
Scientific Programming 17 (2009) 113–134 113
DOI 10.3233/SPR-2009-0276
IOS Press

Building high-resolution sky images using
the Cell/B.E.

Ana Lucia Varbanescu a,∗, Alexander S. van Amesfoort a, Tim Cornwell b, Ger van Diepen d,
Rob van Nieuwpoort d, Bruce G. Elmegreen c and Henk Sips a

a Department of Computer Science, Delft University of Technology, Delft, The Netherlands
b National Telescope Facility, Australia
c IBM T.J. Watson Research Center, NY, USA
d ASTRON, The Netherlands

Abstract. The performance potential of the Cell/B.E., as well as its availability, have attracted a lot of attention from various
high-performance computing (HPC) fields. While computation intensive kernels proved to be exceptionally well suited for run-
ning on the Cell, irregular data-intensive applications are usually considered as poor matches. In this paper, we present our com-
plete solution for enabling such a data-intensive application to run efficiently on the Cell/B.E. processor. Specifically, we target
radioastronomy data gridding and degridding, two resembling imaging filters based on convolutional resampling. Our solution
is based on building a high-level application model, used to evaluate parallelization alternatives. Next, we choose the one with
the best performance potential, and we gradually exploit this potential by applying platform-specific and application-specific
optimizations. After several iterations, our target application shows a speed-up factor between 10 and 20 on a dual-Cell blade
when compared with the original application running on a commodity machine. Given these results, and based on our empirical
observations, we are able to pinpoint a set of ten guidelines for parallelizing similar applications on the Cell/B.E. Finally, we con-
clude the Cell/B.E. can provide high performance for data-intensive applications at the price of increased programming efforts
and with a significant aid from aggressive application-specific optimizations.

Keywords: Multi-core processors, radioastronomy, data-intensive memory-bound applications, Cell/B.E.

1. Introduction

A large part of current radioastronomy research fo-
cuses on building larger radio telescopes with better
resolutions. Projects like LOFAR [26], ASKAP [6] or
SKA [22] aim to provide highly accurate astronomi-
cal measurements by collecting huge streams of radio
synthesis data, which are further processed in several
stages and transformed into high-resolution sky im-
ages. When designing and deploying this data process-
ing chain, radio astronomers have quickly reached the
point where computational power and its efficient use
is critical. For example, it is estimated that LOFAR
can produce over 100 TB/day [26]; for SKA, which
has about 1500 times more antennas, the number will
increase with at least 5 orders of magnitude. For
such huge collections of radioastronomy data, what-
ever cannot be processed in time has to be stored, and
whatever cannot be stored is lost. Thus, a small in-

*Corresponding author. E-mail: A.L.Varbanescu@tudelft.nl.

crease in processing performance may translate into
a significant advantage in terms of storage space and
cost.

This is a typical high performance computing (HPC)
problem, typically solved by a supercomputer or a
dedicated cluster. However, in the past few years,
more typical HPC applications have been success-
fully implemented on architectures based on multi-
core processors – e.g. Sweep3D or RaX/ML on the
Cell/B.E. [3,18], or molecular dynamics applications
on GPUs [13]. Based on their promising results, more
effort is put nowadays into similar experiments for
other application fields.

The major pitfall of this trend is that (legacy) se-
quential code for HPC applications, even if directly
usable on the multi-core processors, is not exploit-
ing any of the performance enhancing features of
these platforms. Efficient application implementation
for these architectures requires multiple layers of par-
allelism and iterative, machine-specific optimizations
in order to come close to peak performance [31]. Even

1058-9244/09/$17.00 © 2009 – IOS Press and the authors. All rights reserved

114 A.L. Varbanescu et al. / Building high-resolution sky images using the Cell/B.E.

so, this peak performance, may not be accessible to
all applications. While, computation-intensive kernels
can be easily tuned to expose more parallelism, data-
intensive applications usually require significant algo-
rithmic changes to avoid core underutilization and, as
a result, large gaps between observed and peak per-
formance. Because these changes are mostly expertise-
based, as well as application and architecture specific,
any successful case-study becomes a potential set of
guidelines.

In this paper we present such a case-study: the
implementation and optimization of the most time-
consuming radioastronomy imaging kernels (i.e., data
gridding and degridding) on the Cell/B.E. processor.
Both kernels are based on convolutional resampling,
a basic processing block that dominates the workload
of image synthesis. Optimizing this kernel has a direct
impact on the performance and hardware requirements
of any of modern large radiotelescope [6]. Based on
a brief analysis, we model the parallel application us-
ing the master-workers paradigm. Although the imple-
mentation and subsequent optimizations posed some
challenges, especially related to proper load balancing
and data distribution, the obtained performance proves
this paradigm to be a good alternative for tackling data-
intensive applications on the Cell/B.E. processor.

Thus, our contributions through this paper are three-
fold: (1) we present a model-driven approach on how a
memory-bound data-intensive application can be par-
allelized on the Cell/B.E., (2) we examine the effi-
ciency, performance, and scalability of the new appli-
cation, as well as its overall suitability for a real-life
radiotelescope, and (3) we propose a short list of guide-
lines for identifying and approaching similar problems.
Compared with our previous work, presented in [29],
our parallelization is based on a model-driven, sys-
tematic technique, we include a thorough performance
analysis of each optimization we have performed, and
we are able to propose a clear, 10-points guidelines list
to approach similar applications.

The remainder of this paper is organized as follows.
Section 2 presents a radioastronomy primer, to famil-
iarize the reader with the problem space and terminol-
ogy. Application analysis and modeling are presented
in Section 3. We discuss the parallelization, implemen-
tation, and optimizations of the gridding/degridding
kernels on the Cell/B.E. in Section 4. Our experiments
and their results are discussed in Section 5. We briefly
survey significant related work in Section 6 and we
conclude our findings with a list of empirical guide-
lines for similar applications in Section 7.

2. Radioastronomy imaging

One of the radioastronomy goals is to obtain accu-
rate images of the sky. In this section, we introduce the
fundamental concepts and terminology required for the
reader to understand the background of our application
as well as the execution context of our target applica-
tion.

2.1. Radio interferometry

Radio interferometers are a solution for obtaining
high resolutions for the sky images that would other-
wise require reflectors of impractically large sizes. Be-
ing built as arrays of connected radiotelescopes (with
various antennas types and placement geometries), and
using the aperture synthesis technique [25], they are
able to work as a single large “combine” telescope.
However, this solution comes at the price of additional
computation, as radio interferometers do not measure
the brightness of the sky directly; instead, each pair of
antennas measures a (sort of Fourier) component of it.
Combining these components into a single image re-
quires significant post-processing.

Each pair of antennas defines a baseline. Increas-
ing the number of different baselines in the array (i.e.,
varying the antenna numbers and/or placement) in-
creases the quality of the generated sky image. The
total number of baselines, B, in an array of A an-
tennas is B = A(A − 1)/2, and it is a significant
performance parameter of the radiotelescope. For ex-
ample, the LOFAR radiotelescope [26] has a total of
B = 1830 baselines, while SKA [22] should have ap-
proximately 1500 times as many.

The simplified path of the signal from each base-
line to a sky image is presented in Fig. 1. The sig-
nals coming from any two different antennas have to
be correlated before they are combined. A correlator
reads these (sampled) signals and generates a corre-
sponding set of complex visibilities, Vb,f ,t, one for each
baseline b, frequency channel f and moment in time t.
In other words, taking measurements for one baseline
with a sampling rate of one sample/s for 8 straight
hours will generate a set of 8 · 3600 visibilities for
each frequency channel (tens to hundreds of them) and
each polarization (typically, 2 or 4 in total). For ex-
ample, using 256 frequency channels (a small number)
for LOFAR and its 1830 baselines may lead to about
13.5 GB of data.

Finally, imaging is the process that transforms these
complex visibilities into accurate sky images. In prac-

A.L. Varbanescu et al. / Building high-resolution sky images using the Cell/B.E. 115

Fig. 1. The software pipeline from antennas to sky images.

tice, building a sky image translates into reconstructing
the sky brightness, I (at a given frequency), as a func-
tion of some angular coordinates, (l, m), on the sky.
The relationship between the sky brightness, I(l, m)
and the visibility V (u, v, w) is given by Eq. (1). Note
that the values (u, v, w) are the components of the
baseline vector between the two interferometer ele-
ments, and are expressed in units of wavelength of
the radiation [20]. For the case when w = 0 (e.g.,
for a narrow field of view, i.e., all baselines are in
the same (u, v) plane), we obtain the two-dimensional
form of the visibility–brightness relationship, as given
in Eq. (2); this equation shows that V (u, v) and I(l, m)
are a Fourier pair. Thus, we can compute I(l, m) as
the Fourier inverse transform of V (u, v), as shown in
Eq. (3); for the image reconstruction, we use the dis-
crete transform (shown in Eq. (4)) on the observed
(sampled) visibilities. For the more general case of
non-coplanar baselines (i.e., w �= 0, also known as
wide field of view), there are two main approaches:
(1) use the faceted approach, where we approximate
the wide field as a sum of a lot of narrow fields for
which the simplification w = 0 holds, compute the
FFT for each one of these facets, and combine the re-
sults [7], or (2) use the W-projection algorithm [5],
which computes the FFT for projections of the base-
line vector and the observed source vector on a (fairly
small) number of planes (Pw) parallel to the (u, v)
plane and sums the results. For similar accuracy, Pw is
much smaller than the potential number of facets;
therefore, the W-projection method is considered more
computationally efficient, and it is the one we use in
this paper.

