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1. INTRODUCTION

Radio astronomy is a subfield of astronomy that studies celestial objects at radio frequencies.
Unlike visible light, these radio signals are not blocked by earth’s atmosphere, making it possible
to detect them from the ground. Radio emissions have been observed from a number of celestial
bodies, including stars and galaxies. Some celestial bodies that can only be observed by radio
emission are radio galaxies, pulsars, quasars and masers.

Traditionally, radio astronomy is conducted using a radio telescope. A radio telescope con-
sists of a large dish which can be aimed in a particular direction. The telescope’s field of view
determines the area of the sky that can be observed. The received radio signals are processed by
dedicated hardware in a pipeline. A pipeline is a series of consecutive signal processing stages,
the result of which is analyzed by astronomers. The exact stages in the pipeline depend on what
one wants to study. The problems with this approach are apparent when bigger telescopes are
built to observe more frequencies and with a larger field of view. First, dishes are becoming
too large and contain moving parts which are very expensive to maintain. Second, dedicated
hardware is becoming too expensive to design and build and cannot be reconfigured for different
pipelines.

The LOFAR (Low Frequency Array) radio telescope [36, 35] is designed in a completely differ-
ent fashion. Rather than using expensive dishes, it forms a distributed sensor network of tens of
thousands simple, low frequency antennas in the range of 15 - 250MHz. The telescope is omnidi-
rectional, because the antennas receive signals from all directions. LOFAR can switch directions
instantaneously by considering only signals from a certain direction (this is called beam forming),
or even observe the sky in many directions simultaneously. The signals from all antennas are
combined in a central signal processing pipeline and are processed in software, which requires
enormous bandwidth and computing power. The central processing pipeline is implemented on
an IBM Blue Gene/P supercomputer, which is in the top 500 supercomputers [13]. LOFAR
supports several processing pipelines, but in this thesis we only consider the imaging pipeline,
which creates an image of the observed signals. The imaging pipeline is computationally very
expensive. In addition, LOFAR produces over 100 TB/day and is therefore very I/O intensive.
Such huge amounts of data cannot be stored for long and must be processed in real time by the
pipeline.

LOFAR is a pathfinder for the future Square Kilometer Array (SKA) [12]. SKA is a radio
telescope planned for construction between 2016 and 2023, whose radio receivers (antennas and
dishes) will have a total area of one square kilometer when placed together. The receivers will be
placed in different parts of the world, giving the telescope an area of a million square kilometers.
SKA will be by far the largest telescope ever built. There are two other SKA software radio
telescope pathfinders in development: ASKAP (Australian SKA Pathfinder) [4] and MeerKAT
(in South Africa) [7]. SKA will have to process several orders of magnitude more data (exa-scale)
than LOFAR and it is currently not known how to process such an enormous amount of data
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in real time. Therefore each telescope demonstrates particular technology choices for signal pro-
cessing and each observes a different range of radio frequencies (LOFAR: 15 - 250 MHz, ASKAP:
0.7 - 1.8 GHz, MeerKAT: 0.5 - 2.5 GHz). Being that LOFAR is the only operational software
radio telescope, it is still several years ahead of ASKAP and MeerKAT in researching on how to
process large quantities of astronomical data.

The issue that LOFAR currently faces is that data processing on the Blue Gene/P no longer
scales with the amount of data produced by the antennas in terms of energy and maintainance
costs: It simply too expensive. A possible alternative to the BG/P is using many-core processors
such as GPUs1 and the Cell/B.E., which are cheaper, more energy efficient and their architec-
tures are suited for the kind of parallelism that is required by LOFAR. Besides LOFAR, research
in this area will also benefit the other pathfinders and SKA. Evaluating the real potential of
these architectures in the context of LOFAR requires investigating the performance that dif-
ferent stages of the pipeline can achieve on many-core hardware. For example, one such study
(already available) compares the efficiency of the correlation algorithm on several many-cores
[37]. In this study the Cell/B.E core achieves the highest efficiency of 91%, comparable to the
BG/P’s 96% efficiency. The Cell/B.E is also 3.9x more power efficient than the BG/P.

In this thesis we focus on another part of the imaging pipeline, the polyphase filter. The polyphase
filter is responsible for splitting the sample streams from the antennas into different frequency
channels, and can reduce interference. Our investigation aims to answer how a polyphase filter is
implemented efficiently in terms of both performance and power efficiency on several many-core
architectures, using different programming models (where applicable). We also compare the ease
of programmability, as well as issues such as how I/O affects the performance of our kernels.

In this thesis we research four platforms: Intel Core i7 920, NVIDIA GTX480, ATI Radeon
HD5870, and Microgrid. Our research shows that the polyphase filter can be implemented quite
efficiently on the NVIDIA GTX480 GPU, achieving almost 500 GFLOP/s in the best case, if we
exclude I/O transfers. Our research also shows that I/O transfers on GPUs have a huge impact
on performance, due to the low bandwidth of the PCI express 2.0 bus. The ATI HD5870 does
not perform nearly as well in most cases. The Microgrid architecture is more efficient than GPUs
in some specific cases.

1.1 Thesis outline

The thesis is structured as follows: We first give background information about LOFAR and radio
astronomy in general, followed by an explanation of what polyphase filters are and how they work.
Then we discuss the implementations on the different architectures and present the performance
results. AWe also discuss the performance of various FFT libraries on the different platforms.
Finally we discuss related work, summarize our findings and conclusions, and recommend future
work directions.

1 Graphics Processing Unit



2. BACKGROUND

In this chapter we give an overview of radio astronomy and the LOFAR telescope to put our
research in the right scientific context.

2.1 Radio astronomy

Radio astronomy is a subfield of astronomy that studies celestial objects at radio frequencies.
Many celestial bodies emit radio signals, and some, such as pulsars and quasars, can only be
observed this way. In reality, celestial objects emit electromagnetic radiation across a wide
spectrum, but only a certain range of radio frequencies can penetrate the Earth’s atmosphere
sufficiently to be observed (see Figure 2.1). Of this range, LOFAR observes the lower frequencies.
Figure 2.1 also shows that traditional optical astronomy only observes a very small frequency
range in the spectrum, hence radio astronomy can reveal much more about the galaxy. For
example, the discovery of cosmic microwave background radiation [34] was made through radio
astronomy, providing evidence of the Big Bang.

Fig. 2.1: Penetration of electromagnetic radiation through Earth’s atmosphere.
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Any matter that is heated above absolute zero emits some electromagnetic radiation. In theory,
it is possible to detect radiation from any object in the universe. Electromagnetic radiation is
produced by either thermal or non-thermal mechanisms. Thermal radiation includes infrared,
ultraviolet, and visible light. Non-thermal radiation includes synchrotron radiation, which is
formed by particles that circle or spiral a magnetic field at velocities reaching the speed of light
[18].

In radio astronomy there is a great deal of interference from natural and human-made sources.
Natural sources include radio emissions from the Sun, lightning, and emissions from charged par-
ticles (ions) in the upper atmosphere. Human-made sources include power generators/transformers,
radar, radio transmissions, cell phones, and GPS [18]. Radio telescopes filter this interference as
best as possible, although it is never possible to remove it all.

An important difference between radio and optical astronomy is that the wave characteristics
of the radio signal are preserved. Incoming analog signals are converted to digital and further
processed using a multitude of digital signal processing techniques. This is normally done us-
ing dedicated, custom-built hardware, which is expensive to design and maintain. In contrast,
LOFAR processes signals in software, which was not possible until before the last decade when
computers became fast enough to replace special hardware.

2.2 The LOFAR software telescope

Radio astronomy has been traditionally conducted using radio telescopes, which consist of large
dishes that can be aimed in a direction. There are two such telescopes in the Netherlands: the
Dwingeloo telescope (1954 - 1990) and the Westerbork telescope (1970 - now). Over the years
radio telescopes have become larger and larger to observe more frequencies and to increase the
field of view (the area of the sky that can be observed). However, large telescopes are becoming
too expensive to build and maintain. The LOFAR telescope is a new generation radio tele-
scope without dishes and performs digital signal processing in software using a signal processing
pipeline, allowing a great deal more flexibility and capabilities than other radio telescopes.

Fig. 2.2: Overview of the LOFAR signal processing pipeline.

The signal processing pipeline used by LOFAR is divided into three parts: in the field processing,
real-time central processing and offline processing (see Figure 2.2). Some astronomical objects
can only be observed at high sample rates, and must be studied in the real-time pipeline. The
data from the real-time pipeline is also downsampled and stored, so that other, less time critical
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astronomical research can be conducted offline. However, LOFAR generates so much data that
storage is limited to about a week’s worth of data.

Radio signals are received with antennas. Antennas are grouped in stations where their samples
are combined and transported to the real-time central processing pipeline. There are two kinds of
antennas: low band antennas (LBA, see Figure 2.3) which detect signals in the frequency range
15-80 Mhz and high band antennas (HBA, see Figure 2.4) which detect signals in the range 110-
250 MHz. Antennas are polarized and take samples in orthogonal (X and Y) directions. Each
station contains 48-96 LBAs and 48-96 HBAs. The signals are initially filtered using FPGAs and
split into 512 subbands of 195kHz. A sample is a complex number of (2 x 4-bits), (2 x 8-bits)
or (2 x 16-bits) that represents the amplitude and phase of a signal at a particular time. The
samples are then sent to the central processing pipeline over dedicated fiber using UDP. LOFAR
does not use TCP because it is too complicated to implement in hardware, and retransmissions
would take too long in the real-time pipeline. In practice the data loss is minimal and easily
tolerated [17, 36].

Fig. 2.3: Low band antenna. Fig. 2.4: High band antenna.

2.2.1 The imaging pipeline

The imaging pipeline is responsible for correlating the samples from all stations with all stations,
so that an image of the observed sky can be created. See Figure 2.5 for an overview of the
imaging pipeline.

Fig. 2.5: Overview of the LOFAR imaging pipeline.
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Correlator
The function of the correlator is to filter out noise from all signals received by the antennas,
leaving only the interesting signals from astronomical objects one wants to study. The received
signals from sky sources are so weak, that the antennas mainly receive noise. To see if there is
statistical coherence in the noise, simultaneous samples of each pair of stations are correlated by
multiplying the sample of one station with the sample of the other station [36]. To reduce the
output size, the products are integrated by accumulation. The integration time is approximately
one second. LOFAR uses an FX correlator (F for Fourier transform and X for multiplication or
correlation). The idea of an FX correlator is that the incoming signal is divided into different
frequencies using a filterbank and each of those signals are then correlated with all of the signals
at the same frequency among all antennas [19]. This makes it the most time consuming opera-
tion in the pipeline with a time complexity of O(n2) (all other pipeline stages have lower time
complexity) [37, 36].

Polyphase filterbank
In the LOFAR system, frequency splitting is performed by the polyphase filterbank. Each 195
KHz wide subband that comes from the stations is split into a number of consecutive frequency
channels (256 is the common case). The polyphase filter itself consists of as many Finite Impulse
Response (FIR) filters. Next, the filtered data is Fourier transformed yielding the same amount
of frequency channels, each 763Hz wide [35, 36]. Chapter 3 explains how the polyphase filter
works in more detail, and chapter 4 describes our implementation of it.

Fig. 2.6: The left antenna receives the wave later.

Phase shift
Since light travels at a finite speed, two anten-
nas do not receive a wave at the same time (see
Figure 2.6). To correlate two signals, the sig-
nal from one of the receivers must be delayed
to compensate for the difference in travel time.
The delay depends on the distance of the re-
ceivers and the direction in which the receivers
observe. This is complicated by the rotation
of the earth, which alters the orientation of
the stations with respect to the observed sky
continuously [35]. This is achieved by simply
delaying a sample stream by an appropriate
amount.

Bandpass correction
The filterbank that runs on the FPGAs introduces artifacts that must corrected by multiplying
each complex sample by a real, channel-dependent value that is computed in advance. If this
correction is not done, some stations will have a stronger signal than others [36].

Beamforming
This step is optional and adds the samples from a group of stations that are close together to
form a virtual ”superstation” with more sensitivity. By applying an additional phase rotation
(complex multiplication), beam forming can also be used to select observation directions, or to
observe different parts of the sky simultaneously [36].
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The result of the imaging pipeline is an image such as the one in Figure 2.7, which is the
first image ever taken by LOFAR (the image quality has since been improved). In the remain-
der of this thesis, we focus on the polyphase filter and its implementation or multi-/many-core
processors.

Fig. 2.7: The first image ever taken by LOFAR.

2.2.2 Performance on the Blue Gene/P

Figure 2.8 shows the performance of the pipeline stages on one compute node on the Blue Gene/P.
The Figure shows that the polyphase filter (FIR + FFT) is the second most time consuming
stage, after the correlator.

The BG/P used by LOFAR contains 12480 processor cores that provide 42.4 TFLOP/s peak
processing power. One chip contains four PowerPC 450 cores, clocked at 850 MHz, each of which
has two Floating Point Units (FPUs). The compute nodes run a fast, simple, single-process
kernel (Compute Node Kernel, CNK) [36].
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Fig. 2.8: Performance of imaging pipeline stages on one compute node of the Blue Gene/P.



3. SIGNAL PROCESSING

In this section we give a short introduction in signal processing, covering the basic concepts
needed to understand polyphase filters and how they work.

3.1 Signals

A signal is defined as any physical quantity that varies with time, space, or other independent
variable(s) [32]. A signal can be mathematically described as a function of one or more inde-
pendent variables. Continuous-time (analog) signals are defined for every value of time, whereas
discrete signals are only defined at certain specific times. In this thesis, we are only interested
in discrete signals. An example of a discrete signal is x(n) = e|n|, n ∈ N, where n describes the
index of the discrete time instant.

