
FAIRSECO: An Extensible Framework for Impact
Measurement of Research Software

Deekshitha ∗†‡, Siamak Farshidi ∗, Jason Maassen †, Rena Bakhshi †, Rob van Nieuwpoort †‡, Slinger Jansen ∗
∗Department of Information and Computing Sciences, Utrecht University, Utrecht, the Netherlands

{d.deekshitha,s.farshidi,slinger.jansen}@uu.nl
†Netherlands eScience Center, Amsterdam, the Netherlands
{j.maassen,r.bakhshi,r.vannieuwpoort}@esciencecenter.nl
‡University of Amsterdam, Amsterdam, the Netherlands

Abstract—The growing usage of research software in the
research community has highlighted the need to recognize and
acknowledge the contributions made not only by researchers
but also by Research Software Engineers. However, the existing
methods for crediting research software and Research Software
Engineers have proven to be insufficient. In response, we have
developed FAIRSECO, an extensible open source framework
with the objective of assessing the impact of research software
in research through the evaluation of various factors. The
FAIRSECO framework addresses two critical information needs:
firstly, it provides potential users of research software with
metrics related to software quality and FAIRness. Secondly, the
framework provides information for those who wish to measure
the success of a project by offering impact data. By exploring
the quality and impact of research software, our aim is to ensure
that Research Software Engineers receive the recognition they
deserve for their valuable contributions.

Index Terms—FAIR, research software engineering, software
impact measurement, software citations

I. INTRODUCTION

The FAIR4RS Working Group [1] defines research software
(RS) as source code files, algorithms, scripts, computational
workflows and executables created during the research process
or for a research purpose. In contrast, other types of software,
such as operating systems, libraries, dependencies, and pack-
ages are not explicitly created for research but are employed
in research activities.

Recent studies [2], [3] have shown that 33% of interna-
tional research produces new code and 90-95% of UK and
US researchers use and acknowledge RS as important for
their research. In many research projects, Research Software
Engineers (RSEs) closely collaborate with researchers to un-
derstand their challenges and to develop RS that helps to
provide the answers to their research questions [4]. Reusing
(parts of) RS is beneficial to the research community. It saves
time and effort and encourages collaboration and good coding
practices. By encouraging RS reuse, the developers increase
their work’s impact and foster a collaborative environment that
drives scientific progress [5].

Two factors contribute to the success of RS reuse. First, like
research data, the RS should be made FAIR [6], [7]. Following
the FAIR principles increases the potential for the RS to be

found and reused by other researchers, as well as encouraging
good coding practices and enabling software citation.

Second, when reusing RS, proper credit should be given
to the developers. Similar to scholarly papers and data sets,
RS should get recognition through citations. The current lack
of consistent software citation makes it difficult to measure
the reuse and impact of RS and creates challenges in giving
credit to RSEs for their contributions [8]. Properly citing RS
will assist the authors in obtaining financial support for further
software development, thereby improving the RSEs career
paths.

Many guidelines and tools exist that help developers im-
prove the FAIRness, quality, and citeability of their code [9],
[10], [34], [35], [36]. Currently, however, there is no single
framework RSEs can use to get an overview of the FAIRness,
quality and impact of their RS. Moreover, Gomez-Diaz and
Recio [9] and Istrate et al. [11] argue that there is currently
no sufficient method to evaluate the quality and impact of
RS. To address this issue, we have created the FAIR Re-
search Software Ecosystem (FAIRSECO) framework [37]. The
FAIRSECO framework is designed to combine different RS
metrics under one extensible framework. It combines data
from many existing tools that provide information on license
conflicts, dependencies, method-level code-reuse, bibliometric
analysis, citation metadata, FAIRness aspects, code indexing,
and Software Bill of Materials (SBOM) generation to generate
a concise overview of the quality, FAIRness, and impact of
RS. FAIRSECO then combines the output of these existing
tools into two scores, one for quality and one for impact. This
enables RSEs to quickly gain insight into the recognition their
software already receives and provide suggestions on how they
can improve the quality and potential impact of their software.

The idea of the FAIRSECO framework has been introduced
in a conceptual short paper [12]. However, that short paper
focuses only on impact measurement through method reuse.
While method reuse is important, we have evolved our FAIR
software ideas and significantly broadened our scope.

The contribution of current work is twofold:
• Integration of quality, FAIRness and impact measure-

ment tools into a single extensible framework: The
FAIRSECO framework consolidates a comprehensive

https://orcid.org/0000-0003-1831-8941
https://orcid.org/0000-0003-3270-4398
https://orcid.org/0000-0002-8172-4865
https://orcid.org/0000-0002-2932-3028
https://orcid.org/0000-0002-2947-9444
https://orcid.org/0000-0003-3752-2868

collection of tools designed to measure various aspects of
RS quality, FAIRness, and impact into a single, unified
framework. This provides researchers with a convenient
and efficient solution for measuring and assessing these
aspects of their RS.

• Quantifying the quality and impact of RS based
on key features: We provide a novel Quality Score
(Squality) for assessing the quality of RS based on
key features, incorporating FAIRness, license violations,
maintainability, and documentation as factors in the equa-
tion. By considering these aspects together, we provide a
robust and objective method for systematically measuring
and quantifying RS quality. Similarly, an Impact Score
(Simpact) is introduced based on three factors: the number
of citations, the number of reused methods, and the
Quality Score.

We organize this paper as follows. First, we show what other
tools are available and how they compare to the FAIRSECO
framework in the related work Section II. This includes a
brief description of each tool used by the FAIRSECO frame-
work. Next, a full description is provided of the FAIRSECO
framework in Section III. The FAIRSECO framework is then
demonstrated in action in Section IV by its application to
an existing RS project. The evaluation of five RS projects
using FAIRSECO is presented in Section V. Finally, the paper
concludes with a summary and discussion of the FAIRSECO
framework infrastructure and a set of steps to take in the near
future in Section VI.

II. RELATED WORK

We observed a shortage of tools and frameworks RSEs
could use to measure their impact on the RS ecosystem. There-
fore, we aimed to build an accurate framework for evaluating
software quality and measuring the effect of RS. To this end,
we reviewed FAIRSECO framework and existing tools focus-
ing on identification of license violation (license checking),
examining the dependencies of a software project for outdated
components or vulnerabilities (dependency checking), method
level checking of code reuse (method-level checking), analysis
of citation, impact related features (bibliometric analysis),
checking presence of citation (citation file checking), checking
compliance to the FAIR principles (FAIRness aspects), build-
ing the source code index (code indexing), and building a list
of all the components and dependencies used in a software
project (SBOM generation).

A. Tools of FAIRSECO

We integrated several tools and external data sources into
the FAIRSECO framework, namely, the tools HOWFAIRIS,
TORTELLINI, and SEARCHSECO.

HOWFAIRIS is a Python package to analyze a GitHub or
GitLab repository’s compliance with the recommendations
given on fair-software.eu [34]. The HOWFAIRIS generates
a FAIRness report with the help of FAIRTALLY [38]. Based
on this report, users identify areas where improvements are
needed to make their repository more compliant.