V (u, v, w)

=
∫

I(l, m)√
1 − l2 − m2

× e−2πi(u·l+v·m+w·
√

1−l2 −m2) dl dm, (1)

V (u, v) =
∫

I(l, m)√
1 − l2 − m2

× e−2πi(u·l+v·m) dl dm, (2)

I(l, m) =
√

1 − l2 − m2

×
∫

V (u, v)e+2πi(u·l+v·m) du dv, (3)

Id(l, m) =
1
N

N∑
t=1

Vd(ut, vt)

× e+2πi(ut ·l+vt ·m). (4)

2.2. Building the images

The computational process of building a sky im-
age has two phases: imaging and deconvolution. The
imaging phase generates a dirty image directly from
the measured visibilities, using FFT. The deconvolu-
tion “cleans” the dirty image into a sky model. A snap-
shot of this iterative process is presented in Fig. 2.
Note that the gridding and degridding operations are
the main targets for our parallelization, due to their
time-expensive execution (it is estimated that 50% of
the time spent in the deconvolution loop is spent on
gridding and degridding).

Note that the measured visibilities are sampled
along the uv-tracks (i.e., the trajectory that a baseline
defined by (u, v) generates due to the Earth’s rotation).
Before any FFT operations, data has to be placed in
a regularly spaced grid. The operation used to inter-
polate the original visibility data to a regular grid is
called gridding, and it is performed by using a sup-
port kernel that minimizes the aliasing effect in the im-
age plane [24].1 Degridding is the “reverse” operation
used to extract information from the grid and project it
“back” to the uv-tracks. Degridding is required when
new visibility data is used to refine the current model.
A simplified diagram of the gridding/degridding is pre-
sented in Fig. 3. For the remainder of this paper, we
focus on gridding and degridding, as they represent the
most time-consuming parts of the sky image building
software chain.

1Explaining how these coefficients are computed is far beyond the
purpose of this paper. Therefore, we redirect the interested readers
to the work of Schwab [24].

116 A.L. Varbanescu et al. / Building high-resolution sky images using the Cell/B.E.

Fig. 2. A diagram of the typical deconvolution process in which a model is iteratively refined by multiple passes. The shaded blocks (gridding
and degridding) are both performed by convolutional resampling.

Fig. 3. A simplified diagram of the gridding/degridding operations.
The data sampled along the (u, v) tracks in the left-hand side is grid-
ded on the regular grid. The data in the grid is degridded along the
same (u, v) tracks.

3. Gridding and degridding

In this section we analyze the characteristics of grid-
ding and degridding, focusing on their computation
and data access patterns. Further, we build simple mod-
els for each of the two applications, models that shall
be further used as starting points for developing the
Cell/B.E. parallel application.

3.1. Application analysis

For one high-resolution sky image, data is col-
lected from B baselines, each one characterized by
(u, v, w)b,t, i.e., its spatial coordinates at moment t.
During one measurement session, every baseline b col-
lects Nsamples for each one of the observed Nfreq fre-
quency channels. These samples, V [(u, v, w)b,t, f], are
called “visibilities”.

3.1.1. Data and computation
Gridding is the transformation that interpolates the

irregular visibilities V [(u, v, w)b,t, f] on a 2g × 2g reg-
ular grid, G. Each visibility sample is projected over a
subregion SG of m × m points from this grid. To com-
pute the SG′ projection, the visibility value is weighted
by a set of m × m coefficients, called a support ker-
nel SK, which is extracted from a matrix that stores
the convolution function, C. Note that this convolution

function is oversampled, i.e., its resolution is finer than
that of the original sampling by a factor of os × os.
Equation (5) synthesizes this computation. The SG′

projection is finally added to the SG region of the grid,
updating the image data. All data from all baselines
is gridded on the same image grid, G. The size of the
projection, m × m, is a parameter calculated based on
the radiointerferometer parameters, and it is anywhere
between 15 × 15 and 129 × 129 elements. Degrid-
ding is the operation that reconstructs the V ′(u, v, w)b,t
samples from the image grid by convolving the corre-
sponding support kernel, SK, and grid subregion, SG.
Equation (6) synthesizes this computation.

Figure 4 illustrates the way both gridding and de-
gridding work, while Listing 1.1 presents a simplified
pseudo-code implementation:

∀0 � x � (m · m),

SG′(goffset(uk, vk) + x)

= C(coffset(uk, vk) + x) · V (uk, vk), (5)

V ′(uk, vk)

=
m·m∑
x=1

C(coffset(uk, vk) + x)

× G(goffset(uk, vk) + x). (6)

The c_index stores the offset inside C from where
the current convolution kernel, SKM (b, t, f) is ex-
tracted; the g_index stores the offset of the corre-
sponding grid subregion, SGM (b, t, f), in G. These
two indices are computed for each time sample, base-
line and frequency channel, thus corresponding to each
visibility V [(u, v, w)b,t, f].

The essential application data structures are sum-
marized in Table 1. To give an idea of the appli-
cation memory footprint, consider the case of B =
1000 baselines, SKM = 45 × 45 elements (equivalent
of a 2000 m maximum baseline), os = 8 (an usual

A.L. Varbanescu et al. / Building high-resolution sky images using the Cell/B.E. 117

Fig. 4. The two kernels and their data access pattern: (a) gridding (continuous lines) and (b) degridding (dotted lines). Similarly shaded regions are
for a single visibility sample. For gridding, newly computed data that overlaps existing grid values is added on. For degridding, newly computed
visibilities cannot overlap.

Listing 1.1

The computation for the gridding/degridding

1 f o r a l l (b = 1 . . N _ b a s e l i n e s , t = 1 . . N_samples, f = 1 . . N_freq) // for all frequency channels
2 compute c _ i n d e x = C _ O f f s e t ((u,v,w) [b, t] , f r e q [f]) ; // the SK offset in C
3 SC (b, t , f) = e x t r a c t _ s u p p o r t _ k e r n e l (C , c _ i n d e x , m ∗ m) ; // get the mxm coefficients
4 compute g_ index = G_Off se t ((u,v,w) [b, t] , f r e q [f]) ; //the SG offset in G
5 SG(b, t , f) = e x t r a c t _ s u b r e g i o n _ g r i d (G,g_ index ,m ∗ m) ; // get the mxm grid data
6 f o r (x =0; x <(m ∗ m) ; x ++) //sweep the convolution kernel
7 i f (g r i d d i n g) {SG ’ [x]=C[x] ∗ V[(u,v,w) [b, t] , f] ; SG[x]+=SG ’ [x] ;}
8 i f (d e g r i d d i n g) {V’ [b, t , f]+=SG[x] ∗ C[x] ;}

Table 1

The main data structures of the convolutional resampling and their characteristics. Note that B is the number of baselines

Name Symbol Cardinality Type Access pattern

Coordinates/baseline (u, v, w) B × Nsamples Real Sequential

Visibility data V B × Nsamples × Nfreq Complex Sequential

Convolution matrix C m2 × os2 × Pw Complex Irregular

Grid G 512 × 512 Complex Irregular

Support kernel SKM M = m × m Complex Sequential

Subregion grid SGM M = m × m Complex Sequential

oversampling rate) and Pw = 33 (the number of
planes in the W-projection algorithm). Then, C has
over 4M elements of data, taking about 34 MB. Fur-
ther, for a sampling rate of 1 sample/s, an 8 hour mea-
surement session generates 28800 samples on each
frequency channel for each baseline; for only 16 fre-
quency channels and 1000 baselines, we have over
450M visibilities, which take about 3.5 GB of memo-
ry/storage.

3.1.2. Data locality
Low arithmetic intensity and irregular memory ac-

cesses are non-desirable features for parallel appli-
cations. They are even worse for multi-core proces-
sors, where their negative impact on application per-
formance is increased [4].

As both gridding and degridding are memory in-
tensive applications (the arithmetic intensity is slightly
less than 1/3), locality plays a significant role in

118 A.L. Varbanescu et al. / Building high-resolution sky images using the Cell/B.E.

their performance. To analyze data locality and its re-
use potential, we trace the memory accesses in both
C and G. The access patterns are generated by the
c_index and g_index offsets. Based on their com-
putation as non-linear functions of the (u, v, w)b,t and
f – see Listing 1.1, lines 2 and 4, we can conclude
the following: consecutive time samples on the same
baseline may not generate consecutive C and G off-
sets: c_index(b,t,f) �= c_index(b,t+1,f)
and g_index(b,t,f) �= g_index(b,t+1,f),
which means that the corresponding support kernels
and/or grid subregions may not be adjacent. The same
holds for two measurements taken at the same time
sample t on different consecutive channels. As a result,
we expect a scattered sequence of accesses in both C
and G.