Discrete signals can either be sampled at (usually) equally spaced intervals from an analog signal
source or by accumulating over a period of time. LOFAR antennas sample discrete, complex-
valued samples at a fixed interval (defined by the sampling frequency). The sampling frequency
of LOFAR is 160 or 200 MHz.

3.2 FIR filter

A Finite Impulse Response (FIR) filter multiplies a finite number of recent input signals (im-
pulses) relative to a given discrete time by coefficients (impulse responses) and accumulates the

results. It can be written mathematically as y(n) =
N∑
i=0

cix(n− i), where:

• y(n) is the output signal at discrete time n.

• x(n) is the input signal at discrete time n.

• ci are the coefficients, also called weights.

• N is the number of recent signals to consider, called the filter order. The terms on the
right-hand side of the equation are called taps. An N-th order FIR filter has N + 1 taps.

A FIR filter must remember its last N input samples, which are stored in what is called the
delay line. One can design a FIR filter by carefully choosing the filter order and coefficients
such that the system has specific characteristics. For the purpose of our work, those values are
predetermined.

A simple example of a FIR filter is the moving average, which computes the average of the
most recent N +1 input signals. In this case all coefficients have the value 1

N+1 . A 4-tap moving

average filter can be written as: y[n] = 1
4x[n]+

1
4x[n−1]+ 1

4x[n−2]+ 1
4x[n−3] (see Figure 3.1).
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+ y[n]
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Fig. 3.1: Block diagram of a 4-tap moving average FIR filter. The incoming sample x[n] and the samples
in the delay line z−1 are multiplied by 1

4
and accumulated. All samples in the delay line move

to the next tap, and the incoming sample x[n] is stored in the front.

3.3 Discrete Fourier Transform

A Fourier transform splits a sequence of input signals into a sequence of frequencies. In doing so
it transforms the input from the time domain to the frequency domain. It can be compared to
how a prism splits white light into separate light beams of a single frequency (see Figure 3.2).

Fig. 3.2: A prism splits white light into separate light beams of a single frequency.

A Discrete Fourier Transform (DFT) operates on discrete signals and can be written mathemat-

ically as fk =
N−1∑
n=0

x(n)e−i 2π
N nk, where:

• x(n) is an input signal; there are N input signals.

• fk is the kth frequency and is a complex number, k = 0, 1, 2, ..., N − 1.

The complexity of this algorithm is O(N2), since computing any of the N frequencies requires
iterating over N inputs. This algorithm is not used directly in practice, because there are
better algorithms known as Fast Fourier Transforms (FFT) which have a complexity of only
O(N log2(N)).

3.3.1 Fast Fourier Transform

As mentioned, a FFT can compute a DFT in O(N log2(N)) time. In this subsection we explain
how this can be accomplished and further optimized using parallellization. We briefly describe
the radix-2 Cooley-Tukey FFT algorithm [16], because it is a well known and easy to understand
algorithm. The Cooley-Tukey algorithm, computes a DFT as two interleaved DFTs by the par-
ity (even or oddness) of the summation index in the previously shown equation. By recursively
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splitting the two interleaved DFTs, a time complexity of O(N log2(N)) is achieved.

Let us take a DFT with N = 8 and write out the summation [5]:

fk = x(0) + x(1)e−i 2π
8 k + x(2)e−i 2π

8 2k + x(3)e−i 2π
8 3k

+ x(4)e−i 2π
8 4k + x(5)e−i 2π

8 5k + x(6)e−i 2π
8 6k + x(7)e−i 2π

8 7k
(3.1)

Then we sort the terms by parity, effectively splitting the FFT into two smaller FFTs:

fk = [x(0) + x(2)e−i 2π
8 2k + x(4)e−i 2π

8 4k + x(6)e−i 2π
8 6k]

+ e−i 2π
8 k[(x(1) + x(3)e−i 2π

8 2k + x(5)e−i 2π
8 4k + x(7)e−i 2π

8 6k)]
(3.2)

And split the sums again:

fk = [(x(0) + x(4)e−i 2π
8 4k) + e−i 2π

8 2k((x(2) + x(6)e−i 2π
8 4k)]

+ e−i 2π
8 k[[(x(1) + x(5)e−i 2π

8 4k) + e−i 2π
8 2k((x(3) + x(7)e−i 2π

8 4k))]

= [(x(0) + x(4)e−iπk) + e−iπ
2 k(x(2) + x(6)e−iπk)]

+ e−iπ
4 k[(x(1) + x(5)e−iπk) + e−iπ

2 k(x(3) + x(7)e−iπk)]

(3.3)

So, there are 3 (log2(8)) levels of summation, and each level can be parallellized by computing
each summation in different threads. In this example we need 4 threads for the inner summations,
2 for the middle, and 1 for the outer summation. There are k frequencies to compute, which can
all be done in parallel as well. The final observations are that ei(ϕ+2π) = eiϕ and ei(ϕ+π) = −eiϕ,
meaning even and odd frequencies share the same multipliers, and can thus share much data.

3.4 Polyphase filter

Polyphase filters are used by LOFAR to channelize input streams and reduce interference. A
polyphase filter splits the input sequence into subsequences of M samples, where each subse-
quent input signal is the input to one of M FIR filters (or channels). This can be described

mathematically as ym(n) =
N∑
i=0

cix((n− i)M +m), where:

• N is the number of recent samples to consider (the filter order).

• M is the number of FIR filters (channels).

• ym(n) is the nth output signal of the mth FIR filter, m = 0, 1, 2, ...,M − 1.

The M outputs ym(n) are used as inputs to a Discrete Fourier Transform as described in the
previous subsection. Figure 4.1 shows a schematic of a polyphase filter in the LOFAR pipeline,
where the input stream is channelized into 256 channels, which are then fourier transformed.



4. IMPLEMENTATION

In this chapter we explain in detail how the polyphase filter is implemented on each of the fol-
lowing architectures: Intel Core i7 920, NVIDIA GTX480 Fermi, Microgrid, and ATI HD5870.
We include description of the memory layouts of the data structures, optimization techniques
and performance statistics. The implementation details that are common to all architectures
will be discussed first. We sometimes use the term kernel, which refers to the functions in our
application that perform the polyphase filter operations.

Each implementation is designed as a library that can be included in different programs. The
API1 of all libraries is as similar as possible, but there are some differences simply because the
architectures have different properties. The API documentation is included separately with the
thesis.

We focused on the implementation of the FIR filter. We did not implement the FFT our-
selves, but used a third-party library when possible. The reason for this is that implementing
an optimized FFT is a very time consuming task, and there are already high performance im-
plementations available.

4.1 Polyphase filter

The LOFAR polyphase filter handles multiple stations, but they are completely independent
(”embarrassingly parallel”). Therefore, in this section we explain how the polyphase filter func-
tions for a single station.

The input to the polyphase filter are samples received from the stations in the field. Sam-
ples are complex numbers of (2 x 4-bit), (2 x 8-bit) or (2 x 16-bit) integers, which are first
converted to 32-bit floating point values. All computation is further done using 32-bit floating
point values. The number of received samples per time unit is equal to the number of channels
times the number of polarizations (two, X and Y). There is a separate FIR filter for each channel
and polarization. The FIR coefficients are the same for both polarizations. There is one FFT
per polarization and the outputs of the channel FIR filters, divided by polarization, form the
input to them. The output of the FFTs represents the output of the polyphase filter (see Figure
4.1).

A FIR filter must remember its last few input samples to compute its next output. These
are stored in a delay line, which can be seen as a bounded FIFO buffer with a size equal to
the number of taps. When a FIR filter gets a new input it is stored at the front of the buffer
and all samples shift to the next tap (so the newest becomes the second-to-newest, etc) and the
sample that was in the last tap is discarded. We cannot use strength reduction to reduce the
computational complexity, because that involves designing a specific FIR filter for a specific set

1 Application Programming Interface
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Fig. 4.1: Schematic of a polyphase filter. The delay compensated input stream is channelized into 256
channels, which are then Fourier transformed.

of coefficients. But in LOFAR the coefficients are not fixed and can be changed at any time.

Figure 4.2 shows high-level pseudo code of the polyphase filter algorithm. We make some obser-
vations to guide our implementation and optimizations:

• All FIR filters of all channels and polarizations can be computed independently and in
parallel.

• Coefficients are shared between polarizations, so it may be efficient to compute both po-
larizations of a channel in the same kernel.

• The FFTs can also be computed in parallel, but not before all FIR filters of a given
polarization are computed.

• The delay lines are reused for every new sample and the way in which they are stored must
be considered carefully to minimize data copying.

• All input and output data for the FIRs and FFTs are stored at different non-overlapping
memory locations, so there is no need for any kind of locking and there are no critical
sections.
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1 foreach Station St do
2 foreach Polarization Po do
3 foreach Channel Ch do

/* Get the new sample, store it in tap 0 of the delay line of this

station’s channel and polarization, then compute the result.

*/

4 S ← GetSample(St, Ch, Po);
5 PutDelayLine(St, Ch, Po, S);
6 FirSum ← 0;
7 for Idx ← 0 to Ntaps − 1 do
8 Tap ← GetDelayLine(St, Ch, Po, Idx);
9 Coeff ← GetCoefficient(Ch, Idx);

10 FirSum ← FirSum + Tap × Coeff;

11 PutFirOutput(St, Ch, Po, FirSum);

12 ComputeFFT(St, Po);

Fig. 4.2: Polyphase filter high-level pseudo code.

4.1.1 Data structures

In this subsection we explain the memory layout of the data structures used by the polyphase
filter. The memory layout is important because it has a big impact on cache efficiency and/or
memory coalescing.

There are four data structures:

• The input array, where incoming samples from the stations are stored, one for each channel
and polarization.

• The output array, where polyphase filter output samples are stored.

• The delay line array, where the taps of all FIR filters are stored.

• The coefficients array, where the coefficients used by the FIR filters are stored, one for each
channel and tap. All stations share the same coefficients.

The layout of the input and output arrays is the same for all implementations, because it is given
by the LOFAR imaging pipeline. The delay line and coefficients arrays are only used internally
and their layout is not the same for all architectures, so we will come back to them later to
explain the optimal layout.

The input array is a four-dimensional array of samples where the dimensions are (in order):
time, station, channel, polarization. Note that the polarizations are interleaved, as this is how
the samples are received from the stations (see Figure 4.3).

The output array is a four-dimensional array of samples where the dimensions are (in order):
time, polarization, station, channel. The output array is divided into two parts, one for each
polarization (see Figure 4.4). This array is also used as input to the FFTs, so all samples that
belong to one station must be stored in consecutive memory locations (see Figure 4.3).
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The delay line array is a four-dimensional array of samples and it is only used internally. Its
dimensions are: station, channel, tap, polarization. The exact order of dimensions differs per
implementation due to differences in memory access patterns. A graphical representation to
clarify will be given later for each architecture.

The coefficients array is only used internally and it stores the coefficients used by the FIR filters.
The dimensions are: channel, tap. Note that polarizations share the same coefficient per channel
per tap. Just like the delay line array, the exact order of dimensions differs per implementation.

X0 Y0 X1 Y1 ... ... Xc Yc

X0 X1 ... Xc Y0 Y1 ... Yc

t taps

X00

... ... ... ... ... ... ... ...

Y00 X01 Y01 X0t Y0t... ...

X10 Y10 X11 Y11 X1t Y1t... ...

Xc0 Yc0 Xc1 Yc1 Xct Yct... ...

In place

transform

2c Delay Lines

(interleaved)

Polyphase Filter (1 station)

c
 c

h
a

n
n

e
ls

Input

Output

2c FIR Filters

FFT X FFT Y

c channels, 2c samples

Fig. 4.3: Memory layouts and datapaths of the polyphase filter for one station. The coefficients array is
not shown, but it has the same structure as the delay lines.

Input Array (interleaved)

Output Array (separated)

S0X S1X ... SsX S0Y S1Y ... SsY

Polyphase filters

S0 S1 ... Ss
XYXYXYXY... XYXYXYXY... XYXYXYXY...

Fig. 4.4: The polyphase filters take interleaved (by polarisation) input and give separated output. In
this figure, S0 through Ss represent the stations.
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Array Dimensions Data type Internal/External
Input time, station, channel, polarization Complex I4/I8/I16 External
Output time, polarization, station, channel Complex F32 External
Delay line station, channel, polarization, tap Complex F32 Internal
Coefficients channel, tap Real F32 Internal

Fig. 4.5: Overview of the data structures. I4/I8/I16 means 4/8/16-bit integer and F32 means 32-bit
floating point.

4.2 Measuring performance

In this section we explain how we measure the performance of our kernels.

4.2.1 Floating point operations (FLOPs)

Computing the output of a FIR filter requires a number of multiply-add operations. There are
Ntaps complex samples in the delay line. Each sample is multiplied by a real coefficient and these
results are summed. This requires 2Ntaps floating point multiplications and 2(Ntaps−1) floating
point additions. The total amount of FLOPs per FIR filter is thus 2 + 4(Ntaps − 1).

Since we use third-party FFT libraries we do not know the exact number of FLOPs for the
FFT, but it be can approximated as 5Nchannels log2(Nchannels) [25]. LOFAR only uses power of
two FFTs, because those can be computed most efficiently.

