
Exascale Real-Time RFI Mitigation

Rob van Nieuwpoort

Radio Frequency Interference

• RFI is a huge problem for many

observations

• Caused by

– Lightning, Vehicles, airplanes, satellites,

electrical equipment, GSM, FM Radio,

fences, reflection of wind turbines, …

• Best removed offline

– Complete dataset available

– Good overview / statistics / model

– Can spend compute cycles

Real-time RFI mitigation

• Some pipelines need to run in real time today

– Image-based transient detection (LOFAR/AARTFAAC)

– Pulsar searching (WSRT/Apertif)

• SKA will be entirely real-time

– Data rates simply too high to store

• Astron & IBM DOME project

• SKA CSP consortium

Real-time RFI mitigation challenges

• Limited amount of samples due to memory and

compute constraints

– Only 1 second, no data from the future, only statistics from

the past

– Limited statistics due to memory constraints

– Only small number of frequency bands

• Distributed system

• Real time: We can afford only few operations per byte

• Adapt current algorithms, develop new algorithms

Advantages

• Can give better results

– Higher time / frequency resolution before integration

Better for bursty and narrowband RFI

– Beam forming takes union of RFI of all receivers

+

r1

r2

r3

r4

beam

LOFAR

LOFAR Real-Time Processing

Pulsar

pipeline

LOF: LOFAR Online Flagger

Pulsar

pipeline

Post-

beamforming

flagger

time

fr
e
q
u
e
n
c
y

SumThreshold and AOFlagger

• André Offringa et al
[post-correlation radio frequency interference classification methods,

Monthly Notices of the Royal Astronomical Society, Vol 405:1, 2010.]

• Thresholding with exponentially increasing window

and sharper threshold

– Detect RFI at different scales

• Fast enough to be applied in modern high resolution

observatories

• Used in the default LOFAR offline pipeline

Increasingly lower threshold

Typical p = 1.5; Typical sensitivity = 1.0

iteration window factor

1 1 6.00

2 2 4.50

3 4 3.80

4 8 3.38

5 16 3.08

6 32 2.85

7 64 2.68
0

1

2

3

4

5

6

7

1 2 3 4 5 6 7

I

pholdstartThres
factor

I

I

)log(2


ysensitivitfactorstddevmedianthreshold II 

iteration

factorI

SumThreshold

iter window factor

1 1 6.00

2 2 4.50

3 4 3.80

sample > median + 6 σ

> 2 (median + 4.5 σ)Σ

> 4 (median + 3.8 σ)Σ

Scale-Invariant Rank operator (SIR)

• André Offringa

– A morphological algorithm for improving radio-frequency interference

detection [Astronomy & Astrophysics, Volume 539, Issue A95, March 2012]

• One-dimensional morphological technique

• Can be used to find adjacent intervals in the time or

frequency domain that are likely to be affected by RFI

• Faster, linear, algorithm by Jasper van de Gronde

• Only run on data flagged by algorithm: data flagged

due to other causes (dropped UDP packets) is precise

SIR Operator

Image courtesy André Offringa

Changes for real-time use

• Compute amplitudes and integrate data

– Improves sensitivity

– Reduces computation time

– Integrate time direction fully for frequency flagging

– Integrate frequency fully for time domain flagging

– 2D flagging: partially integrate in both directions

• All algorithms have linear computational complexity in the number of samples
• PreCorrelation: O(nrStations * nrPols * nrChannels * nrTimes)

• PostCorrelation: O(nrBaselines * nrPols * nrChannels)

• PostBeamforming: O(nrBeams * nrChannels * nrTimes)

• Optional smoothing spectral detector

– Low-pass filter in frequency direction (convolution with gaussian); SumThreshold on

difference

– Better sensitivity for narrowband RFI

– Very limited improvement in practice

– Expensive

Statistics

• Trivial in theory, much harder in practice

• Important, since sample set is small

• Medians are expensive

– Use fast O(n) median (more robust than mean)

– May require extra data copy

• Winsorized: ignore top and bottom 10% for means

and standard deviations

• In the wrong place

– Complex communication patterns due to scheduling

– Asynchronous communication & synchronization issues

– Cannot compute running statistics (second of data takes

more than a second to compute)

Algorithm example: post-correlation 1D

// Do the following in frequency and time directions

for p in polarizations {

calculateAndIntegratePowers(p)

calculateStatistics(p)

flagger(p)

if(samplesFlagged) { // Make more robust:

calculateStatistics(p) // recalculate statistics

flagger(p) // omitting flagged data.