We have plotted these access patterns for three dif-
ferent data sets, and the results can be seen in Fig. 5.
The left-hand side graphs show the accesses in the ex-
ecution order (i.e., ordered by their time sample). The
right-hand side graphs show the results for the same
data, only sorted in increasing order of the indices,
therefore indicating the ideal data locality that the ap-
plication can exploit. For these “sorted” graphs, note
that the flatter the trend is, the better locality is. For
random data, i.e., randomly generated (u, v, w) coordi-
nates, the memory accesses are uniformly distributed
in both C and G, as seen in Fig. 5(a, c). Note that the
more scattered the points are, the worse the data lo-
cality is. Next, we have used a set of (u, v, w) coor-
dinates from a real measurement taken from a single
baseline. Note, from Fig. 5(e, g), the improved local-
ity, which is due to the non-random relationship be-
tween (u, v, w)b,t and (u, v, w)b,t+1.2 Also, accesses
from measurements taken from ten baselines are plot-
ted in Fig. 5(i, k). The potential for data-reuse is similar
for C, and somewhat increased in G. Finally, Fig. 5(b,
d, f, h, l) (the sorted graphs) indicate that spatial data
locality does exist in the application, but exploiting it
requires significant data pre-processing for all (u, v, w)
samples.

3.2. Application modeling

The task graphs for both kernels are presented in
Fig. 6. Note the similar structure: a main loop of N =
Nbaselines × Nsamples × Nfreq iterations, whose core is

2The (u, v, w)b,t+1 can be computed from the (u, v, w)b,t coor-
dinates by taking into account the Earth rotation in the interval be-
tween the two samples.

a sequence of inner tasks. So, we can model the two
kernels as follows (we use a simplified version of the
PAMELA notation [27]):

Gridding = G1;for(i=1..N){G2;G3;G4;G5}

Degridding = D1;for(i=1..N){D2;D3;D4;D5}

We characterize each of these tasks by a set of para-
meters that will be used to guide our parallelization de-
cisions. For each task, we focus on the following prop-
erties:

• Input data: the type and number of the elements
required for one execution.

• Output data: the type and number of the elements
produced by one execution.

• Computation : communication: a qualitative esti-
mation (i.e., from very low to very high) of the
ratio between the data communication needs of
the kernel (e.g., the time it takes to get the data
in/out) and the time spent computing the data.
Note that data size can have a significant impact
on this parameter.

• I : O ratio: the ratio between the size of the input
and output data.

• Memory footprint represents the size of the data
required for a single task execution; as all the
significant data structures have either Real or
Complex values, we can measure the memory
footprint in number of Real elements.

• Parallelism represents the parallelization potential
of a task, which quantifies how easy a task can
be parallelized. For example, an embarrassingly
parallel task is highly parallelizable, while a file
read is hardly parallelizable.

• Impact is an estimation of the time taken by a
single task execution (i.e., within one iteration of
the main loop). Note that this estimation may be
sensitive to application-specific parameters. Also
note that some tasks are outside the loop and, as
such, will not impact the main core computation.

Based on these parameters, the task characterizations
for both gridding and degridding are summarized in
Table 2.

A quick look at Table 2 proves that both grid-
ding and degridding are memory bound (see the
I : O ratio, memory footprint), data-intensive (see the
computation : communication ratio) kernels. As such
applications are not a good match for Cell/B.E.-like
machines, where the core-level memory is not shared,
a lot of effort will have to be put into investigat-

A.L. Varbanescu et al. / Building high-resolution sky images using the Cell/B.E. 119

Fig. 5. Access patterns in C and G, with various data and data-sizes, original and sorted. For the original data, darker regions (i.e., more points)
signal good temporal and spatial data locality. For the sorted data, the flatter the curve, the better the spatial locality over the entire data set is.

120 A.L. Varbanescu et al. / Building high-resolution sky images using the Cell/B.E.

Fig. 6. The execution phases of both kernels: (a) gridding, (b) degridding.

Table 2

The characteristics for the kernels’ tasks

Task Input data Comp : Comm Output data I : O ratio Memory (Real el.) Parallelism Impact (%)

G1 (u, v, w), V − − (u, v, w), V 1 : 1 2 × N − −/− −
G2 (u, v, w), f + c_index 1 : 1 c1 ∼ 5

g_index

G3 c_index, C − − SK, SG 1 : m2 c2 × m2 + c3 + 20

g_index, G

G4 SK, SG + SG′ 2m2 : m2 c4 × m2 + c5 ++ 65

G5 SG′ − − G m2 : 1 c6 × m2 + c7 − − 10

D1 (u, v, w), G − − (u, v, w), G 1 : 1 N + c8 − −/− −
D2 (u, v, w), f + c_index 1 : 1 c9 ∼ 5

g_index

D3 c_index − − SK, SG 1 : m2 c10 × m2 + c3 + 20

g_index

D4 SK, SG + V m2 : 1 c11 × m2 + c12 ++ 75

D5 V − − V ′ 1 : 1 c13 × m2 + c14 − − −
Notes: N = Nbaselines × Nsamples × Nfreq; the “Comp : Comm” ratio and the “Parallelism” are qualified from very low to very high, with − −,
−, ∼, +, ++; ci are constant whose value are irrelevant; a task with no impact on the main computation core is denoted with −.

ing two major parallelization aspects: task distribution
(i.e., change the sequential patterns of the original ap-
plication model into parallel ones) and data manage-
ment (i.e., use data parallelism and pipelining among
the tasks to avoid excessive memory traffic).

4. Parallelization on the Cell/B.E.

In this section, we describe our model-guided par-
allelization for the gridding/degridding kernels. Fur-
ther, we present one implementation solution and we

describe the additional cell-specific and application-
specific optimizations that had a significant impact on
the kernels performance. As our approach is similar
for both kernels, we only use the gridding paralleliza-
tion for the detailed explanations. Finally, we present
the outline of our method as a list of guidelines for en-
abling other similar applications to run on the Cell/B.E.

4.1. The Cell/B.E.

The Cell Broadband Engine (Cell/B.E.) is a het-
erogeneous multi-core processor, initially designed by

A.L. Varbanescu et al. / Building high-resolution sky images using the Cell/B.E. 121

Sony, IBM and Toshiba for the PlayStation 3 (PS3)
game console. Given Cell/B.E.’s peak performance of
204 single precision GFlops [11], it was quickly con-
sidered a good target platform for HPC applications.
Cell/B.E. has nine cores: the Power Processing El-
ement (PPE), acting as a main processor, and eight
Synergistic Processing Elements (SPEs), acting as co-
processors. All cores, the main memory, and the ex-
ternal I/O are connected by a high-bandwidth Ele-
ment Interconnection Bus (EIB). The PPE contains the
Power Processing Unit (PPU), a 64-bit PowerPC core
with a VMX/AltiVec unit, separated L1 caches (32 kB
for data and 32 kB for instructions) and 512 kB of L2
cache. The PPE’s main role is to run the operating sys-
tem and to coordinate the SPEs. An SPE contains a
RISC-core (the SPU), a 256 kB Local Storage (LS) and
a Memory Flow Controller (MFC). The LS is used as
local memory for both code and data and is managed
entirely by the application. All SPU instructions are
128-bit SIMD instructions, and all 128 SPU registers
are 128-bit wide.

The Cell/B.E. cores combine functionality to exe-
cute a large spectrum of applications, ranging from
scientific kernels [18,31] to image processing applica-
tions [2]. The basic Cell/B.E. programming is based
on a simple multi-threading model: the PPE spawns
threads that execute asynchronously on SPEs, until in-
teraction and/or synchronization is required. The SPEs
can communicate with the PPE using simple mecha-
nisms like signals and mailboxes for small amounts of
data, or DMA transfers via the main memory for larger
data.

The impressive performance of the Cell/B.E. comes
mainly from exploiting its various parallelism layers,
from task and data parallelism across multiple SPEs to
SPE code SIMDization and multi-buffering for DMA
transfers [9]. While applications written from scratch
can natively exploit all these features, legacy applica-
tions have to systematically enable them, by iteratively
modifying the code. A rule of thumb for the paral-
lelization effort is: the lower the parallelization level is,
the more modifications to the original code it requires.
For example, application partitioning in tasks requires
little intrusion in the task code, while code SIMDiza-
tion may require changes at almost every instruction.