4.2.2 Memory traffic

Computing the output of a FIR filter requires the following memory loads and stores (after
conversion of the input samples to floating point):

• Read one (2 x 4 bit), (2 x 8 bit) or (2 x 16 bit) input sample, which is converted to a (2 x
32 bit) floating point sample. Note that for simplicity of the calculations we need to make
we assume (2 x 16 bit) samples.

• Read (Ntaps − 1) (2 x 32 bit) samples from the delay line.

• Read Ntaps 32 bit coefficients.

• Write one (2 x 32 bit) output.

• Write one (2 x 32 bit) sample to the delay line.

So, the total amount of memory traffic for one FIR filter is 4 + 8(Ntaps − 1) + 4Ntaps + 8 + 8 =
(12Ntaps − 4) + 16 bytes.

One FFT has in total 4Nchannels [25] complex floating point inputs and outputs, so the amount
of memory traffic is 8× 4Nchannels = 32Nchannels bytes.
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4.3 Peak performance

We use the Roofline model[39] to determine the maximum attainable performance of our imple-
mentation on a given architecture:

peakmax = min(perfpeak,MemoryBandwidth×AI), where:

• perfmax is the maximum attainable floating point performance of our implementation on
the given architecture (GFLOP/s).

• perfpeak is the theoretical peak floating point performance of the architecture (GFLOP/s).

• MemoryBandwidth is the peak memory bandwidth of the architecture (GB/s).

• AI is the arithmetic intensity of the implementation, which is defined as the number of
FLOPs per byte of memory traffic. The AI of the polyphase filter is given in the following
subsection.

Using the Roofline model we can determine whether our kernels are bounded by computational
power of the processor or by the memory bandwidth. If the measured performance of a kernel
is lower than perfmax, it is memory bound. Otherwise, it is compute bound. Note that the
Roofline model does not take some optimizations, such as memory caching, into account. This
means that the measured performance can be higher than perfmax.

4.3.1 Arithmetic intensity

To use the Roofline model, we must determine the arithmetic intensity of our kernel. Arithmetic
intensity is defined as the number of FLOPs per byte of memory traffic, so we need to calculate
both. We calculate the AI of the FIR filter and FFT separately.

FLOPfir = 2 + 4(Ntaps − 1)

BytesAccessedfir = (12Ntaps − 4) + 16

AIfir = FLOPfir/BytesAccessedfir

FLOPfft = 5Nchannels log2(Nchannels)

BytesAccessedfft = 32Nchannels

AIfft = FLOPfft/BytesAccessedfft

(4.1)

Note that for some implementations there are optimizations which influence the AI, this is
explained in the appropriate sections.

4.4 Validation

A test program was written for all implementations. It has two purposes: to verify the correct-
ness of the implementations and to take performance measurements of the various optimization
techniques that will be discussed in this chapter.



4. Implementation 24

4.4.1 Correctness of the implementation

The polyphase filter consists of two algorithms that can be tested separately: the FIR filter and
the FFT.

To verify the correctness of the FIR filter, we compute a small moving average filter with fixed
input. The output is printed to the screen and easily verified.

Since we use third-party FFT libraries for most architectures, we assume they function correctly.
We only verify that we are using the libraries correctly.

4.4.2 Performance measurements

The test program measures performance based on a number of parameters, both general param-
eters and implementation-specific parameters. General parameters are given to the program at
run time. Implementation-specific parameters usually need to be hard-coded.

General parameters:

• Sample size (4, 8 or 16 bits).

• Number of stations.

• Number of channels.

• Number of taps.

• Number of input samples per channel, or in other words the number of times to run the
polyphase filter.

Implementation-specific parameters include enabled optimizations (determined at compilation
time) and additional command line parameters, for example the number of threads in the CPU
implementation.

The following metrics are used to evaluate performance:

• Running time in seconds of computing the total number of samples, measured with the
highest precision timer available on a given platform.

• Average running time per sample, meaning the time spent for all channels of all stations
to process one input sample.

• Energy consumption in Watt, measured with an external device. See section 6.2.

4.5 Properties of the architectures

In this section we list the hardware properties of the architectures on which we have imple-
mented the polyphase filter. The architectures are Intel Core i7 920, NVIDIA GTX 480 Fermi,
ATI Radeon HD 5870 and Microgrid. Table 4.1 shows the properties of each architecture. Note
that these numbers show the theoretical peaks. Also note that the host-to-device bandwidth of
the GPUs is low due to the PCI Express 2.0 bus.

Note that for Microgrid we use a simulator, and the specifications apply to the specific con-
figuration that we have chosen for our experiments. This is explained in Section 4.8.
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Hardware Intel NVIDIA ATI Micro
properties Core i7 GTX 480 HD 5870 Grid
Cores x FPUs/core 4x4 480x1 320x5 64x1
SP FP operations/cycle/FPU 2 1 FMA 1 FMA 1
Clock Frequency (GHz) 2.67 0.7 0.85 1.0
GFLOPs/chip 85 1345 2720 64
Registers/core x register width 16x4 1024x4 1024x4 1024x8
L1 cache size/chip (KB) 32 16 or 48 8 1
L1 cache bandwidth (GB/s) ? ? 1088 1
Memory bandwidth (GB/s) 25.6 177.4 154 ?
Host-device bandwidth (GB/s) n.a. 8.0 8.0 n.a.
Process technology (nm) 45 40 40 n.a.
Thermal Design Power (W) 130 250 188 n.a.
GFLOPs/W (based on TDP) 0.65 5.38 14.47 n.a.

Tab. 4.1: The hardware properties of each architecture we have investigated. FMA means Fused
Multiply-Add, a single instruction that performs a multiplication and an addition. Note that
the Microgrid properties only apply to the specific configuration we have chosen.

4.6 Intel Core i7 920

In this section we discuss our implementation of the polyphase filter on the Intel Core i7. We
implement the FIR filter ourselves, but we use the popular FFTW library [6] to compute the
FFTs.

The programming language is C using the C99 standard and the compiler is gcc version
4.4.1 (Ubuntu 4.4.1-4ubuntu9).
Compiler flags: -msse4 -std=gnu99 -fopenmp -O1 -s -fomit-frame-pointer -fstrict-aliasing

In this implementation we compute the FIR output of both polarizations of a channel at the
same time. There are three reasons for this:

• The samples are adjacent to each other in memory, so this increases cache efficiency.

• They both share the same coefficients, so these can be reused.

• The samples consist of 4 32-bit floating point values, which fit exactly in one 128-bit SSE
register. More on this optimization is explained later in section 4.6.2.

In the delay line array the taps for both polarizations of a channel are also stored interleaved.
The dimensions of the delay line array are as follows (in order): station, channel, tap, polariza-
tion. This way the memory here is also accessed sequentially, which increases cache efficiency
(see Figure 4.3).

To compute the FIR output we need to iterate over all taps in the delay line from newest
to oldest. The simplest way would be to always iterate from index 0 to Ntaps − 1, but then we
would need to copy the samples to shift them to the next tap each time the FIR gets a new
input. We can avoid all this unnecessary copying by turning the delay line array into a bounded
FIFO buffer. A delay index counter is kept, which represents the starting index of the array
and also the index where the next input sample is stored. Its initial value is zero. The counter
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is decremented before the store and can have values in the range {0, 1, ..., Ntaps − 1}. This also
overwrites the oldest sample, which has to be discarded anyway. Since all channels of all stations
are computed in lock-step, we can share the delay index between all channels.

Figure 4.6 shows pseudo code of the reference algorithm2. In the following subsections we discuss
more complex optimizations we have implemented for this version of the polyphase filter.

// This will decrement and ensure DelayIndex ∈ {0, 1, ..., Ntaps − 1}.
1 DelayIndex ← (Ntaps + DelayIndex - 1) mod Ntaps;
2 foreach Station St do
3 foreach Channel Ch in St do
4 NewSampleX ← GetInputSampleX(Ch) // X and Y polarizations.

5 NewSampleY ← GetInputSampleY(Ch);
6 PutDelayLineX(Ch, DelayIndex, NewSampleX);
7 PutDelayLineY(Ch, DelayIndex, NewSampleY);

// 2 * 2 FLOPs (samples are complex)

8 SumX ← NewSampleX * GetCoefficient(Ch, 0);
9 SumY ← NewSampleY * GetCoefficient(Ch, 0);

10 CoIdx ← 1; // Coefficient index.

// Both loops together make Ntaps − 1 iterations.

11 for Idx← DelayIndex+ 1 to Ntaps − 1 do
// 2 * 4 FLOPs

12 SumX ← SumX + GetDelayLineX(Ch, Idx) * GetCoefficient(Ch, CoIdx);
13 SumY ← SumY + GetDelayLineY(Ch, Idx) * GetCoefficient(Ch, CoIdx);
14 CoIdx ← CoIdx + 1;

15 for Idx← 0 to DelayIndex− 1 do
// 2 * 4 FLOPs

16 SumX ← SumX + GetDelayLineX(Ch, Idx) * GetCoefficient(Ch, CoIdx);
17 SumY ← SumY + GetDelayLineY(Ch, Idx) * GetCoefficient(Ch, CoIdx);
18 CoIdx ← CoIdx + 1;

19 PutOutputX(Ch, SumX);
20 PutOutputY(Ch, SumY);

21 ComputeFFTs();

Fig. 4.6: CPU reference implementation.

4.6.1 Multi-threading with OpenMP

The polyphase filter is trivially parallelizable, since all channels of all stations are independent
and only share constant data. We use OpenMP [10] to parallelize the outer loop shown in Figure
4.6, so that each thread computes a number of stations. This required only a single pragma:

#pragma omp parallel for if(nr stations >= 2)

Since the polyphase filter computes two filters in sequence, but individual stations are indepen-
dent, we can interleave the FIR and FFT computations in the same thread. This way we need

2 Although what we have discussed so far technically includes optimizations, we believe they are straightforward
and do not significantly increase code complexity, if at all.
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less thread synchronization, improving efficiency. Moreover, a portion of the output array may
still be in the cache, increasing cache hits.

Figure 4.7 shows the effect of varying the number of threads on the performance on the In-
tel Core i7. We only show one example (16 stations x 256 channels x 16 taps x 16-bit samples),
because experiments with different parameters show the same behaviour. Although the Core i7
has hyperthreading, the optimal number of threads is four, equal to the number of cores.

4.6.2 Vectorization with SSE

The first optimization we implemented was to use Intel’s SSE3 instruction set [22]. SSE is an
instruction set extension that makes a number of SIMD4 instructions and registers available to
the CPU. The registers are 128-bit and can hold four 32-bit floating point values in subregisters.
SSE instructions operate on each subregister simultaneously. The compiler does not generate
SSE code by itself, SSE enabled code must be written explicitly by the programmer. We don’t
need to write assembly, because access to the registers and instructions is provided via compiler
intrinsics. The compiler does take care of register allocation.

SSE registers can only be loaded/stored efficiently if the source/destination memory addresses
are aligned on a 16-byte boundary. We use memory allocation functions from the FFTW library
to ensure all our arrays are aligned on this boundary. Even so, some values (such as the 4 and
8-bit samples) are too small to always be aligned on this boundary. In this case we have to load
the SSE registers from intermediate general registers instead.

We use three SSE registers:

• One to store the sums (see Figure 4.6).

• One to store two samples read from the delay lines.

• One to store the coefficient.

SSE has a total of 16 registers (XMM0 through XMM15), which is enough to store an entire
delay line, but that would not leave any room for the other registers we need.

The 8 and 16-bit input samples are loaded and converted to floating point in one SSE instruc-
tion, which also conveniently places them in the SSE register we use to store the sums. The
4-bit samples must first be loaded into an MMX5 register, and are converted to floating point
from there. The samples from the delay lines are loaded in one instruction, note that this would
not be possible if the polarizations in the delay lines were not interleaved. Coefficients are single
floating point values, which we replicate in all four subregisters using the mm set1 ps intrinsic.

Figure 4.8 compares the performance of using different sample sizes for the reference and opti-
mized implementations. In the reference implementation there is almost no difference between
sample sizes. Interestingly, in the optimized implementation 8-bit samples are more efficient than
16-bit samples. We believe this is because, while (2x 8-bit) and (2x 16-bit) samples are both
loaded in one SSE instruction, (2 x 8-bit) samples require only half the amount of memory.

3 Streaming SIMD Extensions
4 Single Instruction Multiple Data
5 MultiMedia Extensions, SIMD instructions for integers only.
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Fig. 4.7: The impact on performance of varying the number of threads on the overall performance of the
optimized implementation on the Intel Core i7. We show the performance of the FIR filter
in isolation (left) and that of the complete polyphase filter (right).
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To compute we simply multiply all four sample values by the coefficient and then add the
result to the sums. The available SSE instruction sets (SSE1 through SSE4) do not include a
fused multiply-accumulate instruction, so we use the two intrinsics mm mul ps and mm add ps.
However, SSE5, which is in development at the time of writing, will include a fused multiply-
accumulate instruction [14] that performs both computations at once.

We note that by using SSE instructions, we obtain a performance increase of approximately
1.6x compared to the reference implementation (see Figure 4.7).

4.6.3 Loop unrolling

Loop unrolling is an optimization in which the body of a loop is performed multiple times in
one iteration, thereby reducing the total number of jumps required to complete the loop, at
the expense of increased code size. The compiler can sometimes perform this optimization au-
tomatically. In our case this is not possible, because the number of loop iterations cannot be
determined statically, and is always a different number (see Figure 4.6).

We unrolled the loop once and dealt with an uneven number of total iterations (taps) sepa-
rately, as seen in Figure 4.9. Partially unrolling the loop has the advantage of being able to
use almost any number of taps. Whereas if the loop were unrolled completely, we would need
separate functions for different numbers of taps, and that would mean the possible numbers of
taps is hardcoded. In addition, loop unrolling increases code size which means it might not fit
completely into the instruction cache, and that has a negative impact on performance.