The Netherlands eScience Center has developed a tool
called TORTELLINI [36], a GitHub action that checks for any
licensing issues in a given software, such as incompatible
licenses in the software’s dependencies.

SEARCHSECO [13] is a hash-based index for code frag-
ments that enables searching for source code at the method
level in the global software ecosystem [14]. SEARCHSECO
supports a number of languages and deals with multi-language
projects.

Table I summarizes the functionality of each of the tools
described above. HOWFAIRIS focuses on citation file checking
and FAIRness aspect but lacks support for dependency check-
ing and other tasks. Similarly, SEARCHSECO only performs
method-level checking and code indexing, and TORTELLINI
only supports license checking. Finally, FAIRSECO frame-
work performs all listed tasks, except dependency checking. In
particular, FARSECO performs license checking, method-level
checking, citation file checking, FAIRness aspect checking,
code indexing with the help of HOWFAIRIS, TORTELLINI, and
SEARCHSECO. However, FAIRSECO is limited to the Github
repositories.

B. Related platforms

GitHub, the largest open-source repository, uses metrics
such as stars, watchers, and forks (as a part of its Bibliometric
Analysis) to measure the impact of software. The star system
in GitHub functions similarly to the ’like’ button in social
media platforms, indicating user interest or support for a
project or being used as a bookmark. However, there is a
lack of comprehensive and well-founded empirical research
to determine the exact meaning and practical implications of
’starring a project’ in GitHub [15]. The credibility of the
star metric on GitHub is questionable, as it is possible to
create counterfeit or bot accounts that are used to give an
excessive number of stars to a project. However, it performs
dependency checking through dependency bots, and if citation
file is present, it provides options for citing repository.

LIBRARIES.IO [39] is a platform designed to assist RSEs
in discovering new open-source libraries, modules, and frame-
works and keep track of the ones they rely on. Its primary
objective is to enhance software quality by addressing three
critical issues: discovery, maintainability, and sustainability.
LIBRARIES.IO performs dependency and license checking but
does not support the other tasks.

Depsy [16] measures impact of RS through software cita-
tions such as imports by other software and through references
to software from papers. It is, however, limited to the RS
available via the Python packages repository PyPI and the R
packages repository CRAN.

The tooling and services known as Software Heritage Graph
(SWH-GRAPH) [17] offer quick access to the graph representa-
tion of the Software Heritage Archive, an archive that attempts
to collect as much software as possible. Currently, it can claim
to have the largest collection of source code. These services are
collectively called SWH-GRAPH and operate based on an in-
memory, compressed representation of the Software Heritage

https://github.com
https://pypi.org/
https://www.r-pkg.org/

TABLE I
COMPARISON TABLE: THIS TABLE HIGHLIGHTS A COMPARATIVE ANALYSIS BETWEEN FAIRSECO AND OTHER TOOLS, EMPHASIZING SPECIFIC IMPACT

METRICS.

Tools Feature

License
checking

Dependency
checking

Method
level
checking

Bibliometric
Analysis

Citation file
checking

FAIRness
Aspect

Code
indexing

SBOM
Generation

HOWFAIRIS ✗ ✗ ✗ ✗ ✔ ✔ ✗ ✗
SEARCHSECO ✗ ✗ ✔ ✗ ✗ ✗ ✔ ✗
TORTELLINI ✔ ✗ ✗ ✗ ✗ ✗ ✗ ✗
LIBRARIES.IO ✔ ✔ ✗ ✗ ✗ ✗ ✗ ✗
SWG-GRAPH ✗ ✗ ✗ ✗ ✗ ✗ ✔ ✗
RSD ✗ ✗ ✗ ✔ ✔ ✔ ✗ ✗
DEPSY ✗ ✗ ✗ ✔ ✗ ✗ ✗ ✗
GITHUB ✗ ✔ ✗ ✔ ✔ ✗ ✔ ✗
GRIMOIRELAB ✗ ✗ ✗ ✔ ✗ ✗ ✔ ✗
SIRGRID ✗ ✔ ✗ ✗ ✗ ✗ ✗ ✗
SQAAAS ✔ ✗ ✗ ✔ ✔ ✔ ✗ ✗
FAIRSECO ✔ ✗ ✔ ✔ ✔ ✔ ✔ ✔

Merkle DAG. SWH-GRAPH is limited to code indexing, as it
does not perform any of the other listed tasks.

The RESEARCH SOFTWARE DIRECTORY (RSD) [40] is
designed to show the impact of RS on scientific community.
Its primary objective is to promote RS reuse and encourage
proper RS citation to ensure researchers and RSEs get credit
for their work. The RSD, by default, is configured to gather
RS data from various platforms such as GitHub, Gitlab, OR-
CID, Research Organization Registry, Zenodo, DataCite, and
Crossref. The RSD performs bibliometric analysis, citation
file checking, and FAIRness aspect checking.

Software development analytics platforms and toolsets such
as GrimoireLab [18], SIGRID and SQAAAS [19] take a
modular approach similar to FAIRSECO employing several
tools that collect metadata to compile a quality report of
software for their developers. However, none of these tools
explicitly consider impact of RS.

SQAAAS focuses on improving RS quality by offering
RSEs ready-to-use continuous integration and continuous de-
velopment pipelines that align with the principles of Open
Science [41]. It performs license checking, citation file check-
ing, reports on quality of RS. It is integrated with FAIR data
assessment tools which follows the FAIRsFAIR route [20].

SIGRID performs only dependency checking, and the rest
of the tasks such as FAIRness aspect, citation file checking,
biblometric analysis, license checking are not applicable be-
cause the scope of SIGRID is on industrial software and its
compliance to the industrial standards.

GRIMOIRELAB is an open-source toolkit focusing on
data collection, indexing and storage in the GRIMOIRELAB
database for potential analysis of software development. It
provides very powerful and flexible basis for analysis, but
requires an additional efforts and expertise to extract and
display relevant information.

Thus, FAIRSECO offers a unique combination in terms of
the considered features for assessing impact and quality of RS.

III. THE FAIRSECO FRAMEWORK

A. The FAIRSECO Extensible Software Architecture

Figure 1 depicts the architecture of the FAIRSECO frame-
work and its components. The framework consists of five
primary components: a Code analyzer, Data collection unit,
Impact calculation module, Report, and Artifacts module. All
these components are interconnected with a FAIR artifact
generator. The FAIR artifact generator will receive input from
the Code analyzer, Data collection unit, and Impact calculation
module and generates Reports and Artifacts as output.

The FAIRSECO integrates different sources of information
and tools to support RSEs in becoming more FAIR, improving
and measuring RS quality, and measuring the impact of their
RS. The framework uses the RS’s repository such as GitHub
as input for checking FAIRness and quality and uses other
data sources for measuring impact and quality.

B. Collecting data

The data collection unit consists of a crawler and an API call
component to collect citation data and code reuse details from
various sources such as Semantic scholar [42], OpenAlex [21],
and SEARCHSECO.

