.08 2.33 40.13
Table 23: Results for Jce-myrinet SOR (512x512)
hosts | time (sec) | speedup | calculation time (sec) | communication (%)
1 379.08 1.00 378.99 .03
2 190.97 1.98 188.81 1.13
4 95.52 3.96 93.91 1.70
8 48.83 7.76 47.00 3.76
12 34.27 11.06 31.53 8.00
16 25.71 14.74 23.61 8.16
24 18.64 20.33 15.52 16.75
32 13.85 27.36 11.54 16.68

Table 24: Results for Jcc-myrinet SOR (2048x512)

69

B.5 TSP B OVERVIEW OF THE RESULTS

B.5 TSP
hosts | sockets RMI | JavaParty | Jcc Fast Ethernet | Jcc Myrinet
1 263.67 | 229.30 406.48 31.54 31.50
2 133.34 | 117.06 222.70 16.15 16.06
4 66.80 | 59.65 125.28 8.34 8.06
8 34.09 | 30.59 69.91 4.13 4.07
12 24.19 | 22.87 44.25 3.08 2.85
16 19.09 | 19.11 41.61 2.79 2.25

Table 25: Execution times TSP in seconds.

hosts | sockets | RMI | JavaParty | Jcc Fast Ethernet | Jcc Myrinet
1 1.00 | 1.00 1.00 1.00 1.00
2 1.98 | 1.96 1.83 1.95 1.98
4 3.95 | 3.92 3.24 3.78 3.91
8 7.73 | 7.50 5.81 7.65 7.81
12 10.90 | 10.05 9.19 10.26 11.17
16 13.81 | 11.82 9.77 13.85 14.16

Table 26: Speedup TSP.

70

B OVERVIEW OF THE RESULTS

B.6 IDA*

B.6 IDA*
hosts | sockets RMI | JavaParty | Jcc Fast Ethernet | Jcc Myrinet
1 269.07 | 284.30 522.61 76.31 76.83
2 139.68 | 260.17 293.97 39.10 39.32
4 72.67 | 166.79 166.93 20.50 20.33
8 38.45 | 99.63 91.72 11.21 10.86
12 28.04 | 61.83 65.72 8.14 7.87
16 24.11 | 62.00 53.22 6.60 6.50
Table 27: Execution times IDA* in seconds.
hosts | sockets | RMI | JavaParty | Jcc Fast Ethernet | Jecc Myrinet
1 1.00 | 1.00 1.00 1.00 1.00
2 1.93 | 1.09 1.78 1.95 1.95
4 3.70 | 1.70 3.12 3.72 3.78
8 6.99 | 2.85 5.70 6.81 7.08
12 9.60 | 4.60 7.95 9.38 9.77
16 11.16 | 4.59 9.82 11.57 11.82

Table 28: Speedup IDA*.

71

C PANDA RPC INTERFACE

C Panda RPC interface

The RPC module provides reliable RPC with at-most-once semantics. The user
handler function is defined as follows:

typedef int (*pan_rpc_handler_f)(int ticket, void *request, int size, int len);

The receive function gets as arguments a ticket for the reply message, a pointer
to the request data, the size of the request data buffer, and the length of the
request data. The request handler function returns a boolean specifying whether
the data buffer is kept at the handler function level (1) or can be reused at the
RPC level (0). If the buffer is kept at the handler function level, it must be
released with pan_free.

The RPC layer guarantees that size - len >= MAX(pan_rpc_request_trailer(),
pan_rpc_reply_trailer())
The upcall is not allowed to block on a condition synchronization, only on short-
term mutex synchronization (lock/unlock). Furthermore, multiple instances of
the upcall can be active at the same time.

void pan_rpc_init(int *argc, char *argv[]);

Initializes the RPC module.

void pan_rpc_end(void);

Releases all resources held by the RPC module.

void pan_rpc_register(pan_rpc_handler_f handler) ;

Registers the request handler function. The registration must be performed
before pan_start is called.

int pan_rpc_request_trailer(void);