4.6.4 Maximum performance

To compute the maximum performance, we need to know the number of flops and bytes ac-
cessed per FIR filter and FFT. For the FIR reference implementation and FFT we already know
the number of flops and bytes accessed from section 4.3. Since we use SSE to compute two
polarizations at once, the numbers are computed differently for the optimized implementation:

FLOPfir,ref = 2 + 4(Ntaps − 1)

BytesAccessedfir,ref = (12Ntaps − 4) + 16

FLOPfir,opt = 4 + 8(Ntaps − 1)

BytesAccessedfir,opt = (20Ntaps − 8) + 32

(4.2)

Based on these equations, we can compute the arithmetic intensity and peak performance of the
polyphase filter. From Table 4.1 we know that perfpeak = 85 GFLOP/s andMemoryBandwidth =
25.6 GB/s. The performance of the FIR depends on Ntaps, and the performance on the FFT
depends on Nchannels.

The peakmax in GFLOP/s for the FIR and FFT are shown in Table 4.2. The observed per-
formance is actually much higher, due to the effect of caching.
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Fig. 4.8: Performance of processing 4/8/16-bit samples on the Intel Core i7 for the reference and
optimized implementations. We show only the performance of the FIR filter, because the FFT
is not affected by the input sample size. Reference on the left, optimized on the right. The
optimized implementation includes SSE and loop unrolling.
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/* After computing the first odd tap there can only be a multiple of two

taps left since we know Ntaps is always even. */

1 Idx ← DelayIndex + 1;
2 if Idx is odd then
3 ComputeTap();
4 Idx ← Idx + 1;

5 while Idx < Ntaps do
6 ComputeTap();
7 ComputeTap();
8 Idx ← Idx + 2;

/* Compute all even pairs, if the last tap is odd then compute it

separately. */

9 Idx ← 0;
10 while Idx < DelayIndex− (DelayIndex mod 2) do
11 ComputeTap();
12 ComputeTap();
13 Idx ← Idx + 2;

14 if DelayIndex is odd then
15 ComputeTap();

Fig. 4.9: CPU FIR loop unrolling.

Ntaps 4 8 16 32 64
AIfir,ref 0.23 0.28 0.30 0.31 0.33
AIfir,opt 0.26 0.33 0.36 0.38 0.39
perfmax,fir,ref (GFLOP/s) 6.0 7.1 7.8 8.1 8.3
perfmax,fir,opt (GFLOP/s) 6.9 8.3 9.2 9.7 10.0

Nchannels 64 128 256 512 1024
AIfft 0.94 1.1 1.25 1.4 1.6
perfmax,fft (GFLOP/s) 24 28 32 36 40

Tab. 4.2: The arithmetic intensity and maximum performance of the polyphase filter on the Intel Core
i7 920, determined with bound-and-bottleneck analysis (see Section 4.3). From Table 4.1 we
know that perfpeak is 85 GFLOP/s and MemoryBandwidth is 25.6 GB/s.

4.6.5 OpenCL

We have compiled the vectorized OpenCL implementation, described in section 4.9, for the CPU.
We chose the vectorized implementation, because it can take better advantage of SSE instruc-
tions than the non-vectorized OpenCL implementation. We were unable to run the OpenCL
FFT library on the CPU, so we only present the performance of the FIR filter, seen in Figure
4.10.

We can directly compare the performance of the 16 taps x 16-bit samples FIR filter in Fig-
ure 4.10 with Figure 4.7. The performance of the OpenCL implementation reaches at best
approximately 10.5 GFLOP/s, while our optimized implementation reaches slightly more than
16 GFLOP/s. Again we see that 8-bits is the most efficient sample size, as previously explained
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in section 4.6.2.

The reason why the OpenCL implementation performs worse may be that it uses batching (de-
scribed in section 4.7.4), which is meant to exploit the architecture of GPUs. Batching completely
unrolls the inner loop, meaning there are no branches, but it also increases the machine code
size proportional to the number of taps. This means the machine code of the inner loop may
not always fit in the CPU’s instruction cache, requiring more memory access, which impacts
performance. It also requires many registers, which are available on GPUs, but not on the Core
i7. This means registers must be spilled very often, decreasing performance. This shows that,
although OpenCL is cross-platform, that does not mean that the same OpenCL kernel runs ef-
ficiently on all platforms. We expect that an OpenCL implementation optimized specifically for
the Core i7 will achieve much better performance.

4.6.6 Discussion

This is the platform we started with. Since we were already familiar with C and OpenMP, the
implementation was straightforward to write. We had not used SSE before, but it was farily
straightforward to use. We had no real problems or issues with this platform.

Our hand optimized implementation achieves 18.8% peak performance, while the OpenCL imple-
mentation achieves 12.4% peak performance, for 16 taps. So, our hand optimized implementation
is almost 50% more efficient, similarly for other number of taps. Our hand optimized implemen-
tation achieves higher than the theoretical maximum performance, so we have good results.
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Fig. 4.10: The performance of the vectorized OpenCL implementation (described in section 4.9) of the
FIR filter on the Core i7 920. We show the impact of varying Ntaps (left) and the sample size
(right).
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4.7 NVIDIA GTX 480 Fermi

This implementation measures performance on NVIDIA’s Fermi architecture on a GTX 480
graphics card.

We implemented the polyphase filter using NVIDIA’s proprietary parallel computing program-
ming model called CUDA6 [26]. The programming language isC with the nvcc compiler included
with CUDA Toolkit 3.1. We use the CUFFT library [28] for the FFT.
Compiler flags: -std=gnu99 -m64 -arch sm 20 -O1 -s -fomit-frame-pointer

4.7.1 CUDA Architecture

This section explains briefly the details most important to know about the CUDA and Fermi
architecture for our implementation.

CUDA is the hardware and software architecture that enables NVIDIA GPUs to execute pro-
grams written in C, C++ and other languages. A CUDA program calls parallel kernels. A
kernel executes in parallel across a set of parallel threads. Threads are organized in thread
blocks and grids of thread blocks [29]. Threads are executed by a Streaming Multiprocessor in
groups of 32 threads called warps. Each thread starts at the same program address, but has a
separate program counter, set of registers, inputs and outputs and a per thread block unique ID.
If during warp execution a branching instruction in encountered, the sets of threads following
each branching path are executed serially, pausing the other threads in the warp, until all paths
converge. Therefore it is important, for performance reasons, to minimize diverging branches.
Our implementation has no diverging branches.

The CUDA architecture has four different memory spaces: global memory, constant memory,
texture memory and shared memory, but we only use the global and constant memory. The
global memory is the DRAM of the GPU, which is cached on the Fermi [29], but not on older
architectures. The constant memory can only be written by the CPU and is accessed almost as
fast as registers. The input, output and delay line arrays are kept in global memory (we will
optimize this later, see section 4.7.4) and the FIR coefficients in constant memory. The delay
lines cannot be stored in shared memory, because it is too small. When threads in a warp ac-
cess consecutive memory locations without gaps, they are coalesced in one memory transaction,
greatly increasing performance. Therefore it is important, for performance reasons, to design
data structures such that accesses to it are coalesced as often as possible. Only accesses within
the same warp are coalesced (see Figure 4.11).

Fermi can execute 512 single-precision floating point fused multiply-add instructions per clock.

4.7.1.1 Grid and thread block layout

Threads are organized in threads blocks and grids of thread blocks (called grid blocks), which
can be at most three and two dimensional, respectively. A thread block can have at most 1024
threads on the Fermi and 512 otherwise. The size of a thread block influences the occupancy
of the Streaming Multiprocessor, which is an important metric for the overall utilization of the
GPU (explained in more detail in section 4.7.4).

6 Compute Unified Device Architecture
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Fig. 4.11: Optimal memory access patterns on traditional multi-cores (left) and many-core GPUs (right).
The access pattern on the right is coalesced on GPUs, because at a given time instant all
memory accesses are to adjacent addresses.

For the FIR filter we choose the size of the thread block such that we achieve the highest occu-
pancy. The thread blocks are organized in a two dimensional grid where the stations are on the
X dimension. If a station requires more threads than fit in one thread block, then the threads
are evenly divided into two or more thread blocks in the Y dimension. See Figure 4.12 for a
graphical overview of the grid and thread blocks.

All threads have a unique ID determined by the grid and thread block they are located in,
and that is used to index the arrays used by the FIR filter. The parity of the thread ID deter-
mines the polarity of the samples processed by the given thread. As explained in section 4.7.6.1,
the maximum threads per block is determined by the number of taps, and usually we need more
than one thread block per station to compute all channels.
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Fig. 4.12: Grid and threads block for the FIR filters on CUDA. The exact values for b and r are deter-
mined by the number of taps and channels. This is explained in section 4.7.6.1.
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4.7.2 Memory layout

The layout of the input, output, delay line and coefficient arrays must be such that accesses to
them are coalesced as often as possible. Warps always execute threads in the order of their thread
ID within a thread block (see section 4.7.1.1). This means we don’t need to change the layout
of the input and output arrays, because accesses to it are already coalesced. The layouts of the
delay line and coefficient arrays are transposed compared to those of the CPU implementation
to improve coalescing (see Figure 4.13).

X0 Y0 X1 Y1 ... ... Xc Yc

X0 X1 ... Xc Y0 Y1 ... Yc

c channels

X00

... ... ... ... ... ... ... ...

Y00 X10 Y10 Xc0 Yc0... ...

X01 Y01 X11 Y11 Xc1 Yc1... ...

X0t Y0t X1t Y1t Xct Yct... ...

In place

transform

2c Delay Lines

(interleaved,

transposed)

GPU Polyphase Filter (1 station)

Input

Output

2c FIR Filters

FFT X FFT Y

c channels, 2c samples

t ta
p

s

Fig. 4.13: Memory layouts and datapaths of the polyphase filter for one station on a GPU. For multiple
stations the structure is simply repeated. The coefficients array is not shown, but it has the
same structure as the delay lines. The only difference with Figure 4.3 is that the delay lines
and coefficients array are transposed.

4.7.3 Reference implementation

The reference implementation is very similar to the one we implemented on the CPU, except
that each thread computes one FIR filter of one polarization. So, for each station there are
2Nchannels threads, divided over one or more thread blocks. The FFT is executed after all FIR
filters are computed.

The input and output arrays are buffered in host memory. The input data is copied synchronously
to the device buffer before calling the kernel. The FIR kernel reads one sample and the delay
line from global memory, then computes the output and writes it and the updated delay line
to global memory. The FFT then does an in-place transform, after which the output array is
copied back to the host memory.

The FIR coefficients are kept in the constant memory, which has a much lower latency than
global memory but can only be read by the GPU threads and written by the CPU. The GTX
480 has 64K bytes constant memory, which limits the maximum number of channels and taps to
Nchannels ×Ntaps ≤ 16384, since one coefficient is 32-bits.

We need to convert the integer input samples to floating point, which is done using the int2float
intrinsic function [26]. We found it to have an overhead of approximately 1%.
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4.7.4 Sample batch processing

In the reference implementation the kernel processes one sample and exits. This requires the
delay line to be loaded and stored from global memory on each call. We can keep the delay line
in registers for multiple samples by changing the kernel to process batches of samples at a time.
This way, the delay line is first loaded into registers, then used to process all samples in the
batch, and in the end written back to global memory. Thus, the delay line is only loaded and
written once regardless of how many samples are processed. Afterwards the FFT is executed for
all output arrays. This kind of threading with many registers is called heavyweight threading, and
is advocated by GPU programming guru Vasily Volkov [38]. As will be shown, batch processing
has a big effect on the efficiency of the FIR filter.

The delay line is loaded into registers by declaring each tap as a separate variable (not an
array, they cannot be stored in registers). Note that this requires multiple kernels, one for each
combination of input sample type and number of taps. Another drawback is that all samples to
be processed must already be in memory, this requires a large amount of memory to be preal-
located. This is okay because LOFAR already processes many samples at once (768 samples, or
about one second of data).

As explained previously, the delay line is implemented as a bounded FIFO buffer. Naively,
this would require copying the contents from one tap register to the next. This can be avoided
by renaming the registers manually in the code, but it means we must unroll the inner loop
completely Ntaps times. This is better explained with an example, see Listing 4.14.

4.7.4.1 Maximum performance

The number of samples in one batch is equal to the number of taps, this simplifies programming
and allows the kernel to process multiple batches in a loop. The number of samples processed by
the kernel is Nsamples = Nbatches×Ntaps. Note that the delay line is only read from and written
to global memory once every Nsamples samples. Thus the number of bytes accessed is:

BytesAccessedfir = 2
8Ntaps

Nsamples
+ 4Ntaps + 12 = 16

Nbatches
+ 4Ntaps + 12

Now it is clear that, as Nbatches increases, the factor 16
Nbatches

approaches zero, and effectively
BytesAccessedfir ≈ 4Ntaps+12, meaning batching effectively masks the memory access latencies
that would otherwise be caused by reading/writing the delay lines from global memory. Table
4.3 shows the number of bytes accessed depending on Ntaps. Note that we assume 16-bit samples.

Since fewer memory accesses are required for the same amount of computation, the arithmetic
intensity increases as Nbatches increases (see Table 4.4). Using the arithmetic intensity from Ta-
ble 4.4 and hardware properties from Table 4.1 we can compute maximum performance for this
platform, as shown in Table 4.5. The actual observed performance is much higher, as shown in
Figures 4.16 and 4.18. We believe this is caused by the caching of the input and output arrays, as
well the bandwidth of the constant memory (where we store the weights), which is much higher
than that of global memory.