Besides generating a report, the FAIRSECO framework also
creates artifacts, such as:

• SBOM SBOM is a structured list of third-party software
components and libraries included directly or indirectly in
the code [43]. It contains information about open-source
licenses and version numbers. FAIRSECO will produce
an SBOM for the RS using the tool named SBOM.

• TORTELLINI Results A detailed report is generated
specifically for identifying license violations within the
RS. This report provides comprehensive information
about the licenses of packages used in the RS, includ-
ing the primary packages and their dependencies. It
includes details such as each package’s specific license
types and version information. By examining this report,
RSEs identify any instances where the RS may violate
license agreements, ensuring compliance with licensing

https://about.gitlab.com
https://orcid.org/
https://orcid.org/
https://ror.org/
https://zenodo.org/
https://datacite.org/
https://www.crossref.org/
https://chaoss.github.io/grimoirelab/
https://github.com/Software-Improvement-Group/sigridci
https://github.com/EOSC-synergy/SQAaaS

Fig. 1. FAIRSECO architecture consists of five components: 1) Data collection unit gathers data from different data sources, 2) Impact calculation performs
an impact calculation, 3) Code analyzer analyzes the code of the RSE project, 4) Report generates final report related to Quality and Impact, and 5) Artifacts
generates two artifacts, such as SBOM, and License results for the RS.

requirements and addressing any potential legal or ethical
concerns related to the software’s usage and distribution.

C. Becoming more FAIR
The FAIRSECO framework assesses the FAIRness score

(Sfair) of RS based on five recommendations for FAIR
software [22], and it is calculated using HOWFAIRIS tool.
Explanations for these recommendations are given below:
R1) Use a publicly accessible repository with version

control: The initial recommendation focuses on verifying
that the RS utilizes a publicly accessible repository with
version control. This ensures widespread accessibility and
encourages transparency. By employing a version control
system, RSEs can easily monitor and manage modifica-
tions made to the RS, facilitating effective collaboration
and traceability.

R2) Add a license It is important to emphasize that an
appropriate license must accompany the RS. Without a
license, even if the RS is publicly available on platforms
such as GitHub, the absence of legal permissions makes
it impossible for anyone to use it.

R3) Register your code in a community registry This
recommendation suggests registering RS in a community
registry such as Zenodo, CodeOcean, FigShare, Software
Heritage Archive, etc. Registering RS makes it easier for
others to find it, particularly through the use of search
engines such as Google.

R4) Enable citation of the software Citation is an integral
part of scientific accountability and reproducibility. Cita-

tion helps RSEs be recognized for their work. Citation
File Format (CFF) [35] is specifically designed to enable
the citation of software.

R5) Use a software quality checklist This recommendation
proposes examining quality checklists that have been
included on fair-software.eu1

The Sfair is calculated by combining these recommenda-
tions, the RS gets a maximum score of 5, and each recom-
mendation contributes a maximum score of 1 (cf. [34], [38]).
We will provide a more detailed explanation in the below
subsections on how these scores are calculated.

D. Measuring RS Quality

The code analyzer in the FAIRSECO framework architec-
ture evaluates the quality of RS. It employs various techniques
to analyze the RS, encompassing the evaluation of FAIR-
ness [24], identification of license violations, examination
of software maintainability, and checking the presence of
documentation. Using Squality, RSEs evaluate their project’s
development and identify improvement areas. The following
sections describe the main features contributing to Squality.

1) License violation or information: License violations
have significant consequences for violators and open-source
communities [25]. These violations damage the reputation

1fair-software.eu is a website that promotes FAIR practices in RS develop-
ment by offering five key recommendations for FAIR software [23]. It aims
at raising awareness about the importance of making RS FAIR. It provides
guidelines and resources for researchers and RSEs to adopt FAIR software
principles and best practices.

https://fair-software.eu/

of a project and discourage further contributions from the
community, which have negative long-term effects [26].

We argue that researchers and RSEs should carefully review
the license associated with any open-source software before
using it and ensure that they agree to the terms and conditions
of that license. This practice can foster the perpetual expansion
and prosperity of the open-source ecosystem.

We utilized TORTELLINI for predicting license violations;
the FAIRSECO framework helps users become more aware
of potential license violations and the potential problems that
arise.

2) Maintainability: Software maintainability refers to the
ease with which the operations, such as the addition of new
features, obsolete code deletion, and error correction, are
carried out [27]. It is an aspect of software development that
consumes a significant portion of the overall project cost.
However, measuring maintainability during the early stages
of software development aids in better planning and optimal
resource utilization [28].

The FAIRSECO framework analyzes open and closed issues
on GitHub to assess maintainability. It calculates maintain-
ability by calculating the percentage of issues that have been
closed since the date on which the software was added to
GitHub. RSEs utilize the maintainability score as a guideline
to improve their development process and address current open
issues more efficiently.

3) Documentation: To be usable, open-source software
needs to be sufficiently documented. This helps users under-
stand the functionality and usability of the software. GitHub
and Zenodo are platforms that typically include a README
file and documentation for each software, giving users infor-
mation about the software.

The FAIRSECO framework checks whether the RS is ade-
quately documented to ensure users access the necessary doc-
umentation. Therefore, FAIRSECO assigns a maximum score
of 100 if the RS includes both README and documentation.

4) Reporting on Quality: The code analyzer generates
reports that summarize the analysis results. These reports
provide RSEs with actionable feedback on the quality of their
code. The reports highlight areas that require improvemnt, en-
compassing aspects such as FAIRness, license information or
violations, maintainability, and documentation. By reviewing
these reports, RSEs make informed decisions to enhance the
overall quality of their RS.

Finally, we have formulated an equation to determine the
Squality, incorporating factors such as FAIRness, license vio-
lations, maintainability, and documentation:

Squality =
Sfair ·Wf + Sl ·Wl + Sm ·Wm + Sd ·Wd

Wtotal
(1)

The all weights, namely, the FAIRness weight Wf , license
weight Wl, maintainability weight Wm, and documentation
weight Wd are four distinct constant assigned to each factor.
The total weight Wtotal is calculated by summing up these
weights Wtotal = Wf +Wl+Wm+Wd. Currently, Squality is

determined using weighted criteria; however, future work will
investigate the justification behind these weights. The scores
used in (1) are calculated as follows:

• The Sfair is calculated by multiplying the HOWFAIRIS
tool’s output (0-5) by 20.

• The license score Sl is calculated using the license
information provided by the TORTELLINI tool as

Sl = Fl
log2(1+Nl) · 100 (2)

where Fl is the fraction of licenses that are not violated,
and Nl is the total number of licenses.

• The maintainability score Sm is calculated as follows:

Sm =
100 · Ci

Ni
(3)

where Ci is the number of closed issues, and Ni is the
total number of issues.

• The documentation score Sd is determined based on
the presence of README, and documentation files. The
score is assigned a value of 50 if there is a documentation
directory and another 50 if there is a README file.
These scores are then combined to obtain the overall
documentation score.

Thus, a score between 0 and 100 will be assigned to the
RS based on Equation (1). The calculations described above
represent our current FAIRSECO approach, considered a start-
ing point. However, we plan to enhance the formulas by
incorporating more detailed and higher-quality metrics. The
framework is designed to be sufficiently generic to accommo-
date these expansions.