4.2. A model-driven application parallelization

To have efficient implementations of gridding and
degridding on the Cell/B.E., we aim to delegate and
optimize most of their computationally intensive parts

to the SPEs, thus increasing the overall application
performance. To decide what parts of the whole grid-
ding computation chain can be efficiently moved to
the SPEs, we start from a simple gridding model, and
we investigate the performance effects each SPE-PPE
configuration might have. The model of the sequential
gridding chain, depicted in Fig. 6 is:

Gridding=G1;for(i=1..N){G2;G3;G4;G5;}

4.2.1. The main loop
To enable several parallelization options, we need

to transform the sequential loop into a parallel one; in
turn, this transformation allows the computation inner
core, {G2;G3;G4;G5}, to be executed in an SPMD
(single process, multiple data) pattern over P proces-
sors. Such a transformation can only be performed if
the iteration order is not essential and if the data depen-
dencies between sequential iterations can be removed.
To remove the data dependency between G3 and G5
(via G, as seen in Table 2), we assign each processor
its own copy the grid matrix, G.local. Further, because
the grid is computed by addition, which is both com-
mutative and associative, the iteration order is not im-
portant. Thus, after all computation is ready, an addi-
tional task (G5.final) is needed to sum all G.local’s into
a final G matrix.3 The new model becomes:

Gridding=G1;par(p=1..N)

{G2;G3;G4;G5};G5.final

Note that the same transformation is simpler for the
degridding kernel, as there is no data dependency be-
tween D2 and D5.

4.2.2. Data read (G1/D1)
The input task, G1, has to perform the I/O opera-

tions and will run on the PPE. Its output buffer, a col-
lection of (V , (u, v, w)) tuples, is located in the main
memory. For the off-line execution (input data is stored
in files), the parallelization among several PPEs is pos-
sible, but will only gain marginal application perfor-
mance by reducing the start-up time. In the case of on-
line (streaming) execution, parallelization is only use-
ful in the highly unlikely case of a streaming rate (i.e.,
G1’s input) much larger than the memory rate (i.e.,
G1’s output). Given these considerations, we did not
parallelize G1 (and, similarly, D1); further, these tasks
are not taken into account when measuring application
performance.

3This simple solution is possible for any operation that is both
commutative and associative, like addition in this case.

122 A.L. Varbanescu et al. / Building high-resolution sky images using the Cell/B.E.

Fig. 7. The execution phases of the parallel gridding kernel. The shaded part is a candidate for execution on each SPE. Bold dotted lines represent
off-core memory transfers.

4.2.3. The computation core (G2–G5/D2–D5)
Tasks G2, G3, G4, G5 represent the main compu-

tation core of the gridding kernel. Once the parallel
loop is in place, we have to map this sequence of tasks
and their data on the available SPEs, enabling several
instances to run on different data (SPMD). Figure 7
shows the task graph of application running on the PPE
and one SPE (the shaded part). The bold dotted lines
represent off-core memory transfers: because the tasks
running on the SPE can only process data in their own
local memory, they have to use DMA to fetch data from
the main memory, compute, and then use DMA again
to store the data in the main memory. Compared with
Fig. 6, these DMA transfers represent additional over-
head.

The new model is:

Gridding=G1@PPE;par(p=1..P)

{for(i=1..N/P){G2@SPE;

G3@SPE;G4@SPE}};G5@PPE

We further decompose the model by exposing the
DMA operations (note that G3@SPE} is replaced by
its DMA operations), and we obtain:

Gridding=G1@PPE;

par(p=1..P){

for(i=1..N/P){

DMA_RD(u,v,w);G2@SPE;

DMA_WR(g_index,c_index);

DMA_RD(g_index,c_index,

SK,V);G4@SPE;DMA_WR(SG);

DMA_RD(SG,G.local);G5@SPE;

DMA_WR(G.local)}

}; G5.final@PPE

4.2.4. The final addition (G5.final/D5.final)
The final computation stage, G5.final, computes

G by summing the SPE copies, G.local, using, for ex-
ample, a binary tree model [10]. However, as this com-
putation is not part of the main core, it represents only

a small fixed overhead (depending only on the num-
ber of SPEs and the grid size) to the overall application
time; thus, it is not parallelized and not included when
measuring application performance.

4.3. Mapping on the Cell/B.E.

Further, we investigate the mapping this model on
a Cell/B.E. processor for the streaming data scenario
(i.e., the most generic case for data input) and several
platform-specific optimizations.

4.3.1. Task mapping
To avoid expensive context switching, the mapping

of the G2, G3, G4 and G5 tasks on the SPEs can be
done in two ways:

• Assign one task per SPE, in a task-parallel model.
In this case, data is streaming between SPEs,
without necessarily going to the main memory.
One iteration takes TT

unit, and N/(NSPEs/4) iter-
ations can run simultaneously; tstream is the data
transfer time between two SPEs. Equation (7)
gives a rough estimation of the execution time for
this solution.

TT
unit = tG2 + tstream + tG3 + tstream

+ tG4tstream + tG5, (7)

TT
total =

N

NSPEs/4
× TT

unit =
4 × N

NSPEs
× TT

unit.

This solution is appealing due to its simplicity, but
we have dismissed it as the computation imbal-
ance between G2, G3, G4 and G5 leads to severe
core underutilization.

• Assign the entire chain, G2–G3–G4–G5, to one
SPE, in a pure SPMD model. The data is shared
in temporary buffers in the SPE local store and,
when running out of storage space, in the main
memory. Note that the number of DMA RD/WR
operations is reduced in the new parallel appli-

A.L. Varbanescu et al. / Building high-resolution sky images using the Cell/B.E. 123

cation model, due to data sharing via the local
store:

Gridding=G1@PPE;

par(p=1..P){

for(i=1..N/P){

DMA_RD(u,v,w);G2@SPE;

DMA_RD(SK,V);

G3@SPE;G4@SPE;

DMA_RD(G.local);

G5@SPE;DMA_WR(G.local)}

}; G5.final@PPE

For this new solution, one iteration takes TD
unit,

and N iterations can run simultaneously; Eq. (8)
presents a rough estimation of the execution
time:

TD
unit = tG2 + X ∗ tmm + tG3

+ Y ∗ tmm + tG4
(8)

+ Z ∗ tmm + tG5,

TD
total =

N

NSPEs
× TD

unit.

Note that TD
unit includes a potential overhead for

accessing the main memory, via the X , Y and Z
coefficients. Even so, this solution has a higher
performance potential and enables higher core
utilization, so we proceed to its implementation
and optimizations.

4.3.2. Data distribution
There are three main data structures used by the

SPEs computation: C, G and the (V , (u, v, w)) tuples.
A symmetrical data distribution is not possible for all
three of them, as consecutive visibility measurements
will generate non-adjacent regions in C and G. In other
words, a block of data from the visibilities array will
not map on a contiguous block in neither C nor G.
Thus, only one array shall be symmetrically distributed
to the SPEs. There are two good candidates for this ini-
tial distribution: the grid and the visibilities.

G is the smallest array and the one with the highest
re-use rate (i.e., more additions are made for each grid
point). However, a symmetrical distribution of grid re-
gions to all SPEs will generate a severe load imbalance
between SPEs because the grid is not uniformly cov-
ered by real data processing – see also Fig. 5.

Due to its sequential access pattern, the (V , (u, v, w))
tuples array is also suitable for symmetrical distribu-

tion. For offline processing, a simple block distribution
can be used to spread the N visibilities on the NSPEs
cores. For online processing, some type of cyclic dis-
tribution is required to keep the load and utilization
uniform among the SPEs.

Next, we need to verify that all data structures used
by G2–G3–G4–G5 fit in the memory of a single SPE.
The required data size for all three tasks, as computed
from Table 2, is:

Size = sizeof(SK) + sizeof(SG) + sizeof(SG′)

+ sizeof((u, v, w)b,t, gindex, cindex, Vb,t)

= 3 × m2 × sizeof(complex)

+ (4 × sizeof(complex))

∼ 3 × m2 × sizeof(complex). (9)

Given the local store size of 256 kB (= 32K complex
numbers), we can estimate the maximum size of the
convolution kernel to be SKM = m × m = 100 × 100,
which is smaller than the required 129×129 maximum.
Thus, the G2–G3–G4–G5 chain cannot run without
communicating with the main memory via DMA (i.e.,
in Eq. (8), X , Y , Z �= 0). To minimize the DMA over-
head influence on the TD

unit, we resort to double buffer-
ing and pipelining.