Finally, Figure 4.17 shows the impact on performance by varying the sample size. It shows
that without I/O transfers, the sample size has a small effect on performance as the batch size
increases. If we include I/O transfers, 4-bit samples are by far most efficient, approximately 30%
more efficient than 16-bit samples in the best case. This is because we only need to transfer 1

4 th
as much memory compared to 16-bit samples.
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Input: Nbatches, the number of batches to process.
/* The delay line taps are stored in variables T0...T3, which are allocated

to registers. First the delay line stored is copied from global memory

to these variables, except for the last tap because it will be discarded

when the first sample is read. */

1 T1 ← GetDelayLine(0);
2 T2 ← GetDelayLine(1);
3 T3 ← GetDelayLine(2);
4 for BatchNum ← 1 to Nbatches do

// C0...C1 are the FIR coefficients.

5 T0 ← GetInputSample();
6 PutOutput(T0C0 + T1C1 + T2C2 + T3C3);
7 T3 ← GetInputSample();
8 PutOutput(T3C0 + T0C1 + T1C2 + T2C3);
9 T2 ← GetInputSample();

10 PutOutput(T2C0 + T3C1 + T0C2 + T1C3);
11 T1 ← GetInputSample();
12 PutOutput(T1C0 + T2C1 + T3C2 + T0C3);

/* After processing all samples the delay line is written back to global

memory. The last tap does not have to be written because it will be

discarded anyway. */

13 PutDelayLine(0, T0);
14 PutDelayLine(1, T1);
15 PutDelayLine(2, T2);

Fig. 4.14: CUDA batch processing example for a 4-tap FIR filter. The code pattern is the same
for FIR filters with more taps.



4. Implementation 39

reference 1 2 4 8 16 32 % of
Ntaps (1 sample) batch batches batches batches batches batches ref
4 60 44 36 32 30 29 28.5 48%
8 108 60 52 48 46 45 44.5 41%
16 204 92 84 80 78 77 76.5 38%
32 396 156 148 144 142 141 140.5 36%
64 780 284 276 272 270 269 268.5 35%

Tab. 4.3: The number of bytes accessed by the FIR filter on CUDA depending on the number of
taps and batch size. The second column shows how many bytes are accessed when processing
a single sample per kernel execution (reference implementation). The last column shows how
many bytes are accessed in the best case compared to the reference implementation.

reference 1 2 4 8 16 32
Ntaps (1 sample) batch batches batches batches batches batches
4 0.23 0.32 0.39 0.44 0.47 0.48 0.49
8 0.28 0.50 0.58 0.63 0.65 0.67 0.67
16 0.30 0.67 0.74 0.78 0.79 0.81 0.81
32 0.31 0.81 0.85 0.88 0.89 0.89 0.90
64 0.33 0.89 0.92 0.93 0.94 0.94 0.95

Tab. 4.4: The arithmetic intensity of the FIR filter on CUDA depending on the number of taps
and batches. The second column shows the arithmetic intensity of the reference implementa-
tion.

Ntaps x 32 batches 4 8 16 32 64
perfmax,fir,ref (GFLOP/s) 39.0 47.9 53.2 56.8 56.8
perfmax,fir,opt (GFLOP/s) 87.1 119.6 143.8 159.1 167.8

Nchannels 64 128 256 512 1024
AIfft 0.94 1.1 1.25 1.4 1.6
perfmax,fft (GFLOP/s) 166.3 194 221.8 249.5 277

Tab. 4.5: The maximum performance of the polyphase filter on the NVIDIA GTX 480, ex-
cluding host-to-device memory transfers, determined with bound-and-bottleneck anal-
ysis (see Section 4.3). From Table 4.1 we know that perfpeak = 1345 GFLOP/s and
MemoryBandwidth = 177.4 GB/s. We used the best case arithmetic intensity from Table
4.4.
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4.7.5 Page-locked host memory

CUDA supports streams to hide I/O latency by overlapping I/O transfers and kernel executions.
Streams must be programmed manually. In practice reaching maximum efficiency using streams
can become very complex, with many overlapping streams. CUDA provides an alternative called
page-locked, or pinned host memory. Page-locked host memory can be mapped into device mem-
ory and can be allocated as write-combining, these are explained below.

On a normal CUDA host-to-device memory transfer, the memory is first copied to a non-pageable
buffer, then that buffer is transferred to the device using DMA. Page-locked host memory is allo-
cated as its own non-pageable buffer, so no copying is needed. The drawback is that page-locked
memory is allocated outside the operating system’s pages, reducing the amount of physical
memory available for programs. Therefore allocating a large amount of page-locked memory can
reduce system performance. This is not a big problem for our application, because all required
memory is allocated once beforehand, and it is the only running program that uses a significant
amount of memory.

Mapping host memory into device memory
By storing the input array in host memory, and mapping it into device memory, the same mem-
ory is addressable from both the CPU and GPU. This means we only need one buffer (in the
host memory). Data transfers from the host to the device are performed implicitly by the kernel
as required, performing the same job as streams [26]. Note that every memory access could
potentially cause an expensive host-to-device memory transfer, if that memory is not cached on
the device. Since the input array is accessed completely linearly and each element is read exactly
once, there is exactly one host-to-device memory transfer for each chunk of page-locked memory
that fits into the device cache.

Write-combining
Page-locked memory is normally allocated as cachable, but this can be disabled by allocating
as write-combining. Write-combining memory frees up L1 and L2 cache resources and is not
snooped during transfers across the PCIe bus, which can improve performance by up to 40%.
Reading write-combining memory from the host is prohibitively slow, so it should only be used
by memory that the host writes to [26].

Given the promising performance of page-locked memory we have used it to improve the perfor-
mance of the polyphase filter. Thus, we allocate the input array as page-locked, write-combining
and map it into the device memory. The output array is not page-locked, because the polyphase
filter is normally the first stage in a pipeline and subsequent stages would further modify it. The
performance gains are shown in Figures 4.15 and 4.16. The figures show that using pagelocked
memory gives a significant performance boost. But perhaps more importantly, the figures also
show the impact of I/O on the performance of the FIR filter and polyphase filter. Depending on
the number of taps and channels, the performance can be reduced to a mere 10% compared to
the non-I/O performance.
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Fig. 4.15: The execution time per sample of the optimized CUDA implementation compared to the
reference implementation. The FIR filter is on the left, and the compete polyphase filter is
on the right. The leftmost data point shows the performance of the reference implementation
and subsequent data points show the performance of batching. The running time of 64 taps
is not shown, because it is significantly higher and would make the graphs unreadable.
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Fig. 4.16: The throughput (GFLOP/s) of optimized CUDA implementation compared to the reference
implementation. The FIR filter is on the left, and the complete polyphase filter is on the
right. The leftmost data point shows the performance of the reference implementation and
subsequent data points show the performance of batching.
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Fig. 4.17: The impact on execution time per sample (left), and performance (right) by varying the sample
size on the GTX 480. We only show the FIR filter, because the sample size has no impact on
the FFT.
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4.7.6 Occupancy

Each multiprocessor of the GPU has a set of N registers which are allocated among the thread
blocks executing on the multiprocessor. The maximum amount of threads that can be executed
in parallel is thus bounded by the amount of registers per thread. This is referred to as the
multiprocessor occupancy. The multiprocessor occupancy is defined as the ratio of active warps
to the maximum number of warps supported on a multiprocessor of the GPU [27]. Ideally the
occupancy should be 100% (meaning the multiprocessor is used optimally), but this is not always
possible.

We calculated the occupancy using the CUDA Occupancy Calculator [27], which calculates
the occupancy based on the amount of registers per thread, the number of threads per thread
block and the amount of shared memory per thread (although we don’t use shared memory). All
registers are 32-bit. The amount of registers per thread depends on the number of taps. We need
2Ntaps registers for the delay line, since each sample is a 32-bit floating point complex number,
and about 10 registers for other calculations. So we require 2Ntaps + 10 registers per thread.
The amount of threads per block can be chosen freely as long as the bounds described above are
not crossed. We chose a different number of threads per block depending on the number of taps
to get the highest occupancy. Table 4.6 shows the occupancy and related numbers for compute
ability 2.0 GPUs, such as the GTX 480. The GTX 480 has 32768 registers per thread block
and each thread can use up to 63 registers without register spilling. Register spilling decreases
performance, because excess registers are temporarily stored (spilled) to device memory.

Figure 4.18 shows how efficient different combinations of channels and taps are for optimal
hardware utilization. The results show that using 16 taps is most efficient in all cases. This is
because using more taps requires register spilling, and using fewer taps means the hardware is
used suboptimally. Figure 4.18 also shows that for very small FIR filters (such as 16 stations x 16
channels) the performance is lower than expected. This is because the hardware simply doesn’t
have enough work to do. Increasing the number of stations or channels brings the performance
back to the expected level.

4.7.6.1 Threads per block

As shown in Table 4.6, the maximum size of a thread block depends on the number of taps.
There is one thread for each channel and polarization in a station, so if 2Nchannels >
MaxThreadsPerBlock, we must use multiple thread blocks per station. MaxThreadsPerBlock
is given in Table 4.6. However, all thread blocks must have the same size, so we choose
ThreadsPerBlock and BlocksPerStation such that:

2Nchannels = ThreadsPerBlock ×BlocksPerStation
where ThreadsPerBlock ≤MaxThreadsPerBlock

Our implementation computes ThreadsPerBlock and BlocksPerStation automatically, based
on the number of channels and taps. This is also illustrated in Figure 4.12.

The consequence of this dynamic sizing is that depending on the number of channels, thread
blocks may be smaller than optimal, affecting performance (since the occupancy will be lower
than shown in Table 4.6). We strongly recommend choosingNchannels such that ThreadsPerBlock =
MaxThreadsPerBlock.
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Ntaps Registers Max. threads Active Active Active Total nr. Occupancy
per thread per block thread blocks threads warps of registers

4 18 512 3 1538 48 27684 100%
8 26 512 2 1024 32 26624 67%
16 42 256 3 768 24 32256 50%
32 74 128 3 384 12 28416 25%
64 138 32 7 224 7 30912 15%

Tab. 4.6: CUDA occupancy on compute ability 2.0. Registers per thread = 2Ntaps + 10. Threads can
use up 63 registers without spilling. The GTX480 has 32768 registers in total, so a 16 taps
FIR filter makes near optimal use of the available registers.

Fig. 4.18: Performance graph showing the impact of the number of channels - number of taps combina-
tions on the optimized FIR filter. The peaks are at 16 taps, showing that the most efficient
hardware utilization is achieved by using 16 taps. The sample size is 16-bits.
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Fig. 4.19: The performance of the FIR filter implemented on OpenCL versus CUDA on the GTX480.

4.7.7 OpenCL

We translated the CUDA implementation to OpenCL [9], which is very easy because it was al-
most a one-to-one keyword replace. OpenCL requires the programmer to write more setup code
(such as loading and compiling the kernel source code, and passing arguments to the kernel)
than CUDA, since it does not use any C language extensions.

We used Apple’s OpenCL FFT library [3], as we cannot use CUFFT. We found it to be fairly
good performing, although not nearly as good as CUFFT.

Figure 4.19 compares the performance of the FIR filter in OpenCL versus CUDA. Figures 4.20
and 4.21 show the impact of batching.
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Fig. 4.20: The execution time per sample of the optimized OpenCL implementation compared to the
reference implementation on the GTX480. The FIR filter is on the left, and the compete
polyphase filter is on the right. The leftmost data point shows the performance of the reference
implementation and subsequent data points show the performance of batching. The running
time of 64 taps is not shown, because it is significantly higher and would make the graphs
unreadable.
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Fig. 4.21: The throughput (GFLOP/s) of optimized OpenCL implementation compared to the reference
implementation on the GTX480. The FIR filter is on the left, and the complete polyphase filter
is on the right. The leftmost data point shows the performance of the reference implementation
and subsequent data points show the performance of batching.
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4.7.8 Discussion

Although programming for the CUDA platform is not that difficult, writing an optimized kernel
is. This is because it requires a lot of prior knowledge about the underlying hardware. It is easy
to make a mistake which causes a large performance drop, and it may be difficult to find out what
is happening. Fortunately, the FIR filter is a straightforward algorithm and we already knew
how it should work from our C implementation. The documentation on the CUDA platform is
good, and there is also good tool support. The CUDA Occupancy Calculator in particular was
very useful in determining optimal parameters for our kernels, and it saved a lot time testing
and tuning.

4.8 Microgrid

Microgrid is an NWO funded research project conducted at the University of Amsterdam, aiming
to improve the speedup, programmability, power dissipation, scalability and concurrency man-
agement of many-core processor architectures [8]. It introduces a new concurrency model called
Self-adaptive Virtual Processor (SVP) (see section 4.8.1).

We use the Microgrid simulator to run our experiments. The simulator is cycle-accurate, mean-
ing every detail of the architecture is simulated precisely, allowing for accurate measuring. The
simulator can simulate different architectures with different memory models. We ran our ex-
periments only on the 128-core Random Banked Memory architecture (rbm128), of which we
used one place (see section 4.8.1) of 64 cores. Each core is clocked at 1 GHz. We also tried to
run our experiments on some of the available architectures using COMA7, but no matter what
we tried the program either deadlocked or caused a write to invalid memory (through no fault
of our own). This bug has since been fixed, but unfortunately too late for our thesis. Since
the simulator is rather slow, we could not run as many experiments as on the other platforms
presented in this thesis.