E. Measuring RS Impact

One of the largest challenges in providing insight into
RS impact is where and how to report this data. There are
indicators such as GitHub stars, inclusions of a package in
dependency trees, citations to articles, mentions in news items,
the number of issues posted by non-community members,
etc. Gathering and interpreting these data is challenging.
For FAIRSECO, currently, we have implemented two impact
measures: citations and code reuse. Furthermore, researchers
would likely hesitate to use poor-quality RS that introduces
bugs, performance and maintenance issues, etc., because of
potentially erroneous results produced by the RS and higher
costs for fixing its technical debt [29]. Thus, we consider the
quality of RS as an additional factor that influences Simpact,
along with citations and code reuse. This intuition is in line
with recent efforts of policymakers regulating long-term plans
for maintaining RS [30].

1) Citation: In academic writing, the practice of citing
relevant literature to establish connections with other works
in the field is considered essential and common practice [31].
Recognizing the significance of this practice, FAIRSECO
offers valuable assistance to its users by facilitating the rapid
and efficient retrieval of citation data for their RS. This is
accomplished by gathering information from APIs of the open
catalogues of scientific publications (in particular, OpenAlex

and Semantic Scholar), enabling users to conveniently obtain
the necessary citations for their RS. Moreover, it collects
information about the scientific fields in which the RS is cited.
It generates a radar citation graph [32] illustrating how the RS
is connected across different scientific fields. A screenshot is
provided in Figure 3.

2) Code Reuse: For this, the FAIRSECO framework uti-
lizes SEARCHSECO: it feeds a repository link to SEARCH-
SECO, which then parses all the source code from the RS
project and calculates a hash for an abstract version of each
method in the work. Subsequently, SEARCHSECO looks in
its database for occurrences of the method in the worldwide
software ecosystem. If found, there are two possible outcomes:

1) (A fraction of) the RS is being reused by other parties,
showing its impact. No further action is needed if the
other software uses the RS’s intellectual property cor-
rectly.

2) The RS project is reusing other software. While this does
not lead to impact, it does provide an opportunity to
ensure that the code in the RS project is used correctly
with correct references and that the reused methods do
not contain any vulnerabilities, which is a feature of
SEARCHSECO.

3) Reporting on Impact: In addition to citations and code
reuse, we include Squality as a factor influencing the Impact
score. Similarly to the Squality, the Simpact is determined by
applying constant weights to factors such as the number of
citations Nc, code reuse in other projects (Nr) as well the
Squality obtained from Equation (1):

Simpact =
Nc ·Wc +Nr ·Wr + Squality ·Wq

W ′
total

(4)

where citation weight Wc, reused weight Wr, quality weight
Wq are constants. W ′

total is calculated by summing up these
weights: W ′

total = Wc +Wr +Wq .
Note that these constant weights can be changed after an

expert evaluation and the impact measurement metric can be
extended with more elaborate metric.

IV. THE FAIRSECO FRAMEWORK IN ACTION

This section overviews how RSEs utilize FAIRSECO to
generate reports on FAIRness, Quality, and Impact. Generally,
RSEs will want to use the FAIRSECO framework every
couple of months or when they wish to provide a report
on the impact of their repository. The history feature of the
FAIRSECO infrastructure supports this, as the RSEs show
the improvements they made (or did not make) regarding the
impact and citation of their software. For a complete manual
to operate the FAIRSECO GitHub Action, please see the
documentation at README.

RSEs face challenges in monitoring the usage of their
software, tracking academic papers that reference it, and iden-
tifying software built upon it. With the FAIRSECO framework,
RSEs easily access information on license violations, impact,
citation details, and the Squality of their RS. This eliminates
the need to identify such details, thereby saving time and effort

manually. The report generated by the FAIRSECO framework
increases the chances of other researchers citing the work of
RSEs.

To illustrate the functionality of the FAIRSECO framework
in a RS context, we have chosen the MCFLY tool [44]
from GitHub. The following are the pages or tabs within the
FAIRSECO framework, each with its respective explanation:

Fig. 2. Overview tab: This screenshot displays a summary of the FAIRSECO
report, including the number of citations, Sfair , matching methods, Squality ,
and several metrics from GitHub. For a more detailed understanding of the
Squality , please refer to Section IV

1) Overview tab: In Figure 2, we provided a screenshot of
the “Overview” tab of the framework, which displays various
details about the evaluated tool. These details include the
repository title, owner, issue date, number of stars, watchers,
and forks. Detailed explanations of each of these terms are
given below:

1) Repository title: Repository title refers to the repository’s
name, which is evaluated using the FAIRSECO frame-
work.

2) Repository owner: The repository owner is the name of
the individual or organization who owns the repository on
GitHub. In case the repository has been forked, it shows
the user’s name who forked the primary repository.

3) Date of issue: The issue date refers to when the repository
was assessed using the FAIRSECO framework.

4) Repository stars: The Repository stars refer to the
number of stars the repository receives on GitHub.

5) Repository watchers: The number of users who have
added the repository to their watchlist on GitHub is added
to the Repository watchers list.

6) Repository forks: The Repository forks refers to the
number of times the repository has been forked on
GitHub.

Moreover, the FAIRSECO framework gives further infor-
mation, including citation counts, FAIRness value, method

https://github.com/SecureSECO/FAIRSECO#readme

matching with other projects, and Squality for the evaluated
repository. Detailed explanations of these terms are provided
in the FAIRSECO framework’s next tab. Additionally, there is
an option to download this report as a PDF.
2) Citation tab: An overview of the research papers that have
cited RS is presented in the citation tab. The list of papers
includes their title, author’s names, description indicating the
source from which the paper is collected, publication date,
DOI, and a link to the paper.
3) FAIRness: The report on FAIRness is generated by ana-
lyzing the results of the HOWFAIRIS tool, and it is presented
in the FAIRness tab. For this example tool, it has received a
Sfair of 4 out of 5, because it did not meet all the quality
criteria outlined in the 5 recommendations for FAIR software.
4) License violation: The FAIRSECO employs the
TORTELLINI tool to provide a comprehensive account of
license violations, informing the original author of the repos-
itory or the user about any infractions. The license violations
tab displays the information regarding license violations.
5) Impact: As shown in Figure 3, the Impact section of FAIR-
SECO displays various statistics about using the software in
scientific research. It includes information about the frequency
of citations the software has received across different fields,
visually represented in a radar chart showcasing these fields’
distribution. Additionally, it provides information on the most
significant scientific paper that cited the software based on the
number of citations and the journal’s reputation.

Fig. 3. Impact tab: The Impact tab screenshot presents an overview of the
RS MCFLY impact. It has been cited a total of 4 times, with two of those
citations coming from different fields. Additionally, the screenshot includes
a radar graph that illustrates the software’s citation frequency across various
fields. For a more detailed understanding of this tab, please refer to Section IV.