Double buffering and pipelining. Because the
Cell/B.E. DMA operations can be asynchronous, we
overlap computation and communication to increase
the application parallelism. The new application model
(note that G3@SPE has been replaced by its implemen-
tation, the two DMA_RD operations for SK and SG) is:

Gridding=G1@PPE;

par(p=1..P){

for(i=1..N/P){

par(DMA_RD(u,v,w),

G2@SPE(u,v,w),DMA_RD(V),

DMA_RD(SK),

G4@SPE(V,SK,SG’.local),

DMA_RD(SG.local),

G5@SPE(SG’.local,G.local),

DMA_WR(SG.local));

}; G5.final@PPE

For a simpler implementation, the tasks chain is “bro-
ken” into: the indices computation (G2@SPE), which
only depends on scalar data, like ((u, v, w), V) and
the grid computation, (G4@SPE-G5@SPE), which re-

124 A.L. Varbanescu et al. / Building high-resolution sky images using the Cell/B.E.

quires the array data sets. For the G2@SPE, the com-
putation itself is overlapped with the DMA transfer
of the visibility data, V . For the rest of the chain,
we need to solve two more DMA-related constraints:
(1) a single DMA operation is limited to 16 kB of data,
and (2) one transfer works only on contiguous data
regions. For SKM , for which the convolution matrix
construction guarantees that all m × m elements are
in a contiguous memory region, we need dmaSKM

=
sizeof(SKM)/16 kB = m2 × 8 consecutive transfers.
For SGM , which is a rectangular subregion in a ma-
trix, we need to read/write each line separately, thus
implementing dmaSGM

= m consecutive DMA trans-
fers. As the grid is read one line at a time, the com-
putation of the current line can be overlapped with the
reading/writing of the next line. This pipeline effect is
obtained by double buffering. The detailed model is:

Gridding=G1@PPE;

par(p=1..P){

for(i=1..N/P){

DMA_RD(u,v,w);

G2@SPE(u,v,w) || DMA_RD(V));

pipeline (k=1..m-1) {

DMA_RD(SK[k,*]);

DMA_RD(SK[k+1,*]) ||

G4@SPE(V,SK[k,*],

SG’.local[k,*]);

DMA_RD(SG.local[k,*]);

par{DMA_RD(SG.local[k+1,*]),

G5@SPE(SG’.local[k,*],

SG.local),

DMA_WR(SG’.local[k-1,*]));}

}

}; G5.final@PPE

We estimate the new TD
unit in Eq. (10):

TD
unit = tDMA_RD + max(tDMA_RD, tG2)

+ m ×
(
tDMA_RD + max(tDMA_RD, tG4)

+ tDMA_RD

+ max(tDMA_RD, tG5, tDMA_WR)
)
. (10)

SIMD-ization. Finally, we need to optimize the com-
putation code itself, by applying core specific opti-
mizations: loop unrolling, SIMD-ization, branch re-
moval, etc. However, due to the small amount of com-
putation, as well as its overlap with communication,
these optimizations may not have a significant impact

in the overall execution time. Nevertheless, we have
implemented the core computation of both G4 and
G5 using the Cell/B.E. SIMD intrinsics. Although a
theoretical speed-up factor of 4 can be obtained for
perfect code SIMD-ization, the observed improvement
has been not larger than 40%.

4.4. Application-specific optimizations

Note that all the optimizations presented so far are
data independent, addressing only the structure of the
application and not its runtime behavior. In this final
parallelization step, we discuss a few additional, data-
dependent optimizations, which aim to increase data
locality and re-use between consecutive data samples.
The experimental results presented in Section 5 show
how important these data optimizations can be for the
overall application performance.

4.4.1. SPE-pull vs. PPE-push
Online data distribution from the PPE to the SPEs

can be performed either by the PPE pushing the data
(i.e., sending the address of the next elements) or by
the SPE pulling the data (i.e., the SPE knows how to
compute the address of its next assigned element). Al-
though the SPE-pull model performs better, it is less
flexible as it requires the data distribution to be known.
The PPE-push model allows the implementation of a
dynamic master-worker model, but the PPE can eas-
ily become the performance bottleneck. The choice or
combination between these two models is highly ap-
plication dependent; for example, in the case of grid-
ding/degridding, all data-dependent optimizations are
based on a PPE-push implementation.

4.4.2. Input data compression
A first observation: if a set of n visibility samples

generate the same (c_index,g_index) pair, thus
using the same SK for updating the same G region, the
projection can be executed only once for the entire set,
using the sum of all n data samples:

SG′ =
n∑
i

SK × V [i] = SK ×
n∑
i

V [i].

We have only applied this optimization for consec-
utive samples. We have noticed that this data com-
pression gives excellent results for (1) a single base-
line, when the frequency channels are very narrow,
or (2) for a large number of baselines, where equal
(c_index,g_index) pairs appear by coincidence
on different baselines. Further, there is a higher prob-

A.L. Varbanescu et al. / Building high-resolution sky images using the Cell/B.E. 125

ability of such sequences to form when the visibility
data is block-distributed rather than cyclic-distributed.

However, compressing these additions is limited by
an upper bound, due to concerns related to accuracy.
This upper limit, i.e., a maximum numbers of additions
that preserve accuracy, is computed such that the over-
all error is not larger than the accepted level of noise.
Lower noise levels will decrease the impact of this op-
timization.

4.4.3. PPE dynamic scheduling
To increase the probability of sequences of visibil-

ities with overlapping SK and/or SG regions, the PPE
can act as a dynamic data scheduler: instead of as-
signing the visibility samples in the order of their ar-
rival or in consecutive blocks, the PPE can compute the
(c_index,g_index) pair for each V (u, v, w)b,t
and distribute the corresponding data to an SPE that al-
ready has more data in that region. To balance the PPE
scheduling with the SPE utilization, a hybrid push-
pull model is implemented using a system of shared
queues. Each queue is filled by the PPE, by cluster-
ing visibility data with adjacent SK’s and SG’s while
preserving load balancing and consumed by one SPE.
As the PPE requires no intermediate feedback from
the SPEs, there is virtually no synchronization over-
head. The PPE may become a bottleneck only if the
visibilities clustering criteria are too restrictive and/or
too computationally-intensive; implementing multiple
threads on the PPE side may partially alleviate this
problem.

4.4.4. Grid lines clustering
Each SPE has in its own queue a list of Nq visibili-

ties that need to be gridded, so it computes a m×m ma-
trix for each one of them. However, as the computation
granularity is lower (i.e., we compute one line at a time,
not the entire subregion), and because a DMA opera-
tion can fetch one complete grid line, the SPE can com-
pute the influence of several visibilities on the com-
plete grid line. Thus, the SPE iterates over the G lines,
searches its local queue for visibilities that need to be
gridded on the current G line, and computes all of them
before moving to the next grid line. This approach in-
creases the grid re-use, but it also increases the compu-
tation for each visibility by additional branches.

4.4.5. Online and offline sorting
Finally, the best way to increase data re-use is to

be able to sort the data samples by their (g_index)
coordinate. In the offline computation mode, sorting
all visibilities may enable a simple and balanced data
block distribution among the SPEs. However, as the

data volume is very large, such an overall sort may be
too expensive. The other option (also valid in the case
of online data processing) is for the SPEs to sort their
own queues before processing them. Such an operation
is very fast (at most a few thousands of elements need
to be sorted), and it increases a lot the efficiency of the
grid-lines clustering trick.

4.5. Parallelization summary and guidelines

The outline of our parallelization approach is:

1. Identify the main computation core of the appli-
cation, and recognize a data-intensive behavior
by evaluating its computation : communication
ratio.

2. Split the application into tasks and draw the se-
quential task graph. Evaluate the data I/O and
memory footprint of each task.

3. Depending on the number of tasks and their load,
evaluate the potential task mappings on the avail-
able SPEs; tasks on separated SPEs communi-
cate by data streaming, while tasks running on
the same SPE share data in the local store and/or
main memory. Choose the solutions that offer the
highest number of parallel instances.

4. Evaluate data distribution options. For static,
symmetrical distributions, use either data that is
sequentially accessed or data that is frequently
reused. For irregularly accessed data, introduce
a PPE-based scheduler to dynamically distribute
data among the SPEs.

5. When using a PPE-scheduler, implement a
queue-based model for the SPEs, to increase
SPE utilization and reduce unnecessary synchro-
nization overhead. Further, implement a multi-
threaded version of the PPE computation and re-
serve at least one thread for the queue filling,
such that this operation is only marginally af-
fected by other PPE tasks.

6. Analyze and implement any potential data-
dependent optimization on the PPE scheduler;
note that such a transformation may require mod-
ifications to the SPE code as well.

7. Expand the model to include the data transfers,
including the DMA operations. Remove the I/O
dependencies between tasks on the same SPE and
evaluate the data streaming performance for tasks
running on different SPEs.

8. Verify the memory footprint for each task or
combination of tasks. If too large, reduce task
granularity to fit, and recompose up to the origi-
nal computation size using a pipeline model.

126 A.L. Varbanescu et al. / Building high-resolution sky images using the Cell/B.E.

9. Analyze communication and computation over-
lapping by either double-buffering of instruction
reshuffling.

10. Implement core-specific optimizations and even-
tual application-specific optimizations.

Using these guidelines, any other data-intensive ap-
plication can be parallelized on the Cell/B.E. Although
the speed-up factor obtained using this approach is
highly application dependent, the queue-based sched-
uling on the PPE side offers a good solution for in-
creased core utilization.

5. Experiments and results

This section presents our experimental study on
the performance and scalability of the gridding/de-
gridding implementations on the Cell/B.E. We include
a detailed performance analysis which, together with
the novel experimental results for processing multiple
baselines on a single Cell/B.E. processor complement
our previous work [29].

Our performance study focuses on high-level appli-
cation optimizations. Therefore, although we have im-
plemented the typical SPE-level optimizations (includ-
ing DMA double buffering, SIMD-ization and loop un-
rolling), we do not present in detail the improvements
they provide over non-optimized code (details can be
found in [28]). Rather, we discuss the custom optimiza-
tions at the job scheduling level, i.e., at the administra-
tion of the PPE–SPE job queues. Further, we analyze
the effect of data-dependent optimizations. Finally, we
present the performance and scalability analysis of the
fully optimized application, and discuss the impact of
results on the on-line application scenario.