}

}

takeUnionOfFlags() // Unify polarizations.

ScaleInvariantRankOperator() // Expand flagged regions.

HistoryFlagger() // Flag based on statistics.

Start with frequency direction:

remove strong narrowband RFI.

It pollutes integrated data and

statistics.

Real-time extension: History Flagger

// For all channels we do the following:

// We keep an array (sliding window) of means of

// the past seconds, for each frequency channel

currentValue = winsorizedMeanOfUnflaggedSamples()

threshold = historyMean + sensitivity * historyStddev

if(currentValue < threshold) {

addToHistory(station, subband, currentValue)

} else {

addToHistory(station, subband, threshold)

flagThisIntegrationTime()

}

Space requirements of history statistics

• Pre correlation

– stations x subbands x channels x 32 bit float

– 64 x 248 x 256 x 4 = 15.5 MByte per second

– 5 Minutes = 300 samples = 4.6 GByte

• Post correlation

– baselines x subbands x channels x 32 bit float

– 2080 x 248 x 256 x 4 = 504 MByte per second

– 5 minutes = 300 samples = 148 Gbyte

• Downsample as required

Observation

• pulsar B1919+21; period 1.3373 s, pulse width 0.04 s, DM 12.455.

• Observed at 138.0 – 145.2 MHz (32 subbands)

• 5 stations: CS005, CS006, RS205, RS406, UK608

– Core vs remote: correlated vs uncorrelated RFI, uk station

• Stored raw UDP data: can replay real-time pipeline offline

• 16 channels (12 KHz / 82 μs) or 256 channels (0.8 KHz / 1.3 ms)

• Pulsar pipeline allows for quantitative

comparison: SNR of folded pulse profile

Pulsar B1919+21 in the Vulpecula nebula.

Pulse profile created with the LOFAR software telescope.
Background picture courtesy European Southern Observatory.

RFI mitigation

before

after LOFBeam formed data, Stokes I

time

fr
e

q
u
e
n
c
y

RFI mitigation

before

after LOFBeam formed data, Stokes I

time

fr
e

q
u
e
n
c
y

Folded pulse profile

non-flagged

threshold

LOF

phase

p
o
w

e
r

Folded pulse profile

threshold

LOF

phase

p
o
w

e
r

Threshold vs LOF

source

data

difference

time

fr
e
q
u
e
n
c
y

Threshold vs LOF

1.687

2.931

0 1 2 3 4

flagged (%)

LOF + Presto rfifind

LOF

threshold

non-flagged

0.86 0.85

0.75

0.8

0.85

0.9

0.95

1

power

0.48

4.82

7.06 7.19

0

1

2

3

4

5

6

7

8

signal to noise ratio

Performance Breakdown Beam Forming Mode

(pre-correlation flagger)

7.9
2.8

63.2 36.8

0% 20% 40% 60% 80% 100%

frequency

time

compute

I/O

1.1
33.4 60.2 1.0

4.3

0% 20% 40% 60% 80% 100%

admin

integrate

SumThreshold

SIR

history

Performance Breakdown Imaging Mode

(post-correlation flagger)

5.0 78.7 21.3

0% 20% 40% 60% 80% 100%

flagger

compute

I/O

1.5

3.7
87.7

0.7

6.4

0% 20% 40% 60% 80% 100%

admin

integrate

SumThreshold

SIR

history

Conclusions and next steps

• Much better than thresholding is possible in real time, even on a

distributed system

• Scalable: linear computational complexity, adds little overhead

• Flexible in storage requirements

• SumThreshold originally tested tested on visibilities mostly, now:

– raw voltages, pre-correlation, post-correlaton, post-beam forming

• One robust algorithm for different scales (μs - hours)

• Currently working on

– GPU implementation

– Commissioning

– Performance model to scale to the SKA

– Dome ExaBounds tool for power dissipation