6) Quality Score (Squality): The Squality tab is illustrated in
Figure 4. The FAIRSECO assigns a Squality to each project
and explains how this score was calculated. Four key metrics
are considered, including the percentage of adherence to
FAIRness principles, the extent to which the software complies
with the license requirements, the percentage of closed issues
on GitHub, and the presence of README and documentation

files. This score doesn’t reflect the actual quality of a project’s
code but rather indicates how well the project follows the
best practices of software engineering. The example repository
received a Squality of 92% out of 100 because it did not pass
the quality checklist. Thus, it receives a FAIRness value of 4
out of 5.

Fig. 4. Quality Score tab: This screenshot shows an overview of the
generated FAIRSECO Squality . For a complete explanation of the Squality ,
see Section IV .

7) Impact History: The impact history tab provides a histor-
ical overview of the impact of RS by displaying information
from previous runs of the FAIRSECO, if available. This feature
allows RSEs to track how the impact of their software has
evolved. The overview section shows the changes in Squality,
number of citations, reused methods, and Sfair since the last
run. Ideally, RSEs will observe an increase in these metrics
over time. The graph below visually represents this data,
including runs before the most recent one.

V. EVALUATION

Table I compares five tools based on their performance
concerning features such as Recommendation 1 (R1), Recom-
mendation 2 (R2), Recommendation 3 (R3), Recommendation
4 (R4), Recommendation 5 (R5), license violation, main-
tainability, and documentation. The FAIRSECO framework
calculates a Squality for each evaluated tool based on these
features, also provided in the table. Each of these tools such as
KERNEL TUNER [45], SPEC2VEC [46], ESMVALTOOL [47],
GPT INDEX [48], and CFF-CONVERTER-PYTHON [49] were
evaluated using the FAIRSECO tool. Among the five tools
compared, KERNEL TUNER and SPEC2VEC met the FAIRness
criteria and had a higher Squality than the other tools. KERNEL
TUNER stands out in its FAIRness as it is registered in

TABLE II
EVALUATION TABLE: THIS TABLE COMPARES SELECTED TOOLS USING THE FAIRSECO FRAMEWORK. SEE SECTION III-C FOR THE DEFINITION OF

R1-R5.

Tools Feature

R
1

R
2

R
3

R
4

R
5

FA
IR

ne
ss

L
ic

en
se

s

M
ai

nt
ai

na
bi

lit
y

D
oc

um
en

ta
tio

n

Q
ua

lit
y

Sc
or

e

KERNEL TUNER ✔ ✔ ✔ ✔ ✔ 100% 100% 100% 50% 94%
SPEC2VEC ✔ ✔ ✔ ✔ ✔ 100% 100% 100% 50% 94%
ESMVALTOOL ✔ ✔ ✔ ✔ ✗ 80% 100% 100% 50% 86%
GPT INDEX ✗ ✔ ✔ ✔ ✗ 60% 100% 100% 100% 85%
CFF-CONVERTER-PYTHON ✔ ✔ ✔ ✔ ✔ 100% 19% 100% 100% 78%

TABLE III
IMPACT SCORE TABLE: IMPACT SCORE TABLE SHOWS THE INFLUENCES OF VARIOUS FACTORS ON THE OVERALL IMPACT SCORE

Tools Feature
citations Reused in other Projects Quality Score Impact Score

KERNEL TUNER 17 5 94% 60%
SPEC2VEC 4 5 94% 56%
ESMVALTOOL 40 4 86% 61%
GPT INDEX 0 3 85% 50%
CFF-CONVERTER-PYTHON 0 5 78% 46%

Zenodo with a DOI, making it easily findable. Additionally,
it is publicly accessible through GitHub and downloaded
using standard protocols such as HTTPS. Moreover, KERNEL
TUNER has citation and license files, further enhancing its
FAIRness. Therefore, KERNEL TUNER scores a perfect 5 out
of 5 regarding FAIRness criteria. According to our analysis, it
does not violate any licenses. KERNEL TUNER demonstrates
effective maintenance by actively closing issues on GitHub,
which is properly documented through documentation files
and a README file. The ESMVALTOOL does not meet the
quality checklist mentioned in 5 recommendations for FAIR
software and receives a lower Squality than KERNEL TUNER
and SPEC2VEC. GPT INDEX scored lower in the R1 and
R5 categories but performed well in R3, R4 and R5. CFF-
CONVERTER-PYTHON scored relatively low in the Squality.
Still, it performed well in all five features, scoring less due
to issues with the version of the PyPI package, resulting in a
license violation.

In summary, KERNEL TUNER and SPEC2VEC stand out as
highly reliable and FAIR tools, since while ESMVALTOOL,
GPT INDEX, and CFF-CONVERTER-PYTHON show strengths
in specific areas but may require some attention to enhance
their overall performance.

Table III gives the Simpact for selected tools. As per
Equation (4), Simpact is calculated based on three factors:
the number of citations, the number of methods reused, and
the Squality. For example, the tool KERNEL TUNER has 17
citations, has been reused in 5 other projects, and has a
Squality of 94%. Using Equation (4), the Simpact for KERNEL
TUNER is 60%.

The FAIRSECO framework provides a comprehensive re-
port on the quality and impact of RS on research. RSEs utilize
this report to identify areas where improvements are needed
and make necessary changes to their software.

VI. CONCLUSION AND FUTURE WORK

RS is becoming increasingly valued in the research ecosys-
tem, leading to the evolution of international and national
policy practices to reflect its importance. The FAIRSECO
framework, with its collection of tools, is designed to report
on the quality and impact of RS. FAIRSECO framework
automatically measures the FAIRness of the RS using five
recommendations for FAIR software. This is achieved by
conducting several checks to ensure that the RS is registered
in a community registry, making it available in a public
repository, using a quality checklist, encouraging the use of the
CFF to facilitate appropriate citation, and including a license
file to enable reuse by other researchers.

To assess the quality of the software, the FAIRSECO
framework calculates a Quality Score based on several factors,
including FAIRness, license violation, maintainability, and
documentation. It also generates an SBOM for the given
repository. In addition, FAIRSECO provides insights into the
software’s impact on the RS ecosystem by gathering citation
data and tracking its reuse by other software. The Impact
Portal generated by FAIRSECO enables RSEs to assess the
success of their software and gain insights into its impact.
By showing this, we hope to raise awareness that software is
valuable research output.

From the FAIRSECO report, RSEs understand the areas
they must focus on to make their RS available worldwide and
improve its quality. This allows users to quickly find the RS
they need for their purposes, which increases its popularity.
When an RS gains more users, its impact on research helps
RSEs receive the credit they deserve.

In the future, we plan to:

1) Evaluate with RSEs – As part of the design study, we
plan to present the framework to RSEs and gather their

feedback for evaluation, and further development.
2) Promote the FAIRSECO GitHub Action – We want to

encourage RSEs to use the FAIRSECO framework. We
will organize events for them and present the framework
at various FAIR software events.

3) Create a Live Dashboard for FAIRSECO Impact – The
current GitHub action is a manually triggered task. We
imagine that RS projects need a continuous impact dash-
board, but we will evaluate this first with the intended
users.