Returns the space that the sender has to reserve for a trailer after the user
request data. The data in the buffer where the trailer will be put may not be
accessed during a call to pan_rpc_trans. The original data in this area is restored
when the pan_rpc_trans call is finished.

int pan_rpc_reply_trailer(void);

Returns the space that the sender has to reserve for a trailer after the user reply
data. The data in the buffer where the trailer will be put may not be accessed
during a call to pan_rpc_reply. The original data in this area is restored when
the pan_rpc_reply call is finished.

void pan_rpc_trans(int dest, void *request, int req_len,
void **reply, int *rep_size, int *rep_len);

Sends request message request with length req_len to destination dest. The call
blocks until a reply is received. The reply message will be put in reply, with
reply buffer size rep_size and reply length rep_len. The reply has to be released
with pan_free.

void pan_rpc_reply(int ticket, void *reply, int len);

Sends a reply message to the originator of the request message with ticket ticket.
The reply message will be cleared with pan_free.

72

REFERENCES REFERENCES

References

[1]
[2]

[6]

[7]

8]

Java grande forum, 1998. http://jhpc.org/grande/.

M.G. Bakker and P. Dozy. Performance study of parallel programs on a
clustered Wide-Area Network. Master’s thesis, Department of Mathematics
and Computer Science, Vrije Universiteit, Amsterdam, The Netherlands,
August 1997. http://www.cs.vu.nl/ aske/msc97.ps.gz.

Henri E. Bal, Aske Plaat, Mirjam G. Bakker, Peter Dozy, and Rutger
F. H. Hofman. Optimizing parallel applications for wide-area clusters. 12th
International Parallel Processing Symposium IPPS’98, Orlando, Florida,
April 1998. http://www.cs.vu.nl/ aske/ipps98.ps.gz.

R.AF. Bhoedjang, T. Riihl, R. Hofman, K. Langendoen, H.E. Bal,
and M.F. Kaashoek. Panda: A Portable Platform to Support Par-
allel Programming Languages. In Proceedings of the USENIX Sym-
posium on FExperiences with Distributed and Multiprocessor Systems
(SEDMS IV), pages 213-226, San Diego, CA, USA, September 1993.
ftp://ftp.cs.vu.nl: /pub/amoeba/orca_papers/sedms93.ps.Z.

Raoul Bhoedjang, Tim Riihl, and Henri E. Bal. LFC: A communica-
tion substrate for Myrinet. In Fourth Annual Conference of the Ad-
vanced School for Computing and Imaging, June 1998, Lommel, Belgium.
ftp://ftp.cs.vu.nl: /pub/tim/papers/asci98.ps.gz.

N.J. Boden, D. Cohen, R.E. Felderman, A.E. Kulawik, C.L. Seitz, J.N.
Seizovic, and W. Su. Myrinet: A Gigabit-per-second Local Area Network.
IEEE Micro, 15(1):29-36, February 1995.

Hans-Juergen Boehm and Mark Weiser. Garbage collection in an uncoop-
erative environment. Software practice and experience, 1988.

B.O. Christiansen, P. Cappello, M.F. Ionescu, M.O. Neary, K.E. Schauser,
and D. Wu. Javelin: Internet based parallel computing using java. concur-
rency: practice and experience, November 1997. http://www.npac.syr.edu/
users/gcf/03 /javaforcse/acmspecissue/finalps/11 _chris.ps.

Fabrice Le Fessant, Ian Piumarta, and Marc Shapiro. An implementation
of complete, asynchronous, distributed garbage collection. In Proceedings
if the 1998 ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI). INRIA Roquencourt, France, 1998.

P.A. Gray and V.S. Sunderam. IceT: Distributed
Computing and Java. COnCurrency: practice and ex-
perience, November 1997. http://www.npac.syr.edu/
users/gcf/03/javaforcse/acmspecissue/finalps/12_gray.ps.

B. Griswold and P. Phillps. Uscd benchmark, Aug 1998. http://www-
cse.ucsd.edu/users/wgg/JavaProf/javaprof.html.

M. Haines and K. langendoen. Platform-independent runtime
optimizations using openthreads. In 11th International Par-
allel Processing Symposium, Geneva, Switzerland, April 1997.
http://meru.cs.uwyo.edu/ "haines/research/ot /ipps.ps.