We used version 3.2 of the Microgrid toolset. It includes a compiler for the SL program-
ming language. SL is based on C with special extensions for Microgrid. The compiled programs
run on the simulator.
Compiler flags: -b mta n -O1 -s

The following sections explain the SVP model, describe our reference and optimized imple-
mentations of the polyphase filter, and show the performance of those implementations.

4.8.1 SVP Model

The SVP model is a programming model based on the concurrent and hierarchical composition
of homogeneous families of blocking threads. The SVP model defines all concurrency and com-
munication in abstract terms and all mapping and scheduling of the threads is transparant to the
programmer [24]. SVP is implemented as an extension of an instruction set architecture (ISA).
In the simulator it is implemented as an extension of the DEC Alpha RISC8 ISA.

In the SVP model, threads are created in groups called families. A family is characterized
by a range (start, end, step) and each thread has an index in that range. Any thread can create

7 Cache-Only Memory Architecture
8 Reduced Instruction Set Architecture
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another family, creating a hierarchy of families. The parent of a family blocks (syncs) until all
child threads have finished execution. Threads in a family can be allocated to either the same core
as the parent, to the same place (set of cores) as the parent, or to a different preallocated place.
The choice depends on the application. All cores in the microgrid can have up to 32 families
(stored in an internal family table) and at most 256 threads (stored in an internal thread table)
active at the same time. If a program tries to create more threads when the thread table is full, it
deadlocks. To prevent this a block size can be given when a family is created, which determines
how many threads out of the total in that family may execute at the same time on the same core.

Each thread is created with its context of register variables which are all initialized to empty.
The exception is the thread index, which is written by the thread creation process [24]. There
are four classes of registers:

• Locals, registers local to the thread.

• Globals, read-only registers which are broadcast to all threads in a family.

• Shareds and dependents, which together form a dependency chain with the other threads
in the family. One thread’s dependent is another’s shared. When a thread tries to read
a dependent register which is empty, it suspends until another thread fills it with a value.
Shared registers may be written once by a thread, filling it with a value so that a suspended
thread can resume execution. Thus the reading and writing of dependents and shareds
creates a synchronization point between those threads. Or, to put it in other words,
threads communicate over a one-way channel.

4.8.2 Reference implementation

The implementation consists of two parts: the FFT and the FIR filter.

We did not implement the FFT ourselves, but used the already available benchmarking im-
plementation [23]. However, we had to modify it to use single precision floating point instead of
double precision, because the polyphase filter used by LOFAR also uses single precision. We also
modified it so that it could run many FFTs in parallel, instead of just one. A total of 2Nstations

FFTs are run in parallel, each on a different core. All microthreads created to compute a given
FFT are run on the same designated (by the architecture) core.

The FIR filter reference implementation is an intentionally naive implementation, where each
station, channel and tap has its own microthread. Ideally, this would be both the most efficient
and easiest to program implementation, exploiting Microgrid’s features as much as possible.

The program creates a family of Nstation station threads which each run on a different core,
each of which create a family Nchannels channel threads on the same core, each of which in
turn create a family of Ntaps threads to compute the FIR outputs. Thus there are a total of
Nstations×Nchannels×Ntaps threads. The tap threads compute the output of both polarizations
of the FIR filter at the same time (as in the CPU implementation), using shared parameters to
sum the results. The station and channel threads do not need to communicate and only have
global parameters. Figure 4.22 shows the thread hierarchy.
We ran experiments to determine the optimal block sizes for the station and channel threads.
We found that the station block size has no effect on performance, good or bad, so we set the
block size to one. However, the optimal channel block size is eight, as shown in Figure 4.23,
meaning that out of the total number of channel threads (per core) at most eight will be active
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Fig. 4.22: This image shows the thread hierarchy on Microgrid, and on which cores they are executed.
The lowest tier of tap threads only exists in the reference implementation. Each channel/tap
thread computes both polarizations at once.

at a time.

Figure 4.25 shows the performance of the reference FIR filter and complete polyphase filter
for the LOFAR scenarios. We did not run as many experiments as on other platforms, because
the simulator is not fast enough to do so in a reasonable amount of time.
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Fig. 4.23: Graphs showing the performance of different channel block sizes and number of taps for the
FIR filter reference implementation.
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4.8.3 Optimizations

We implemented two optimizations for the FIR filter. First, we combined the channel and tap
threads so that the FIR output is computed sequentially in a loop, just as in the CPU imple-
mentation. There are now Nstations×Nchannels threads. Figure 4.22 shows the thread hierarchy.
Second, we unrolled that loop four times in the same way as we did in the optimized CPU im-
plementation (see section 4.6.3).

We ran experiments to determine the optimal block sizes for the station and channel threads. We
found that the station block size has no effect on performance, good or bad, so we set the station
block size to 1. However, the optimal channel block size is four, as shown in Figure 4.24, meaning
that out of the total number of channel threads only four will be running at any time (per core).
The Figure also shows that increasing the number of taps increases overall performance of the
FIR filter. This is because of the latency hiding techniques employed by Microgrid. Microgrid
can execute at most 256 threads concurrently per core. When a thread blocks or must wait to
access memory, it will be suspended and another thread can be executed in its place, if that
thread is not blocked. This way, the latencies caused by blocking and memory access are hidden.
The more threads there are in total, the more chance for latency hiding there is. This is the
opposite of the CUDA platform, where using a high number of taps decreases performance. From
other experiments we observed that increasing the number of channels increases the execution
time more or less linearly (not shown).

The performance statistics for the LOFAR scenarios are shown in Figure 4.25 for 16 stations,
as we did for the other platforms. We also ran the experiments for 64 stations, because using
only 16 out of 64 cores underutilizes the architecture. There is a latency involved with allocating
threads to different cores in a place, because those cores are in a token ring and may only create
a thread when they have the token. Local threads created on the same core as the parent thread
don’t need a token. In hindsight we should have used a separate 16-core place for the 16 stations,
but we were unaware of the token ring at the time, because of a lack of documentation. As can
be seen in the Figure, the difference in performance between 16 and 64 stations is much larger
on Microgrid compared to other platforms, in the favor of Microgrid. Finally, Figure 4.26 shows
the performance of different input sample sizes for the LOFAR scenarios. It shows that in most
cases 8-bit samples are most efficient.

The experiments we have performed suggest that the Microgrid architecture is more efficient
when using a high number of stations and taps, and a comparatively low number of channels.
That means LOFAR scenario 1024 channels x 4 taps (as shown in Figure 4.25) is the worst case
scenario, and scenario 64 channels x 64 taps is the best case scenario. Microgrid benefits more
from increasing the number of stations than the other platforms examined in this thesis.

4.8.4 Other optimizations

Microgrid is optimized for running many threads which each use a small number of registers.
However, our FIR computation thread is rather ”fat” for a microthread. In an attempt to
improve performance, we split the thread up into two smaller threads which run in sequence:
one thread to convert the input samples to floating point, and another to perform the actual
computations. Unfortunately, we did not observe a performance increase as we had expected.
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4.8.5 Maximum performance

Unfortunately, we cannot calculate the maximum performance, because we do not know the
memory bandwidth of the Random Banked Memory architecture. Moreover, Microgrid devel-
opment has mostly switched to a Cache-Only Memory architecture (COMA), although we were
unable to run our application on the COMA architecture due to bugs in the simulator. However,
Figure 4.25 shows that the FIR filter on Microgrid achieves 45 GFLOP/s in the best case (64
stations x 64 taps), which is 70% of the peak performance on the configuration we have cho-
sen (64 GFLOP/s). The full polyphase filter achieves 39% of the peak performance. Both are
significantly higher than the other platforms we have investigated.

4.8.6 Discussion

Programming for Microgrid is fairly straightforward at first glance, but we experienced some dif-
ficulties understanding how to use hierarchies of thread families. Since families can create other
families, the thread table can be filled quickly, causing a deadlock, if one is not careful. This
makes choosing an appropriate block size (to limit the number of active threads per family) very
important, not just for performance reasons. The optimal block size can only be determined by
experiment. However, from our experience, the SVP model itself is much easier to understand
than either CUDA or OpenCL.

The Microgrid toolset was straightforward to compile and install. The simulator is easy to
use, but there is not enough documentation on its usage. There is also not enough documenta-
tion about the details of the available architectures. This is not surprising, because Microgrid is
still in development.

The simulator is also quite slow and could not run our application with certain parameters,
which hampered our research. We could not run our application on the COMA9 architectures
at all, due to runtime errors caused by the simulator. We would have liked to see more docu-
mentation on the architecture and compiler, the documentation that we’ve seen appears to be
meant for MicroGrid researchers and is therefore somewhat low on details for users who are not
yet familiar with the platform.

9 Cache Only Memory Architecture
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Fig. 4.24: Graphs showing the performance of different channel block sizes and number of taps for the
FIR filter optimized implementation.
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Fig. 4.25: Performance statistics of the LOFAR scenarios for the FIR and polyphase filter reference and
optimized implementations on the 128-core random banked memory architecture (using one
64-core place). We only measured the LOFAR scenarios, because the MicroGrid simulator
was not fast enough to do as many measurements as for the other platforms.
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Fig. 4.26: Graphs showing the performance of different input sample sizes for the FIR filter optimized
implementation using the LOFAR scenarios. The FFT is not shown since its performance
is not affected by the input sample size. We only measured the LOFAR scenarios, because
the MicroGrid simulator was not fast enough to do as many measurements as for the other
platforms
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4.9 ATI Radeon HD 5870

In this section we describe the implementation of the polyphase filter on the HD5870.

The implementation is written in OpenCL10 [9]. As the name implies, it is an open standard
for GPU programming, unlike CUDA which is proprietary to NVIDIA. OpenCL can also com-
pile to x86/x64 machine code, the results of which are shown in section 4.6.5, and on NVIDIA
architectures (see section 4.7.7). In CUDA, the host program and kernel program are integrated
and compiled together, but OpenCL source code is independent and compiled at runtime by the
host program.

We used ATI Stream SDK 2.2 [1], and Apple’s FFT library [3] for the FFT.

4.9.1 Hardware description

This section briefly explains the most important details to know about of the HD5870 architec-
ture for our implementation. From a programming standpoint, there are many similarities to
NVIDIA’s architecture, but there are also differences.

The GPU device is divided into groups of compute units, each of which contains many stream
cores. The stream cores are responsible for the actual computation. Each stream core has 5 FPUs
(one can compute transcendental functions), and its own register file. Each register holds (4 x
32-bit) values (integer or floating point). This is an important difference from the CUDA archi-
tecture, where one register file is shared between all cores, and registers hold one 32-bit value. [2]

Work-items (threads) are executed by groups of wavefronts, which are very similar to warps
on CUDA. If different work-items in the same wavefront take diverging branches, the threads are
executed in sequence, which affects performance. However, our implementation has no diverging
branches. The size of a wavefront depends on the number of registers used per work-item. [2]

The memory architecture is very similar to CUDA, and the same recommendations apply. That
is, ensure that memory accesses are coalesced as often as possible. There is a constant memory
and local memory which is used to share memory between threads in the same work group. Page-
locked memory and host memory mapped into device memory (see section 4.7.5) are supported,
but they are mutually exclusive in OpenCL.

The HD5870 has 20 compute units, each of which have 16 stream cores. Each compute core
has 16384 registers, so each stream core can use at most 1024 registers. [2]

CUDA organizes threads into blocks and threads per block, while OpenCL uses the terms global
work and local work, which describe of the number of work-items (threads) to be executed.
They are basically the same concept, except that NumberOfBlocks × ThreadsPerBlock =
GlobalWork, and GlobalWork ÷ LocalWork = NumberOfBlocks.

10 Open Computing Language
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4.9.2 Implementation

We made two implementations. One is a direct port from CUDA to OpenCL, in which a thread
computes one polarization of one channel. In the second implementation a thread computes
both polarizations of one channel. We made this implementation to take advantage of the vector
registers, so that we can compute both polarizations in the same instructions. This works in the
same way as the SSE optimization for the CPU implemented described in section 4.6.2. This
means there is one thread per channel (as opposed to two on CUDA), but each thread requires
twice as many registers. Both implementations use batching as described in section 4.7.4.

We could not measure the performance of the 64 taps FIR filter, because the OpenCL com-
piler was not able to compile it. This is a problem with the OpenCL compiler itself, not our
code.

There is no occupancy calculator for OpenCL as there is for CUDA, so we experimented to
find out the optimal work group size. We found that the optimal work group size is 256 threads,
for every number of taps, which is also the maximum work group size on the HD5870. This makes
sense, because the AMD APP OpenCL Programming Guide [2] does not describe a bound on the
number of wavefronts per compute unit based on the work group size. However, the maximum
number of wavefronts per compute unit is bounded by the register use per thread. Since registers
are (4 x 32-bit) values wide, we need 1

4 as many registers per thread as on CUDA. There is also
a global limit of 32 wavefronts/compute unit. Table 4.7 shows how many wavefronts are active
per compute unit depending on Ntaps, for both implementations.

Ntaps (Non-vectorized) Active (Vectorized) Active
Registers/thread Wavefronts/CU Registers/thread Wavefronts/CU

4 5 32 (49) 7 32 (35)
8 7 32 (35) 11 22
16 11 22 19 13
32 19 13 35 7
64 35 7 67 3

Tab. 4.7: Register usage and active wavefronts per compute unit on the HD 5870, for both implementa-
tions. Non-vectorized registers per thread = 1

4
(2Ntaps + 10). Vectorized registers per thread

= 1
4
(4Ntaps + 10). The numbers in parentheses show how many wavefronts would be active if

there were no global limit imposed by the hardware.