4) Expand the functionality of the FAIRSECO tool to support
other platforms – Currently, the framework is designed to
process projects hosted on GitHub, primarily through a
GitHub action. However, we aim to explore the potential
of extending FAIRSECO’s capabilities to include repos-
itories or tools hosted on various other platforms. This
expansion will allow for a broader range of applications
and make FAIRSECO more versatile and accessible to
users across different development environments.

5) Expand documentation score – At present, FAIRSECO’s
functionality is limited to checking the presence of doc-
umentation in the repository. However, in the future, our
aim is to use Natural Language Processing techniques to
verify complexity and extensiveness of the documenta-
tion.

6) Introduce a dependency score – Currently, our code reuse
score is restricted to the results obtained from SEARCH-
SECO. To enhance the effectiveness of the code reuse
analysis, we intend to also incorporate a dependency
score by detecting which other libraries and tools reuse
a particular RS. This additional score will strengthen the
outcomes of the code reuse analysis significantly.

7) Score Selection and Weighting – There are different
stakeholders in the development of a research software
project, such as the scientists who need it, the funding
agency, and the RSEs. Each of these is interested in
different scores; the scientists want to know who uses
the software in their network, the funding agency wants
to know whether the software is developed so it does
not suffer too much from so-called software rot, and.
the RSEs wish to know how many open bugs there are
and their severity. For this reason different scores are
required to provide insight into the different qualities of
a research software project. Furthermore, it could be that
composite scores are needed to rapidly provide insight
into the software’s qualities.

8) Expand the notion of impact – Ideally, a term impact
would mean how the RS has influenced and advanced
research that it was used in [33]. However, this is dif-
ficult to measure with the data available for RS. Most
of the research uses quantitative impact metrics from
bibliometric analysis, namely, the number of citations and
code reuse (which applies to the software only). We have
included these and a Quality Score as yet another factor
influencing impact. In the future, we want to consider a
broad notion of impact that includes both academic and

socio-economical aspects, such as the number of grants
and information regarding people hired to maintain the
RS.

By extending FAIRSECO with these features, we strive to
guide researchers and RSEs to adapt high quality standards
for their RS, and provide more accurate insight into (potential)
impact of their RS.

ACKNOWLDEGMENT

We thank the eScience Center for funding this Project
(NLESC.CIT2021.002). We also thank the students who sup-
ported the software development of the FAIRSECO frame-
work: A. Aydin, B. Hageman, B. Lankhorst, J. Hendriksen,
Q. Donkers, R. Schouten, T. Bolhuis, & V. Bykova.

ARTICLE REFERENCES

[1] N. P. Chue Hong, D. S. Katz, M. Barker, A.-L. Lamprecht, C. Martinez,
F. E. Psomopoulos, J. Harrow, L. J. Castro, M. Gruenpeter, P. A.
Martinez, T. Honeyman, A. Struck, A. Lee, A. Loewe, B. van
Werkhoven, C. Jones, D. Garijo, E. Plomp, F. Genova, H. Shanahan,
J. Leng, M. Hellström, M. Sandström, M. Sinha, M. Kuzak,
P. Herterich, Q. Zhang, S. Islam, S.-A. Sansone, T. Pollard, U. D.
Atmojo, A. Williams, A. Czerniak, A. Niehues, A. C. Fouilloux,
B. Desinghu, C. Goble, C. Richard, C. Gray, C. Erdmann, D. Nüst,
D. Tartarini, E. Ranguelova, H. Anzt, I. Todorov, J. McNally, J. Moldon,
J. Burnett, J. Garrido-Sánchez, K. Belhajjame, L. Sesink, L. Hwang,
M. R. Tovani-Palone, M. D. Wilkinson, M. Servillat, M. Liffers,
M. Fox, N. Miljković, N. Lynch, P. Martinez Lavanchy, S. Gesing,
S. Stevens, S. Martinez Cuesta, S. Peroni, S. Soiland-Reyes, T. Bakker,
T. Rabemanantsoa, V. Sochat, Y. Yehudi, and R. F. WG. (2022) FAIR
Principles for Research Software (FAIR4RS Principles). Version: 1.0.
[Online]. Available: https://doi.org/10.15497/RDA00068

[2] M. Barker, N. P. Chue Hong, D. S. Katz, M. Leggott, A. Treloar, J. van
Eijnatten, and S. Aragon, “Research software is essential for research
data, so how should governments respond?” Dec. 2021. [Online].
Available: https://doi.org/10.5281/zenodo.5762703

[3] J. Carver, N. Weber, K. Ram, S. Gesing, and D. Katz, “A survey of the
state of the practice for research software in the united states,” PeerJ
Comput Sci., vol. 8, p. e963, 05 2022. doi: 10.7717/peerj-cs.963

[4] “What is a Research Software Engineer?” 2017, accessed: 2022-04-15.
[Online]. Available: https://nl-rse.org/posts/2017-06-13-what-is-rse

[5] A.-M. Istrate, D. Li, D. Taraborelli, M. Torkar, B. Veytsman, and
I. Williams, “A large dataset of software mentions in the biomedical
literature,” arXiv preprint arXiv:2209.00693, 2022.

[6] M. Barker, N. P. Chue Hong, D. S. Katz, A.-L. Lamprecht, C. Martinez-
Ortiz, F. Psomopoulos, J. Harrow, L. J. Castro, M. Gruenpeter, P. A.
Martinez, and T. Honeyman, “Introducing the fair principles for research
software,” Scientific Data, vol. 9, no. 622, 2022. doi: 10.1038/s41597-
022-01710-x

[7] D. S. Katz, M. Gruenpeter, and T. Honeyman, “Taking a fresh look at
fair for research software,” Patterns, vol. 2, no. 3, p. 100222, 2021.

[8] W. van Hage, J. Maassen, and R. van Nieuwpoort, “Lightning talk:
Software Impact Measurement at the Netherlands eScience Center,” Pro-
ceedings of the Fourth Workshop on Sustainable Software for Science:
Practice and Experiences (WSSSPE4), vol. 1686, 2016.

[9] T. Gomez-Diaz and T. Recio, “On the evaluation of research
software: the CDUR procedure,” F1000Research, vol. 8, p. 1353,
nov 2019. doi: 10.12688/f1000research.19994.2. [Online]. Available:
https://doi.org/10.12688/f1000research.19994.2

[10] P. Alliez, R. D. Cosmo, B. Guedj, A. Girault, M.-S. Hacid, A. Legrand,
and N. Rougier, “Attributing and referencing (research) software: Best
practices and outlook from inria,” Comput. Sci. Eng., vol. 22, no. 1, pp.
39–52, 2020. doi: 10.1109/MCSE.2019.2949413. [Online]. Available:
https://ieeexplore.ieee.org/document/8887228/

[11] A.-M. Istrate, B. Veytsman, D. Li, D. Taraborelli, and I. Williams.
(2022) New data reveals the hidden impact of open source in science.
[Online]. Available: https://medium.com/czi-technology/new-data-
reveals-the-hidden-impact-of-open-source-in-science-11cc4a16fea2

https://doi.org/10.15497/RDA00068
https://doi.org/10.5281/zenodo.5762703
https://nl-rse.org/posts/2017-06-13-what-is-rse
https://doi.org/10.12688/f1000research.19994.2
https://ieeexplore.ieee.org/document/8887228/
https://medium.com/czi-technology/new-data-reveals-the-hidden-impact-of-open-source-in-science-11cc4a16fea2
https://medium.com/czi-technology/new-data-reveals-the-hidden-impact-of-open-source-in-science-11cc4a16fea2

[12] S. Jansen, E. Baninemeh, and S. Farshidi, “Fairseco: An infrastructure
for measuring impact of research software (short paper),” in BElgian-
NEtherlands software eVOLution symposium, vol. 3245. CEUR Work-
shop Proceedings, 2022.