5.1. The experimental set-up

All the Cell/B.E. results presented in this paper have
been obtained on a QS21 blade, provided for remote
access by IBM. We have validated the blade results by
running the same set of experiments (up to 6 SPEs)
on a local PlayStation 3 (PS3). The results are consis-
tent, excepting the cases when the overall PS3 memory
is too small for the application footprint, leading to a
rapid decrease in performance. For example, gridding
with a support kernel larger than 100 × 100 elements
is twice as slow as the sequential application, while
several attempts to test the application on more than
500 baselines have crashed the PS3 multiple times.

We compare these results with a reference time,
measured for the execution of the original, sequential
application on an Intel Core2-Duo 6600 processor, run-
ning at 2.4 GHz.4

The application is implemented using SDK3.0. We
have used three different test data sets, (V , (u, v, w))b,t:
real data, i.e., a collection of real data gathered
by 45 antennas in an 8-hours observation session
(990 baselines, with 2880 data samples on 16 fre-
quency channels each); randomly generated data and
single-value data, i.e., all (u, v, w)b,t coordinates are
equal.

The main performance metric for the gridding and
degridding is the execution time: ultimately, the as-
tronomers are interested in finding out how fast the
problem can be solved. Therefore, we present our per-
formance results using time per gridding, a normalized
metric defined as the execution time of any of the two
kernels divided by the total number of operations that
were performed. The smaller the time per gridding is,
the better the performance is. For the purpose of esti-
mating how good the performance we achieve is in ab-
solute terms, we also report the application throughput,
which is computed by estimating the useful computa-
tion FLOPs for each gridding operation, and dividing
by the measured time per gridding.

Finally, as both gridding and degridding involve a
similar computation pattern and the measured results
follow the same trends, we only plot and discuss the
gridding results (for specific results on degridding, we
refer the reader to [28]).

5.2. A first Cell/B.E. implementation

The first Cell/B.E. implementation is based on a
PPE scheduler that uses separate job queues for each
SPE. The PPE fills each queue with pairs of the
(c_index,g_index) indices – i.e., the coordi-
nates from where the SPE has to read the support ker-
nel, SK, and the grid subregion, SG. The PPE fills
the queues in chunks, with a fixed size of (at most)
1024 pairs per queue.

On the SPE side we have implemented a “standard
set” of optimizations. Because the convolution matrix
was reorganized such that any usable support kernel
is contiguous in memory, SK is fetched (after proper
padding for alignment and/or size) either using a sin-

4The choice for this particular machine was only due to availabil-
ity, and we use the execution time on Core2-Duo only as a measure
of the performance of the reference sequential code, not as a measure
of the potential performance of this particular processor.

A.L. Varbanescu et al. / Building high-resolution sky images using the Cell/B.E. 127

gle DMA operation or a DMA-list, depending on its
size. As the grid subregion SG is a rectangular sec-
tion from the G matrix, it requires reading/updating
line by line. Therefore, for SG, we have implemented
multi-buffering: while the current grid line is being
processed, the next one is being read and the previ-
ous one is being written. As each SPE works on a
“proprietary” grid, no inter-SPE synchronization for
reads and/or writes is necessary. For each (SK, SG)
pair, the visibility computation, i.e., the loop that com-
putes the m × m complex multiplications, is SIMD-
ized. Because complex numbers are represented as
(real,imaginary) pairs, the loop is unrolled by
a factor of 2, and each iteration computes two new
grid points in parallel. Finally, the queue is polled reg-
ularly: the SPE performs one DMA read to fetch the
current region of the queue it is working on. All new
(c_index,g_index) pairs are processed before a
next poll is performed.

The performance of one visibility computation (the
compute intensive part of the gridding) reaches
9 GFlops for the largest kernel, and 2.5 GFlops for
the smallest one. Therefore, more aggressive optimiza-
tions can still be performed to increase the SPE per-
formance. However, this path requires significant SPE
code changes (which are interesting for future work),
without solving the overall memory bottleneck of the
application. In the remainder of this section, we fo-
cus on high-level optimizations and their ability to ef-
ficiently tackle the memory-intensive behavior of the
application.

We have tested our first Cell/B.E. implementation on
real data collected from 1, 10 and 100 baselines, using
seven different kernel sizes. For each kernel size, we
have measured the time per gridding using the platform
at 100%, 50%, 37.5%, 25%, 12.5% and 6.25% of its
capacity (16, 8, 6, 4, 2 and 1 SPEs, respectively). Fig-
ure 8 presents the performance results for gridding real
data collected from 100 baselines, using four represen-
tative support kernel SK sizes (between 17 × 17 and
129 × 129). The results show that the performance in-
creases with the size of the support kernel. This behav-
ior is due to the better computation-to-communication
ratio that larger kernels provide: a longer kernel line
requires more computation, which hides more of the
communication overhead induced by its DMA-in oper-
ation. We also point out that for this initial implemen-
tation, the performance gain is not significant when us-
ing more than 4 SPEs, a clear sign that the platform is
underutilized.

When running the gridding for 10 baselines, a small
performance loss – less than 5% is observable versus

Fig. 8. Time per gridding results for seven different kernel sizes. The
best performance is achieved for the largest kernel size, which allows
for the best computation-to-communication ratio. Note the logarith-
mic Y scale.

the 100-baselines data set. Further, the performance
obtained for the 10-baselines data set is up to 20% bet-
ter than the performance obtained for a single baseline.
This improvement is due to the larger amount of work,
which in turn leads to better utilization and load bal-
ancing among SPEs.

Figure 9(a) presents the application throughput for
the same reference Cell/B.E. implementation, using
the same 100-baselines data set. We notice the through-
put increases for larger support kernels, but it still re-
mains below 10% of the theoretical peak performance
(25.6 GFlops per SPE). Figure 9(b) shows the appli-
cation throughput per core, where the original imple-
mentation, running on the Core2-Duo, outperforms the
Cell/B.E. version. Finally, Fig. 10 shows the applica-
tion throughput for the largest support kernel (129 ×
129) on all three data sets: 1, 10 and 100 baselines.
The results show that the througput increases with the
number of baselines.

5.3. Improving the data locality

We tackle data locality problem at two levels: at
the PPE level, by controlling the way the queues are
filled, and on the SPE level, by detecting overlapping
C and/or G regions to be grouped, thus skipping some
DMA operations. Remember that the PPE distributes
data to the SPE queues in “chunks”, such that each
queue receives a sequence of (c_index,g_index)
pairs (not a single one) before the next queue is filled.
To optimize this distribution, the PPE checks on-the-fly
if multiple consecutive (c_index,g_index) pairs
overlap, case in which they are all added into the same
queue. When the SPEs read their queues, they can ex-
ploit the data locality these sequences of pairs pro-
vide. Additionally, we have added a local SPE sorting

128 A.L. Varbanescu et al. / Building high-resolution sky images using the Cell/B.E.

(a) (b)

Fig. 9. Application throughput for the first Cell/B.E. implementation (a) per platform and (b) per core for 4 different SK sizes. Note that the best
throughput is obtained for the largest kernel, 129 × 129.

Fig. 10. Application throughput for SK = 129 × 129 for the first
Cell/B.E. implementation running on data from 1, 10 and 100 base-
lines.

algorithm for the queues. As a result, multi-baseline
data locality can be exploited to further increase per-
formance.

Figure 11 shows the performance of the application
with the same fixed 1024 queue chunks on the PPE
side, but including the data sorting on the SPE side.

We have also measured the performance effect of
the chunk size variations for queue filling. Figure 12
shows the performance effect of six such sizes (64,
128, 256, 512, 1024 and 2048) for the same 100 base-
lines. We have only plotted the time per gridding of
the 8 and 16 SPEs configurations with a support ker-
nel of 129 × 129. The difference in performance can

reach even 25% between the best and the worst tested
cases. Furthermore, the best chunk sizes are not the
same for both configurations, which indicates that a
further study needs to address a way to compute this
parameter as a function of the kernel size and the num-
ber of SPEs.

5.4. PPE multithreading

An important performance question is whether the
PPE acting as a dynamic scheduler for the visibility
data in the SPE queues can lead to a performance bot-
tleneck. In other words, is there any danger of the
PPE queues filling rate to be too small for the SPE
processing rate? To answer this question, we have im-
plemented a multi-threaded PPE version. Given that
the QS21 blade we have used for experiments has
2 Cell/B.E. cores, we can run up to 4 PPE threads
in parallel. We have measured the application perfor-
mance when using 1, 2 and 4 PPE threads that fill the
queues in parallel. The performance variations – within
5% of the PPE multi-threaded version when compared
with the single-threaded version, are not a conclusive
indication for the initial question. Therefore, we do
not use the additional PPE threads, and we intend to
conduct further investigation to determine if there is
any other way to increase performance by PPE multi-
threading.

5.5. Data-dependent optimizations

Finally, we have also applied the “data set com-
pression” optimization, by avoiding replacing complex

A.L. Varbanescu et al. / Building high-resolution sky images using the Cell/B.E. 129

(a) (b) (c)

Fig. 11. The performance of the Cell/B.E. gridding with sorted SPE queues, running on data from (a) 1, (b) 10 and (c) 100 baselines. Due to the
increased data locality, the application performance is significantly better.