4.9.3 Maximum Performance

To calculate the maximum performance, we need to know the theoretical peak performance of
the architecture, which is 2720 GFLOP/s, and the memory bandwidth, which is 154 GB/s (see
Table 4.1). Since we have two implementations, we have to compute the maximum performance
for both.

4.9.3.1 Non-vectorized implementation

This implementation is the same as the one for CUDA, so the bytes accessed and arithmetic
intensity are also the same (see Tables 4.3 and 4.4). The maximum performance is shown in
Table 4.8. Figures 4.27 and 4.28 respectively show the execution time/sample and performance
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of this implementation. The figures show that the performance increases as the number of taps
increases, meaning the implementation scales relatively well. The performance is far lower than
on the GTX480 however, even though according to the hardware specifications the HD5870
should be much better. The performance of the 4, 8 and 16 taps FIR filters is even far below the
perfmax. The figures also show that mapping host memory into device memory gives a moderate
performance boost. By mapping host memory into device memory the GPU can automatically
overlap I/O transfers and computations.

Ntaps x 32 batches 4 8 16 32 64
perfmax,fir,ref (GFLOP/s) 33.9 41.6 46.2 49.3 49.3
perfmax,fir,opt (GFLOP/s) 75.6 103.8 124.8 138.1 145.7

Nchannels 64 128 256 512 1024
AIfft 0.94 1.1 1.25 1.4 1.6
perfmax,fft (GFLOP/s) 144.8 169.4 192.5 215.6 246.4

Tab. 4.8: The maximum performance of the polyphase filter on the HD5870 (non-vectorized
implementation), excluding host-to-device memory transfers, determined with bound-
and-bottleneck analysis (see Section 4.3). From Table 4.1 we know that perfpeak = 2720
GFLOP/s and MemoryBandwidth = 154 GB/s. We used the best case arithmetic intensity
from Table 4.4.
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Fig. 4.27: The execution time per sample of the optimized non-vectorized HD5870 implementation. The
FIR filter is on the left, and the compete polyphase filter is on the right. The leftmost data
point shows the performance of the reference implementation and subsequent data points show
the performance of batching.
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Fig. 4.28: The throughput (GFLOP/s) of optimized non-vectorized HD5870 implementation. The FIR
filter is on the left, and the complete polyphase filter is on the right. The leftmost data point
shows the performance of the reference implementation and subsequent data points show the
performance of batching.
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4.9.3.2 Vectorized implementation

In this implementation, a thread computes both polarizations of one channel at once, taking
advantage of the (4x32-bit) vector registers. This means we access two delay lines in parallel and
compute two samples at once, but both use the same set of coefficients. The number of bytes
accessed is:

BytesAccessedfir = 2
16Ntaps

Nsamples
+ 4Ntaps + 24 = 32

Nbatches
+ 4Ntaps + 24

And, because both polarizations are computed at once, the FLOPS is:

FLOPfir = 4 + 8(Ntaps − 1)

The tables 4.9 and 4.10 respectively show the number of bytes accessed and the arithmetic
intensity. Table 4.11 shows the maximum performance perfmax. Figures 4.29 and 4.30 respec-
tively show the observed execution time per sample and performance of this implementation.
Although we expected this implementation to be much more efficient because it makes better
use of the vector registers, it is not much better than the non-vectorized implementation. This
implementation does not scale as well as the non-vectorized implementation, as can be seen from
the performance of the 32 taps FIR filter. This drop in performance may be caused by register
spilling, although we don’t know the maximum number of register a thread can access without
spilling. Except for the 16 taps FIR filter, the performance is far below the perfmax from Table
4.11.

reference 1 2 4 8 16 32 % of
Ntaps (1 sample) batch batches batches batches batches batches ref
4 108 72 56 48 44 42 41 38%
8 188 88 72 64 60 58 57 30%
16 348 120 104 96 92 90 89 26%
32 668 184 168 160 156 154 153 23%
64 1308 312 296 288 284 282 281 21%

Tab. 4.9: The number of bytes accessed by the FIR filter on the HD5870 (vectorized imple-
mentation) depending on the number of taps and batch size. The second column shows how
many bytes are accessed when processing a single sample per kernel execution (reference im-
plementation). The last column shows how many bytes are accessed in the best case compared
to the reference implementation.

reference 1 2 4 8 16 32
Ntaps (1 sample) batch batches batches batches batches batches
4 0.44 0.39 0.50 0.58 0.63 0.67 0.68
8 0.54 0.68 0.83 0.94 1.00 1.03 1.05
16 0.60 1.03 1.19 1.29 1.34 1.37 1.39
32 0.63 1.36 1.50 1.56 1.61 1.63 1.64
64 0.65 1.63 1.72 1.76 1.79 1.80 1.80

Tab. 4.10: The arithmetic intensity of the FIR filter on the HD5870 (vectorized implementa-
tion) depending on the number of taps and batches. The second column shows the arithmetic
intensity of the reference implementation.
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Ntaps x 32 batches 4 8 16 32 64
perfmax,fir,ref (GFLOP/s) 39.0 47.9 53.2 56.8 56.8
perfmax,fir,opt (GFLOP/s) 105.2 162.1 214.6 253.6 278.4

Nchannels 64 128 256 512 1024
AIfft 0.94 1.1 1.25 1.4 1.6
perfmax,fft (GFLOP/s) 166.3 194 221.8 249.5 277

Tab. 4.11: The maximum performance of the polyphase filter on the HD5870 (vectorized im-
plementation), excluding host-to-device memory transfers, determined with bound-
and-bottleneck analysis (see section 4.3).

4.9.4 Discussion

The OpenCL language and CUDA are very closely related, so it was easy to port our CUDA
kernels to OpenCL. However, OpenCL is more difficult to use, because it requires extra code that
CUDA generates automatically. The AMD OpenCL compiler is still immature, and generates
suboptimal code. In addition, it could not compile our 64 taps kernel for the HD5870 (compiling
for the CPU did work).

OpenCL kernels are loaded and compiled at runtime. This means syntax errors are not de-
tected until runtime, and the kernel must be recompiled every time the application is executed,
which takes a long time for our kernels. We solved this issue by writing an utility program that
precompiles and links the kernels to our C program at compilation time.

In conclusion, while AMD’s OpenCL compiler may some day compete with CUDA on equal
footing, it does not right now. The compiler for the GPU is immature, and as a result the GPU
hardware is underutilized. Note that the theoretical maximum performance of the polyphase
filter on the HD5870 is higher than the maximum performance on the GTX480, yet in practice
the performance on the GTX480 is much better.
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Fig. 4.29: The execution time per sample of the optimized vectorized HD5870 implementation. The FIR
filter is on the left, and the compete polyphase filter is on the right. The leftmost data point
shows the performance of the reference implementation and subsequent data points show the
performance of batching.
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Fig. 4.30: The throughput (GFLOP/s) of optimized vectorized HD5870 implementation. The FIR filter
is on the left, and the complete polyphase filter is on the right. The leftmost data point
shows the performance of the reference implementation and subsequent data points show the
performance of batching.



5. A COMPARISON OF AVAILABLE FFT LIBRARIES

As FFT is part of the polyphase filter, we need an implementation that does not compromise the
performance of the FIR filter. To provide some insight into the performance of the potentional
alternative libraries, we measure their execution time and throughput (GFLOP/s). Specifically,
we show the performance of the following FFT libraries on the following platforms:

• Intel Core i7 920: FFTW [6] and AMDFFT (part of the AMDAPP SDK [1]) using OpenCL.

• NVIDIA GTX480: CUFFT [28] (using CUDA) and Apple’s FFT library [3] (using OpenCL).

• ATI Radeon HD5870: AMDFFT and Apple’s FFT library, both using OpenCL.

We use the following parameters:

• FFT format: 1D single precision complex interleaved. Some libraries support more formats,
but this one is supported by all. Complex interleaved FFTs operate on complex numbers,
of which the real and imaginary parts are interleaved in memory.

• FFT length (N): 16, 32, 64, 128, 256, 512 and 1024 complex samples.

• Batch size: 32 and 128 FFTs. Batch size determines how many FFTs will be computed in
one execution.

• With and without I/O transfers (GPUs only). First, the FFT input data is copied to
device global memory, then the FFT is executed, and then the result is copied back to host
memory. The I/O transfers between the host and GPU are synchronous, and we did not
measure pagelocked (pinned) memory or mapped memory buffers.

We measured the performance by repeating the same FFT batch for 10000 iterations and sum-
ming the execution time of each iteration to get the total execution time. From there we compute
the average execution time per batch and average GFLOP/s. We do not know the exact number
of FLOPs for each of the FFT libraries, but we can approximate it as 5N log2(N) (where N is
the FFT length) [25]. The final results are obtained by averaging 20 executions of this process.

Figure 5.1 shows the results on the Intel Core i7. There are two things to note about these
results. One, AMDFFT performs very badly on the CPU, compared to FFTW. We believe this
is not surprising, because the library is clearly meant to be used on GPUs. It does show that
although OpenCL is a cross-platform standard, this does not mean the same kernel will execute
efficiently on different platforms. Second, there is a large drop in performance in the 128-batch
FFTs in FFTW. This may be because there is too much data to fit into the cache, which causes
cache misses.

Figure 5.2 shows the results on the NVIDIA GTX480. Note that in this case we are not only
comparing FFT libraries, but also CUDA and OpenCL. Without I/O transfers, CUFFT per-
forms extremely well, reaching up to 380 GFLOP/s for the largest batch. The performance of
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Fig. 5.1: The performance of FFTW and AMDFFT on the Intel Core i7 920. The performance is on the
left, and the execution time per batch on the right.

CUFFT is about 6-7x times higher than Apple’s FFT library. If we include I/O transfers, the
performance is reduced to only a fraction of that. CUFFT reaches up to 12 GFLOP/s for the
largest batch, and Apple’s FFT library reaches about 6 GFLOP/s. Note that the performance
of CUFFT is never higher than FFTW shown in Figure 5.1. This is because the FFT kernel is
executed in much less time on the GPU, compared to the time spent copying the data to and
from the device memory. The performance is limited by the low I/O bandwidth of the PCI
express 2.0 bus, which is only 8 GB/s. To minimize the performance gap between FFTW and
CUFFT, we recommend using asynchronous I/O (pagelocked) and larger batches. We expect,
based on other results presented in this thesis, that these optimizations will improve CUFFT’s
performance.

Figure 5.3 shows the results on the ATI Radeon HD5870. The performance of AMDFFT and
Apple’s FFT library are very close. Perhaps surprisingly, Apple’s FFT library is slightly more
efficient than AMDFFT for large inputs. However, including I/O transfers, the performance for
both is as good as equal, and also much lower than the performance of FFTW (see Figure 5.1).

5.1 Discussion

We have shown the performance of several FFT libraries on different platforms. Based on these
results, it appears best to use the FFTW on CPUs, CUFFT on NVIDIA GPUs, and Apple’s
FFT library on ATI GPUs. On NVIDIA GPUs, there is no contest between CUFFT and other
FFT libraries. However, the performance of FFTs is limited by the large I/O transfer latencies
due to the low bandwidth of the PCI Express 2.0 bus. Therefore, unless the FFT length and
batches are very large so that the FFT execution will be long enough to overlap I/O transfer
latencies, or the output will be further processed on the GPU, it may be better to use FFTW
instead. The performance of AMDFFT on the Core i7 compared to FFTW shows that, although
OpenCL is a cross-platform standard, this does not mean kernels will execute efficiently on all
platforms. Though in this case, it could also be that AMD simply did not put much effort into
implementing an FFT that executes efficiently on the CPU, since they are much more interested
in GPUs.
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Fig. 5.2: The performance of CUFFT and Apple’s FFT library on the NDIVIA GTX 480. The perfor-
mance is on the left, and the execution time per batch on the right. The upper two graphs
show the performance without I/O transfers, and the lower two graphs with I/O transfers. The
large difference in scale between graphs are unavoidable because of the large variance of the
results.
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Fig. 5.3: The performance of AMDFFT and Apple’s FFT library on the ATI Radeon HD5870. The
performance is on the left, and the execution time per batch on the right. The upper two graphs
show the performance without I/O transfers, and the lower two graphs with I/O transfers. The
large difference in scale between graphs are unavoidable because of the large variance of the
results.



6. COMPARISON OF IMPLEMENTATIONS

In this chapter we compare the optimized implementations of FIR filter and the polyphase filter
on different target platforms, using three criteria: performance in LOFAR scenarios, energy
consumption and ease of programming.

6.1 Performance of LOFAR scenarios

LOFAR scenarios are the configuration of channel and taps used in practice by LOFAR. In these
scenarios, when the number of channels doubles, the number of taps halves, and vice versa. This
keeps the total performed FLOPs the same. Figure 6.1 compares the performance of different
optimized implementations in computing LOFAR scenarios without I/O transfers, and Figure
6.2 compares the performance of GPU implementations with I/O transfers. In the graphs, the
results of the FIR filter only and the complete polyphase filter (FIR + FFT) are overlapped. We
make some observations:

• In most cases the CUDA implementation on the GTX480 gives the best performance.

• In the case of scenario 128x32 the HD5870 non-vectorized implementation is far more
efficient than the GTX480, but only if we do not include I/O transfers.

• The performance of the polyphase filter on the HD5870 is lower than that of the FIR filter.
This is because of the relatively low performance of the FFT library.

• In the case of scenario 64x64 the Microgrid architecture is the most efficient.