[13] S. Jansen, S. Farshidi, G. Gousios, J. Visser, T. van der Storm, and
M. Bruntink, “Searchseco: A worldwide index of the open source
software ecosystem.” in Proceedings of the 19th Belgium-Netherlands
Software Evolution Workshop (BENEVOL 2020), ser. CEUR Workshop
Proceedings, vol. 2912. CEUR-WS.org, 2020.

[14] S. Jansen, E. Handoyo, and C. Alves, “Scientists’ needs in modelling
software ecosystems,” in Proceedings of the 2015 european conference
on software architecture workshops, 2015, pp. 1–6.

[15] H. Borges and M. T. Valente, “What’s in a github star? understanding
repository starring practices in a social coding platform,” Journal of
Systems and Software, vol. 146, pp. 112–129, 2018.

[16] D. Singh Chawla, “The unsung heroes of scientific software,” Nature,
vol. 529, p. 115–116, 2016. doi: 10.1038/529115a

[17] P. Boldi, A. Pietri, S. Vigna, and S. Zacchiroli, “Ultra-large-scale
repository analysis via graph compression,” in 2020 IEEE 27th Interna-
tional Conference on Software Analysis, Evolution and Reengineering
(SANER). IEEE, 2020, pp. 184–194.

[18] S. Dueñas, V. Cosentino, J. M. Gonzalez-Barahona, A. d. C. San Fe-
lix, D. Izquierdo-Cortazar, L. Cañas-Dı́az, and A. P. Garcı́a-Plaza,
“Grimoirelab: A toolset for software development analytics,” PeerJ
Computer Science, vol. 7, p. e601, 2021.

[19] P. Orviz, J. Gomes, S. Bernardo, D. Naranjo, M. David, and
EOSC-SYNERGY, “EOSC-SYNERGY EU DELIVERABLE: D3.4
Final release of the SQAaaS,” 2022. [Online]. Available: http:
//hdl.handle.net/10261/274895

[20] A. Devaraju and R. Huber, “An automated solution for measuring
the progress toward FAIR research data,” Patterns, vol. 2, no. 11,
2021. doi: 10.1016/j.patter.2021.100370. [Online]. Available: https:
//doi.org/10.1016/j.patter.2021.100370

[21] J. Priem, H. Piwowar, and R. Orr, “Openalex: A fully-open index
of scholarly works, authors, venues, institutions, and concepts,” 2022.
[Online]. Available: https://doi.org/10.48550/arXiv.2205.01833

[22] C. Martinez-Ortiz, M. Kuzak, J. H. Spaaks, J. Maassen, and T. Bakker,
“Five recommendations for ”FAIR software”,” Dec. 2020. [Online].
Available: https://doi.org/10.5281/zenodo.4310217

[23] C. Martinez-Ortiz and J. H. Spaaks. (2021) Fair Software
Recommendations. [Online]. Available: https://fair-software.nl/home/

[24] A.-L. Lamprecht, L. Garcia, M. Kuzak, C. Martinez, R. Arcila, E. Martin
Del Pico, V. Dominguez Del Angel, S. Van De Sandt, J. Ison, P. A.
Martinez et al., “Towards fair principles for research software,” Data
Science, vol. 3, no. 1, pp. 37–59, 2020.

[25] A. M. S. Laurent, Understanding Open Source and Free Software
Licensing: guide to navigating licensing issues in existing & new
software. O’Reilly Media, Inc., 2004. ISBN 9780596553951

[26] G. R. Gangadharan, V. D’Andrea, S. De Paoli, and M. Weiss, “Managing
license compliance in free and open source software development,”
Information Systems Frontiers, vol. 14, pp. 143–154, 05 2012. doi:
10.1007/s10796-009-9180-1

[27] N. Schneidewind, “The state of software maintenance,” IEEE Transac-
tions on Software Engineering, vol. SE-13, no. 3, pp. 303–310, 1987.
doi: 10.1109/TSE.1987.233161

[28] R. Malhotra and A. Chug, “Software maintainability: Systematic lit-
erature review and current trends,” International Journal of Software
Engineering and Knowledge Engineering, vol. 26, no. 08, pp. 1221–
1253, 2016.

[29] P. Avgeriou, P. Kruchten, I. Ozkaya, and S. Carolyn, “Managing techni-
cal debt in software engineering,” in Report from Dagstuhl Seminar
16162, ser. Dagstuhl reports, vol. 6, no. 4, 2016. doi: 10.4230/Da-
gRep.6.4.110

[30] C. Martinez-Ortiz, P. Martinez Lavanchy, L. Sesink, B. G. Olivier,
J. Meakin, M. de Jong, and M. Cruz, “Practical guide to
software management plans,” Jan. 2023. [Online]. Available: https:
//doi.org/10.5281/zenodo.7589725

[31] S. Arsyad, M. Zaim, and D. Susyla, “Review and citation style in
research article introductions: a comparative study between national and
international english-medium journals in medical sciences,” Discourse
and Interaction, vol. 11, no. 1, pp. 28–51, 2018.

[32] R. Haghnazar Koochaksaraei, F. Gadelha Guimarães, B. Hamidzadeh,
and S. Hashemkhani Zolfani, “Visualization method for decision-
making: a case study in bibliometric analysis,” Mathematics, vol. 9,
no. 9, p. 940, 2021.

[33] T. Penfield, M. J. Baker, R. Scoble, and M. C. Wykes,
“Assessment, evaluations, and definitions of research impact:
A review,” Research Evaluation, vol. 23, no. 1, pp. 21–
32, 10 2013. doi: 10.1093/reseval/rvt021. [Online]. Available:
https://doi.org/10.1093/reseval/rvt021

SOFTWARE REFERENCES

[34] J. H. Spaaks, S. Verhoeven, E. Tjong Kim Sang, F. Diblen, C. Martinez-
Ortiz, E. Etuk, M. Kuzak, B. van Werkhoven, A. Soares Siqueira,
S. Saladi, and A. Holding, “HOWFAIRIS,” 9 2022, version: 0.14.2.
[Online]. Available: https://github.com/fair-software/howfairis

[35] S. Druskat, J. H. Spaaks, N. Chue Hong, R. Haines, J. Baker, S. Bliven,
E. Willighagen, D. Pérez-Suárez, and O. Konovalov, “Citation File
Format,” Aug. 2021.