Fig. 12. The influence of the chunk sizes to the overall perfor-
mance of the application. For example, the difference in performance
reaches 23.5% for a 16 SPEs configuration. Note the logarithmic
scale for the x axis.

multiplication with a complex addition any time a se-
quence of identical pairs, c_index,g_index, have
to be scheduled. This optimization increases the execu-
tion time on the PPE side (and its utilization as well),
but can lead to good performance by minimizing the
DMA transfers on the SPE side. Despite the increase in
performance, the SPE utilization for this solution is not
significantly increased – the performance comes from
reducing the number of computations the SPE has to
solve and slightly increasing the computation on the
PPE side. Note that this optimization is more efficient
on the PPE side, as branches are more expensive on the
SPEs.

Figure 13 shows the performance of the application
with these data optimizations enabled.

Because a computation of the application through-
put is no longer useful here, we give an estimate on our
improvement by comparing the gained performance
with the real measurements against two particular data

sets: a random one, and one with all (u, v, w) values
identical. Figure 14 shows these results. Note that, as
expected, the data-compression on real measurements
“fits” the real curve between the best – the one-value
set – and the worst – the random set.

5.6. Summary

5.6.1. Best overall performance
To conclude our performance quest, we present a

comparison between the performance obtained by the
reference code and our Cell/B.E. implementation when
running on data from the complete set of 990 baselines.
Figure 15 present these results.

The speed-up factor on the 16 SPE of the QS21
blade versus the original implementation is between 3
and 8, while the data-dependent optimizations can in-
crease this factor to more than 20.

Further, we present a comparison of the performance
evolution for four different kernel sizes. The graph
presents the performance of two sequential implemen-
tations, with and without data-dependent optimiza-
tions, as well as the performance of the Cell/B.E. im-
plementation, using 1 or 2 processors (8 and 16 SPEs,
respectively) from the QS21 blade, without any opti-
mizations, with the queue sorting, and with the same
data dependent optimizations. Figure 16 presents all
these results. Note that for small kernel sizes, the per-
formance difference between the Cell/B.E. and the
original implementation running on an Intel Core2-
Duo is not very large. However, as soon as the sup-
port kernel size increases, the gap becomes signifi-

130 A.L. Varbanescu et al. / Building high-resolution sky images using the Cell/B.E.

(a) (b) (c)
Fig. 13. The performance of application with the aggressive data-dependent optimizations, running on data from 1, 10 and 100 baselines. Note
that the Core2-Duo application has been also optimized using similar data-dependent optimizations.

(a) (b) (c)

Fig. 14. The overall application performance for different kernel sizes. The number of baselines is 100. ‘Ms’ stands for the real measurements
data set, while ‘Rnd’ and ‘Eq’ stand for the random and one-value sets, respectively.

cantly larger. Finally, note that the impact of the data-
dependent optimizations is also significant for the se-
quential application.

5.6.2. Scalability
We estimate the scalability of this implementation

by studying its behavior for various numbers of base-
lines. Figure 17(a–c) shows how the fully optimized
application behaves for 1, 10, 100, 500 and 990 base-
lines. Note that for one baseline, the execution time
is small, mainly because the work volume is small.
For 10+ baselines, we notice a significant execu-
tion time increase (20%) – this happens because of a
larger amount of data, exhibiting low data re-use. For
100 baselines or more, data re-use is increasing, thus
the aggressive data-dependent optimizations become

more important in the overall execution time. Over-
all, increasing the baseline numbers between 100 and
990 does not affect performance significantly, which in
turn signals good application scalability with the num-
ber of baselines (i.e., the size of the data set). Note
the difference in scale (more than a factor of 5) be-
tween the performance for small kernels and large ker-
nels.

5.6.3. Streaming
Finally, based on the overall performance, we eval-

uate if the application can be used for online process-
ing. In this scenario, data is streaming in at a given
rate, and the current samples have to processed be-
fore the new set of samples is read. We have simulated
data samples from a large number of baselines by ran-

A.L. Varbanescu et al. / Building high-resolution sky images using the Cell/B.E. 131

Fig. 15. The overall performance of the best implementation versus
the original, reference code. The number of baselines is 990. Note
the logarithmic scale.

Fig. 16. The performance evolution for both the original imple-
mentation (“Pentium”) and the Cell/B.E. implementations (1 and
2 processors). “noop” stands for no optimizations, “op” stands for
data-dependent optimizations, “sort” refers to sorted SPE queues,
and “all” is the Cell/B.E. version with all optimizations. Note the
logarithmic scale.

dom numbers, and we have measured the time per grid-
ding for SKM = 129 × 129 to be about 0.22 ns, or
a time per spectral sample of 3.66 µs. For a stream-
ing rate of 1 measurement/second, we have to process
B × Nfreq spectral samples every second. The cur-
rent performance level allows about 260 baselines with
1024 frequency channels, or more than 530 baselines
with 512 frequency channels. Above these limits, i.e.,
if the application generates more samples per second,
the streaming rate is too high for the application per-
formance, and the online processing will either require
temporary buffering space, or multiple processors to
split the load.

Given all these results, we conclude that the applica-
tion can reach about 20–30% of the Cell/B.E. peak per-
formance, depending on the particular problem size.
Furthermore, our approach is scalable and optimized
such that it manages to increase the radioastronomers’
productivity by a factor of 20. Even further, these re-
sults indicate that using this implementation, on-line
processing is possible using a single Cell/B.E. for sys-
tems of up to 500 baselines and 500 frequency chan-
nels. Future work will focus on increasing the SPE
code performance, as well as on even finer tuning
of the queuing system (automatic adjustments of the
queue sizes, comparisons with other dynamic schedul-
ing options, etc.). Finally, we note that similar appli-
cations are to be found also in other novel HPC fields,
like medical imaging [21,23] or oil reservoir character-
ization [19].

(a) (b)

Fig. 17. Application scalability for 1, 10, 100, 500 and 990 baselines, and two different kernel sizes: (a) the smallest, 17 × 17, and (b) the largest,
129 × 129. The performance decreases between 1 and 10 baselines (due to the data-dependent optimizations, which reduce the input data set),
but increases from 10 to 100+ baselines, a positive sign for the real application scale.

132 A.L. Varbanescu et al. / Building high-resolution sky images using the Cell/B.E.

6. Related work

In this section we present a brief overview of pre-
vious work related to both high-performance radioas-
tronomy applications and significant Cell/B.E. case-
studies. In this context, our work proves to be rele-
vant for both fields, quite disjoint until very recent
times.

On the Cell/B.E. side, applications like RAxML [3]
and Sweep3D [18], have also shown the challenges
and results of efficient parallelization of HPC applica-
tions on the Cell/B.E. Although we used some of their
techniques to optimize the SPE code performance,
the higher-level parallelization was too application-
specific to be reused in our case.

Typical ports on the Cell, like MarCell [12], or real-
time ray tracing [2] are very computation intensive,
so they do not exhibit the unpredictable data access
patterns and the low number of compute operations
per data byte we have seen in this application. Irregu-
lar memory access applications like list-ranking have
been studied in [1]. Although based on similar tasks
decompositions, the scheme proposed in our work is
simpler, being more suitable for data-intensive appli-
cations.

Despite all these excellent case-studies for applica-
tions and application types, Cell/B.E. has only been
used recently for radioastronomy applications, mainly
due to I/O and streaming concerns. In fact, astrono-
mers mainly use shared memory and MPI to paral-
lelize their applications on large supercomputers. To
use MPI on Cell/B.E., a very lightweight implementa-
tion is needed and tasks must be stripped down to fit in
the remaining space of the local store. The only MPI-
based programming model for Cell is the MPI micro-
task model [17], but the prototype is not available for
evaluation. OpenMP [16] is not an option as it relies on
shared-memory.

Currently, efforts are underway to implement other
parts of the radio-astronomy software pipeline, such as
the correlation and calibration algorithms on Cell and
GPUs. Correlation may be very compute-intensive, but
it is much easier to parallelize – it has already been
implemented very efficiently on Cell and FPGAs [8].
Apart from the general-purpose GPU frameworks like
CUDA [15] and RapidMind [14], we are following
with interest the work in progress on real-time imaging
and calibration [30], which deals with similar applica-
tions.

7. Conclusions and future work

HPC applications are hard to port efficiently on
multi-core processors, due to the multiple levels of
parallelism that need to be properly exploited. Even
worse, some applications are not naturally suitable for
these processors. In these cases, additional effort needs
to be put in parallelization, implementation, and op-
timizations to be able to achieve (very) good perfor-
mance.

The gridding/degridding kernels are good examples
of such applications. Used extensively in radioastron-
omy imaging, these data intensive kernels require a
specific parallelization approach to obtain an efficient
and scalable implementation on the Cell/B.E. In this
paper, we have shown how to build a parallelization
model for these two kernels, as well as how to im-
plement and optimize it. In the modeling phase, we
have used a top-down approach, starting from the
high-level application parallelization (i.e., the task and
data distribution between cores), and decomposing the
model until (some of) the low-level parallelization lay-
ers could be exposed (i.e., double buffering, SIMD-
ization). We have shown that the top-down decompo-
sition of the model can capture enough information
to allow for a quick, yet correct implementation. Both
the modeling and the implementation techniques can
be easily adapted and reused to other similar applica-
tions.