73

REFERENCES REFERENCES

[13] Richard L. Hudson, Ron Morrison, J. Eliot B. Moss, and David S. Munro.
Training distributed garbage, the dmos collector. Object-Oriented Program-
ming Systems, Languages and Applications (OOPSLA), 1997. http://www-
ppg.des.st-andrews.ac.uk/ Publications/PostScript/dmos.ps.gz.

[14] Richard E. Korf. Iterative Deepening: An optimal admissible tree search.
Artificial Intelligence, 27:97-109, 1985.

[15] Langendoen, K. and Bhoedjang, R. and Bal, H.E. Models for Asynchronous
Message Handling. IEEE Concurrency, Vol. 5(No. 2):28-38, April-June
1997.

[16] G. F. Luger and W. A. Stubblefield. Artificial Intelligence, structures and
strategies for complex problem solving, pages 133—137, 149-150, 179. The
Benjamin/Cummings Publishing Company, inc., 2nd edition, 1993.

[17] M. Philippsen and M. Zenger. Javaparty—transparent remote objects in
java. Concurrency: Practice and Ezperience, Vol. 9(No. 11):1125-1242,
1997. http://wwwipd.ira.uka.de/ "phlipp/party.ps.gz.

[18] R.R. Raje, J.I. William, and M. Boyles. An asynchronous re-
mote method invocation (ARMI) mechanism for java. concurrency:
practice and experience, November 1997. http://www.npac.syr.edu/
users/gct/03 /javaforcse/acmspecissue/finalps/16 raje.ps.

[19

—

A. Reinefeld and V. Schnecke. AIDA* -asynchronous parallel IDA*. In
Proceedings 10th Canadian Conference on Artificial Intelligence, AI’9/,
May 1994, Banff, Canada, pages 295-302. Paderborn Center for Parallel
Computing, Germany, 1994. http://brahms.informatik.uni-osnabrueck.de/
postscripts/ai 94.ps.Z.

[20] Sun Microsystems Inc. Java language specification, August 1996.
ftp:/ /ftp.javasoft.com/docs/specs/langspec-1.0.ps.zip.

[21] Sun MicroSystems, Inc. Java native interface specification, 1996.
ftp://ftp.javasoft.com/docs/jdk1.1/jni.ps.

[22] Sun MicroSystems, Inc. Java (TM) Object Serialization Specification, 1996.
ftp://ftp.javasoft.com/docs/jdk1.1/serial-spec.ps.

[23] Sun MicroSystems, Inc. Java (TM) Remote Method Invocation Specifica-
tion, 1996. ftp://ftp.javasoft.com/docs/jdk1.1/rmi-spec.ps.

[24] R. Veldema. Jcc, a native java compiler. Master’s thesis, Vrije Universiteit
Amsterdam, August 1998. http://www.cs.vu.nl/ rveldema.

[25] Paul R. Wilson. Uniprocessor garbage collection techniques. Submitted to
ACM Computing Surveys.

[26] X/Open Company Ltd. File System Safe UCS Transformation Format
(FSS_UTF). X/Open Preliminary Specification, Document Number: P316.

74

REFERENCES REFERENCES

[27]

[29]

K. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit, A. Krish-
murthy, P. Hilfinger, S. Graham, D. Gay, P. Colella, and A. Aiken.
Titanium: a high-performance java dialect. In ACM 1998 workshop
on Java for High-performance network computing. UCB, February 1998.
http://www.cs.ucsb.edu/ conferences/java98/papers/titanium.ps.

W. Yu and A. Cox. Java/DSM: A Platform for Heterogeneous
Computing. In ACM 1997 PPoPP Workshop on Java for Science
and Engineering Computation, June 1997. http://www.npac.syr.edu/
users/gcf/03/javaforcse/acmspecissue /finalps /17 yu.ps.

A.D. Zubiri. An assessment of Java/RMI for Object Oriented Parallelism.
Master’s thesis, University of Alberta, Fall 1997.

75