[36] S. Verhoeven, F. Diblen, J. H. Spaaks, and E. Tjong Kim Sang,
“tortellini,” 6 2021, version: v3. [Online]. Available: https://github.com/
tortellini-tools/action

[37] A. Aydin, B. Hageman, B. Lankhorst, J. Hendriksen, Q. Donkers,
R. Schouten, T. Bolhuis, V. Bykova, and The FAIRSECO contributors,
“FAIRSECO,” 2 2023, version : 1.0.0. [Online]. Available: https:
//github.com/QDUNI/FairSECO

[38] S. Verhoeven, F. Diblen, J. H. Spaaks, and E. Tjong Kim Sang,
“fairtally,” 3 2021. doi: 10.5281/zenodo.4590883 Version: 0.1.0.
[Online]. Available: https://github.com/fair-software/fairtally

[39] A. Nesbitt, T. Zaharia, J. Katz, and M. Young, “Libraries.io.” [Online].
Available: https://github.com/librariesio

[40] J. H. Spaaks, T. Klaver, S. Verhoeven, F. Diblen, J. Maassen,
E. Tjong Kim Sang, P. Pawar, C. Meijer, L. Ridder, L. Kulik,
T. Bakker, V. van Hees, L. Bogaardt, A. Mendrik, B. van Es,
J. Attema, W. van Hage, E. Ranguelova, R. van Nieuwpoort,
R. Gey, and H. Zach, “Research Software Directory,” 2020. doi:
10.5281/zenodo.1154130 Version: 3.0.1. [Online]. Available: https:
//github.com/research-software-directory/research-software-directory

[41] D. M. Naranjo Delgado, D. Arce Grilo, P. Orviz Fernández, and
S. Bernardo, “SQAaaS Web,” https://github.com/EOSC-synergy/sqaaas-
web.

[42] R. W. Field, “Semantic Scholar.” [Online]. Available: https://
www.semanticscholar.org/product/api

[43] A. Malladi, A. Kovalyov, K. Sigmund, E. Ruiz, and J. Wen, “SBOM.”
[Online]. Available: https://github.com/microsoft/sbom-tool

[44] D. van Kuppevelt, C. Meijer, F. Huber, V. van Hees, B. Solino Fernandez,
P. Bos, J. Spaaks, M. Kuzak, J. Hidding, A. van der Ploeg, M. Lüken,
and O. Lyashevska, “mcfly: deep learning for time series,” Dec.
2022. doi: 10.5281/zenodo.596127 Version :4.0.0. [Online]. Available:
https://github.com/NLeSC/mcfly

[45] B. van Werkhoven, “Kernel Tuner,” 2019. doi: 10.5281/zen-
odo.1220113 Version: 0.3.0. [Online]. Available: https://github.com/
benvanwerkhoven/kernel tuner

[46] F. Huber, J. J. J. van der Hooft, J. H. Spaaks, F. Diblen,
S. Verhoeven, C. Geng, C. Meijer, S. Rogers, A. Belloum, H. Spreeuw,
N. de Jonge, and M. Skoryk, “spec2vec.” [Online]. Available:
https://github.com/iomega/spec2vec

[47] B. Andela, B. Broetz, L. de Mora, N. Drost, V. Eyring, N. Koldunov,
A. Lauer, B. Mueller, V. Predoi, M. Righi, M. Schlund, J. Vegas-
Regidor, K. Zimmermann, K. Adeniyi, E. Arnone, O. Bellprat, P. Berg,
L. Bock, L.-P. Caron, N. Carvalhais, I. Cionni, N. Cortesi, S. Corti,
B. Crezee, E. L. Davin, P. Davini, C. Deser, F. Diblen, D. Docquier,
L. Dreyer, C. Ehbrecht, P. Earnshaw, B. Gier, N. Gonzalez-Reviriego,
P. Goodman, S. Hagemann, J. von Hardenberg, B. Hassler, A. Hunter,
C. Kadow, S. Kindermann, S. Koirala, L. Lledó, Q. Lejeune, V. Lembo,
B. Little, S. Loosveldt-Tomas, R. Lorenz, T. Lovato, V. Lucarini,
F. Massonnet, C. W. Mohr, E. Moreno-Chamarro, P. Amarjiit, N. Pérez-
Zanón, A. Phillips, J. Russell, M. Sandstad, A. Sellar, D. Senftleben,
F. Serva, J. Sillmann, T. Stacke, R. Swaminathan, V. Torralba, K. Weigel,
C. Roberts, P. Kalverla, S. Alidoost, S. Verhoeven, B. Vreede, S. Smeets,
A. Soares Siqueira, and R. Kazeroni, “ESMValTool,” 3 2023, version:
v2.8.0. [Online]. Available: https://doi.org/10.5281/zenodo.7778410

[48] J. Liu, “LlamaIndex,” 11 2022. doi: 10.5281/zenodo.1234. [Online].
Available: https://github.com/jerryjliu/gpt index

[49] J. H. Spaaks, T. Klaver, S. Verhoeven, S. Druskat, and W. Leoncio,
Netto, “cffconvert,” 9 2021, version: 2.0.0. [Online]. Available:
https://github.com/citation-file-format/cff-converter-python

http://hdl.handle.net/10261/274895
http://hdl.handle.net/10261/274895
https://doi.org/10.1016/j.patter.2021.100370
https://doi.org/10.1016/j.patter.2021.100370
https://doi.org/10.48550/arXiv.2205.01833
https://doi.org/10.5281/zenodo.4310217
https://fair-software.nl/home/
https://doi.org/10.5281/zenodo.7589725
https://doi.org/10.5281/zenodo.7589725
https://doi.org/10.1093/reseval/rvt021
https://github.com/fair-software/howfairis
https://github.com/tortellini-tools/action
https://github.com/tortellini-tools/action
https://github.com/QDUNI/FairSECO
https://github.com/QDUNI/FairSECO
https://github.com/fair-software/fairtally
https://github.com/librariesio
https://github.com/research-software-directory/research-software-directory
https://github.com/research-software-directory/research-software-directory
https://www.semanticscholar.org/product/api
https://www.semanticscholar.org/product/api
https://github.com/microsoft/sbom-tool
https://github.com/NLeSC/mcfly
https://github.com/benvanwerkhoven/kernel_tuner
https://github.com/benvanwerkhoven/kernel_tuner
https://github.com/iomega/spec2vec
https://doi.org/10.5281/zenodo.7778410
https://github.com/jerryjliu/gpt_index
https://github.com/citation-file-format/cff-converter-python

	Introduction
	Related work
	Tools of FAIRSECO
	Related platforms

	The FAIRSECO framework
	The FAIRSECO Extensible Software Architecture
	Collecting data
	Becoming more FAIR
	Measuring RS Quality
	License violation or information
	Maintainability
	Documentation
	Reporting on Quality

	Measuring RS Impact
	Citation
	Code Reuse
	Reporting on Impact

	The FAIRSECO framework in Action
	Evaluation
	Conclusion and Future Work
	Article References
	Software References