Further, we have evaluated a series data-dependent
optimizations. Although such optimizations are hard
to re-use directly, the performance improvements they
have produced show that data-dependent application
behavior has to be studied and, if possible, exploited.

Our performance results are very good: after stan-
dard optimizations, the speed-up factor of the par-
allel application running on a Cell blade (16 SPEs,
from 2 Cell/B.E. processors) over the original, se-
quential application running on a commodity machine
is between 5 and 10; after applying the application-
specific optimizations, the speed-up factor has grown
to more than 20. The overall programming effort was
about 2.5 men-months. These results, combined with
the proven application scalability, prove that a sin-
gle Cell/B.E. can handle on-line processing for over
500 baselines and 500 frequency channels, when data
is streamed at a rate of 1 sample/second.

For the future, we plan to evaluate the performance
of the same application on other multi-core proces-

A.L. Varbanescu et al. / Building high-resolution sky images using the Cell/B.E. 133

sors and, based on a productivity study, to classify the
most efficient multi-core processor for radioastronomy
imaging.

Acknowledgments

We would like to thank Michael Perrone, Fabrizio
Petrini, and Daniele Scarpazza from IBM T.J. Watson,
as well as Andrew Mattingly from IBM Australia, for
their help.

References

[1] D. Bader, V. Agarwal, K. Madduri and S. Kang, High perfor-
mance combinatorial algorithm design on the Cell Broadband
Engine Processor, Parallel Computing 33(10/11) (2007), 720–
740.

[2] C. Benthin, I. Wald, M. Scherbaum and H. Friedrich, Ray trac-
ing on the Cell processor, in: IEEE Symposium of Interactive
Ray Tracing, IEEE Computer Society Press, Los Alamitos, CA,
USA, 2006, pp. 15–23.

[3] F. Blagojevic, A. Stamatakis, C. Antonopoulos and D.S.
Nikolopoulos, RAxML-CELL: Parallel phylogenetic tree con-
struction on the Cell Broadband Engine, in: IEEE International
Parallel and Distributed Processing Symposium, IEEE Press,
Los Alamitos, CA, USA, 2007.

[4] A. Buttari, P. Luszczek, J. Kurzak, J. Dongarra and G. Bosilca,
SCOP3: A rough guide to scientific computing on the PlaySta-
tion 3, Technical Report UT-CS-07-595, Innovative Computing
Laboratory, University of Tennessee Knoxville, 2007.

[5] T. Cornwell, K. Golap and S. Bhatnagar, W-projection: A new
algorithm for wide field imaging with radio synthesis arrays,
in: Astronomical Data Analysis Software and Systems XIV,
Pasadena, CA, USA, October 2004, pp. 86–95.

[6] T.J. Cornwell, SKA and EVLA computing costs for wide field
imaging, Experimental Astronomy 17 (2004), 329–343.

[7] T.J. Cornwell and R.A. Perley, Radio-interferometric imaging
of very large fields – The problem of non-coplanar arrays, As-
tronomy and Astrophysics 261 (1992), 353–364.

[8] L. de Souza, J.D. Bunton, D. Campbell-Wilson, R.J. Cappallo
and B. Kincaid, A radio astronomy correlator optimized for
the Xilinx Virtex-4 SX FPGA, in: International Conference on
Field Programmable Logic and Applications, IEEE Press, Los
Alamitos, CA, USA, 2007, pp. 62–67.

[9] M. Gschwind, Chip multiprocessing and the Cell Broadband
Engine, in: ACM Frontiers, ACM Press, New York, NY, USA,
2006, pp. 1–8.

[10] J. JaJa, Introduction to Parallel Algorithms, Addison-Wesley
Professional, Reading, MA, USA, 1992.

[11] M. Kistler, M. Perrone and F. Petrini, Cell multiprocessor com-
munication network: Built for speed, IEEE Micro 26(3) (2006),
10–23.

[12] L.-K. Liu, Q. Liu, A.P. Natsev, K.A. Ross, J.R. Smith and A.L.
Varbanescu, Digital media indexing on the Cell processor, in:
IEEE International Conference on Multimedia and Expo, Bei-
jing, China, July 2007, pp. 1866–1869.

[13] W. Liu, B. Schmidt, G. Voss and W. Müller-Wittig, Molecu-
lar dynamics simulations on commodity GPUs with CUDA,
in: High Performance Computing, Springer, Berlin/Heidelberg,
Germany, 2007, pp. 185–196.

[14] M. McCool, Signal processing and general-purpose comput-
ing on GPUs, IEEE Signal Processing Magazine 24(3) (2007),
109–114.

[15] nVidia, CUDA – Compute Unified Device Architecture Pro-
gramming Guide, 2007.

[16] K. O’Brien, K. O’Brien, Z. Sura, T. Chen and T. Zhang, Sup-
porting OpenMP on the Cell, in: International Workshop on
OpenMP, Springer, Dordrecht, The Netherlands, 2007, pp. 65–
76.

[17] M. Ohara, H. Inoue, Y. Sohda, H. Komatsu and T. Nakatani,
MPI microtask for programming th Cell Broadband Engine
processor, IBM Systems Journal 45(1) (2006), 85–102.

[18] F. Petrini, J. Fernàndez, M. Kistler, G. Fossum, A.L. Var-
banescu and M. Perrone, Multicore surprises: Lessons learned
from optimizing Sweep3D on the Cell Broadband Engine, in:
IEEE International Parallel and Distributed Processing Sym-
posium, Long Beach, CA, USA, March 2007.

[19] M. Prange, W. Bailey, H. Djikpesse, B. Couet, A. Mamonov
and V. Druskin, Optimal gridding: A fast proxy for large reser-
voir simulations, in: SPE/EAGE International Conference on
Reservoir Characterization, Abu Dhabi, UAE, 2007, pp. 172–
184.

[20] R. Rengelink, Y. Tang, A.D. Bruyn, G. Miley, M. Bremer,
H. Rttgering and M. Bremer, The Westerbork Northern Sky
Survey (WENSS), a 570 square degree mini-survey around the
North ecliptic pole, Astronomy and Astrophysics Supplement
Series 124 (1997), 259–280.

[21] D. Rosenfeld, An optimal and efficient new gridding algorithm
using singular value decomposition, Magnetic Resonance in
Medicine 40(1) (1998), 14–23.

[22] R.T. Schilizzi, P. Alexander, J.M. Cordes, P.E. Dewdney, R.D.
Ekers, A.J. Faulkner, B.M. Gaensler, P.J. Hall, J.L. Jonas and
K.I. Kellermann, Preliminary specifications for the square kilo-
metre array, Technical Report v2.4, www.skatelescope.org, No-
vember 2007.

[23] H. Schomberg and J. Timmer, The gridding method for image
reconstruction by Fourier transformation, IEEE Transactions
on Medical Imaging 14(3) (1995), 596–607.

[24] F. Schwab, Optimal gridding of visibility data in radio inter-
ferometry, in: Indirect Imaging, Cambridge University Press,
Cambridge, UK, 1984, pp. 333–340.

[25] A. Thompson, J. Moran and G. Swenson, Interferometry and
Synthesis in Radio Astronomy, Wiley-VCH, Germany, 2001.

[26] K. van der Schaaf, C. Broekema, G. Diepen and E. Meijeren,
The LOFAR central processing facility architecture, Experi-
mental Astronomy 17(1–3) (2004), 43–58.

[27] A. van Gemund, Performance prediction of parallel processing
systems: The PAMELA methodology, in: International Con-
ference on Supercomputing, ACM Press, New York, NY, USA,
1993, pp. 318–327.

134 A.L. Varbanescu et al. / Building high-resolution sky images using the Cell/B.E.

[28] A.L. Varbanescu, A. van Amesfoort, T. Cornwell, B.G.
Elmegreen, R. van Nieuwpoort, G. van Diepen and H. Sips,
The performance of gridding/degridding on the Cell/B.E.,
Technical report, Delft University of Technology, January
2008.

[29] A.L. Varbanescu, A. van Amesfoort, T. Cornwell, B.G.
Elmegreen, R. van Nieuwpoort, G. van Diepen and H. Sips, Ra-
dioastronomy image synthesis on the Cell/B.E. Technical re-
port, Delft University of Technology, August 2008.

[30] R. Wayth, K. Dale, L. Greenhill, D. Mitchell, S. Ord and
H. Pfister, Real-time calibration and imaging for the MWA
(poster), in: AstroGPU, Princeton, NJ, USA, November 2007.

[31] S. Williams, J. Shalf, L. Oliker, S. Kamil, P. Husbands and
K. Yelick, The potential of the Cell processor for scientific
computing, in: ACM International Conference on Computing
Frontiers, ACM Press, New York, NY, USA, 2006, pp. 9–20.