• If we include I/O transfers the performance of the GPUs is reduced to about one tenth of
the original performance, because of the low bandwidth of the PCI Express 2.0 bus.

We cannot directly compare the performance of these platforms with the Blue Gene/P, because
of two reasons: there are no performance measurements of the polyphase filter alone, and its
architecture and implementation are too different. The difference in architecture is that the
BG/P is designed to process the entire LOFAR pipeline in one highly specialized network of
cores, but in this thesis we only consider single multicores, which is not enough to process the
entire pipeline. The implementation of the LOFAR pipeline distributed over many multicores is
future work.
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Fig. 6.1: Performance of the optimized implementations for LOFAR scenarios on GPU platforms, ex-
cluding I/O transfers. As explained in section 4.9, there are no measurements for the HD5870
implementations for 64 taps.
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Fig. 6.2: Performance of the optimized implementations for LOFAR scenarios on various multi-core
platforms, including I/O transfers. As explained in section 4.9, there are no measurements for
the HD5870 implementations for 64 taps.
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6.2 Energy consumption

For the energy consumption evaluation, we measured the energy consumption of the whole (desk-
top) computer using a Voltcraft Energy Check 3000 hooked up between the wall socket and
the power supply. We removed the GPUs from the computer to measure the energy consumption
of the CPU only. The results are in Table 6.1. We measured the minimum and maximum en-
ergy consumption for all LOFAR scenarios, but for readability we only show the average energy
consumption of the 256x16 LOFAR scenario. The shown variance is the variance between all
measurements on the given platform, not just the 256x16 scenario. All measurements were taken
with 16-bit samples. We also show the energy consumption when the computer is idle. Finally,
we show the amount of GFLOPs per Watt (GFLOPs/W) to gain insight into the actual energy
efficiency. The energy efficiency increases as GFLOPs/W increases. We have no measurements
of the Microgrid architecture, as there is no hardware for it yet.

It is difficult to take accurate measurements, because the energy consumption increases as the
temperature increases [11], and the temperature increases when the CPU/GPU is busy. There-
fore, these measurements should be taken as rough estimates.

The power consumption of the I/O runs is lower than the non-I/O runs, because the data
processing is alternated with I/O transfers, which take time but do not cost much energy. The
energy measuring device was not quick enough to detect the alterations in energy consumption
caused by switching from computation to I/O transfer, and averaged the power consumption.
So, the results of the I/O runs show the average power consumption between computation and
I/O transfers.

The measurements show that while the GTX480 is the most power hungry, it is also by far
the most efficient in terms of GFLOPs/W. The power consumption also fluctuated the most by
far. Interestingly, the 64x64 LOFAR scenario consumes far less energy (269 W) than the 256x16
scenario (320 W). This may be because the occupancy (see Table 4.6) is very low for 64x64, and
the device is underutilized.

The HD5870 consumes less energy than the GTX480, but its performance (GFLOP/s) is also
much lower, so the resulting energy efficiency (GFLOPs/W) is also lower. The vectorized imple-
mentation has slightly better performance, and consumes roughly the same amount of energy,
so the energy efficiency improves.

Note that the energy efficiency of the FIR filter on the Core i7 and GTX480 are comparable
(0.10 and 0.12 GFLOPs/W). This is not the case for the entire polyphase filter, since CUFFT
gives much better efficiency than FFTW.

We conclude that the GTX480 using CUDA is the most energy efficient solution. The Core
i7 is on the second place. The GTX480 is between 20% and 50% more energy efficient than the
Core i7, and about 3 times more energy efficient than the HD5870.
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Idle 256x16 Variance GFLOPs/ 256x16 Variance GFLOPs/
Platform (W) I/O (W) (W) W No I/O (W) (W) W
FIR Filter
Core i7 920 84 154 - 4 0.10 n.a. n.a. n.a.
HD5870 110 186 +/- 2 0.04 219 +10 0.46
HD5870 Vectorized 110 186 +/- 2 0.04 233 +10 0.52
GTX480 CUDA 134 251 + 19 0.12 320 +20/-55 1.0
GTX480 OpenCL 134 220 + 20 0.13 292 +12/-45 0.96

Polyphase Filter
Core i7 920 84 152 +/- 2 0.09 n.a. n.a. n.a.
HD5870 110 185 +/- 4 0.06 231 +9 0.61
HD5870 Vectorized 110 185 +/- 4 0.06 234 +9 0.64
GTX480 CUDA 134 256 +14/-4 0.19 345 +17/-63 0.99
GTX480 OpenCL 134 231 + 11 0.19 322 -73 0.89

Tab. 6.1: Energy consumption on CPUs and GPUs. The left side shows the energy consumption with I/O
transfers, and right shows without. Idle: Energy consumption while computer is idle. Variance:
Difference of shown energy consumption with minimal and maximal measured. GFLOPs/W:
GFLOPs per Watt defines energy efficiency.

6.3 Programmability

In this section we review the various implementations presented in this thesis for ease of im-
plementation, debugging and testing. The platforms are: C with OpenMP, CUDA, Microgrid,
and OpenCL. Discussions of our overall experience with each of the programming models and
hardware platforms are presented in sections 4.6.6, 4.7.8, 4.8.6, and 4.9.4 respectively.

We rated each platform on programmability, and estimated the total implementation time of
the polyphase filter and optimizations. The results are shown in Table 6.2. C and OpenMP is
our base case, since it is the platform we are most familiar with and the first platform we imple-
mented the polyphase filter on. OpenCL and CUDA are very similar, but OpenCL loses points
because it requires a lot of setup code to be written, while CUDA does this automatically. Mi-
crogrid loses points because the simulator is slow, making it hard to debug and test, and there is
a lack of documentation. However, this is acceptable because Microgrid is a research architecture
in development, but it does make programming (especially optimizing) more difficult.

Time to Ease of Ease of Ease of
Platform implement implementation debugging testing
C & OpenMP 4 weeks 4 3 4
CUDA 2 months 2.5 2.5 3
OpenCL 9 days 2 2 3
Microgrid 6 weeks 3 2 3

Tab. 6.2: Total implementation time and ease of programmability on a scale from 1 to 5.
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6.4 Evaluation

We have researched the efficient implementation of a polyphase filter on several multi-/many-core
platforms: Intel Core i7 920, GTX480, ATI HD4870, and Microgrid. Based on the measurements
we have presented, the GTX480 with CUDA is, in most cases, the most efficient solution in terms
of performance as well as energy consumption. However, this performance is very dependent on
the number of taps (which affects the number of registers per thread), and does not scale well
above 32 taps. The performance of the HD5870 is overall worse, but seems to scale better with
the number of taps. The vectorized implementation is more efficient for 16 and fewer taps, and
the non-vectorized for 32 taps. The Intel Core i7 in a lower performance class than GPUs, but
can be used more flexibly because there are fewer hardware limitations. Finally, our implemen-
tation on Microgrid excels in the specific scenario of 64 channels x 64 taps, which is precisely a
scenario where GPUs are not efficient.

Furthermore, there are big differences between the performance on the GTX480 and HD5870,
even though they are similar architectures and theoretically the HD5870 should achieve much
higher performance (according to the specifications). We believe this happens because the ATI
OpenCL compiler generates suboptimal code. In fact, it could not even compile our 64-taps
kernels, while NVIDIA’s CUDA and OpenCL compilers had no problems with it.

A big problem with GPU programming is that there are very many, very specific restrictions
imposed by the hardware that make it difficult to write efficient programs. Therefore, a lot
of prior knowledge is required before one can write an efficient program for such architectures.
The CUDA Occupancy Calculator proved very helpful in finding the optimal parameters for our
implementation. Such a tool is not available for ATI GPUs (as far as we know), and not yet
ready for the Microgrid architecture.

Finally, we have observed that I/O transfers have a huge impact on performance of all our
GPU solutions, due to the low bandwidth of the PCI Express 2.0 bus (8 GB/s). The polyphase
filter is therefore highly I/O bound on those platforms. But the problem is more general: much
effort is currently being put to bring as much performance out of GPU platforms as possible, but
high GPU only performance alone is not enough to achieve high performance after taking I/O
into account, as we have also seen in our FFT measurements. To make GPUs worthwhile to use,
very many operations on the data are required to hide the latency of I/O transfers. Otherwise,
performance can drop very low. In the case of LOFAR, the polyphase filter is only the first stage
in the pipeline, and the other stages are planned to be added as GPU kernels, while keeping the
data in the GPU memory. This way the I/O transfer latencies can be hidden, and the LOFAR
pipeline can achieve acceptable performance on GPUs.
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In this section we discuss other work related to digital signal processing (DSP) on multicore plat-
forms, focusing on FIR filter and polyphase filter implementations since they are most relevant.

In their paper[37], Rob V. van Nieuwpoort and John W. Romein describe their optimized im-
plementation of the LOFAR correlator on various multicore platforms. The best performance is
achieved on the IBM Cell/B.E. (full blade), reaching 91% peak performance, compared to 96%
peak performance on the Blue Gene/P. The Cell/B.E. is also 3.9x more energy efficient than the
BG/P.

One of the earlier papers on the subject of DSP on multicore hardware by Alexey Smirnov
and Tzi-cker Chiueh, describes a GPGPU1 implementation of a FIR filter using OpenGL. At
that time (2005) CUDA and OpenCL did not exist yet. The FIR input/output is stored in tex-
tures and processed with a fragment program (a small parallel program that runs on the GPU
meant to manipulate pixels and textures for graphics display in OpenCL). The authors conclude
that the (NVIDIA 6800 and ATI X800) GPU implementation is more efficient than the (Pentium
4) CPU implementation with SSE, but only with a large input.

In their paper [31], Ashwin Prasad and Pramod Subramanyan show another fragment program
implementation of a FIR filter, as well as a Cooley-Tukey[16] FFT. The FIR filter is implemented
with a partially unrolled loop, and is on average 2.5x more efficient (on an NVIDIA Quadro FX
1400) than their (Pentium 4 3.2GHz) CPU implementation.

Sajid Anwar and Wonyong Sung describe in[15] an IIR2 filter and 16-taps FIR filter implemen-
tation on CUDA, that is respectively 3 and 40 times as efficient as a CPU implementation, but
they do not specify whether the reported numbers include memory transfers. A difference with
our implementation is that the filters are processed over multiple threads which must synchronize.

In contrast, our optimized CUDA implementation is between 5x and 20x faster than our CPU
implementation optimized with SSE.

Partik Goorts et al compare a FIR filter implementation with FFT for image processing on
CUDA [20]. They take care to coalesce memory accesses and use Singular Value Decomposition
to optimize their implementation. They conclude that manual optimization is important to gain
maximum performance.

The SPIRAL Project [33] researches automatic code generation for the development and op-
timization of digital signal processing algorithms and other numerical kernels, including FIR
filters and FFTs. They have code generators for Intel processors, Cell/B.E. and FPGAs. In

1 General-Purpose computation on Graphics Processing Units
2 Infinite Impulse Response
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many cases the performance of the generated code outperforms that of existing, handwritten
libraries. However, there is no GPU code generation available, and the generated code is not
very flexible.

An implementation of a polyphase filter on the Cell Broadband Engine that is very similar
to ours was presented by Brandon Kyle Hamilton in his master’s thesis [21]. Working within
the limitations of the Cell/B.E. proved difficult, but the results show that the implementation is
over 6x more efficient than on a normal processor, depending on the amount of input.

The master’s thesis by Jimmy Pettersson and Ian Wainwright [30] discusses the implementa-
tion and performance of various radar signal processing algorithms on CUDA and OpenCL,
including FIR filters. They also use heavyweight threads with many registers to improve the
performance of their FIR filter implementation, which achieved a maximum performance of 182
GFLOP/s on the GPU (NVIDIA Quadro FX 4800 / GTX 260), compared to 2.6 GFLOP/s on
the CPU (Intel Core2 Duo E8400). However, they do not provide much detail on the actual
implementation. The highest achieved speedup including memory transfers was about 37 times.
Their FIR filter parameters are different from ours: the number of taps is higher (32 to 128),
but the number of channels is much lower (up to 256). The highest performance with OpenCL
is 116 GFLOP/s.



8. CONCLUSIONS

In this chapter we present our conclusions and future directions based on the work we did, and
the feasibility of using the investigated platforms in the LOFAR pipeline.

LOFAR is a radio telescope used for research in radio astronomy. Radio astronomy is a subfield of
astronomy which studies astronomical objects at radio frequencies. LOFAR receives radio signals
from astronomical objects using a large sensor network, which produces terabytes of data per
day. The data is almost entirely processed in a software pipeline. Currently the entire pipeline
is processed on an IBM Blue Gene/P supercomputer. However, the BG/P no longer scales well
with the amount of data produced, because the energy and maintainance costs are becoming too
high. In addition, the future SKA radio telescope will produce orders of magnitude more data
than LOFAR, and its pipeline will also be in software. There is no knowledge on how to process
such a large amount of data efficiently and with reasonable energy consumption.

The promising performance and energy efficiency of multi-/many-core processors has given rea-
son to research how to implement the LOFAR pipeline efficiently on them in order to eventually
replace the BG/P, as well as being preliminary research for SKA. The efficient implementation
of the polyphase filter, which is part of the pipeline, is researched in this thesis. We have investi-
gated the implementation the following platforms: Intel Core i7 920 using C, NVIDIA GTX480
using CUDA and OpenCL, ATI Radeon HD5870 using OpenCL, and Microgrid. We evaluated
the performance, energy efficiency, and ease of programmability of our implementations. The
conclusions and future directions of our research are presented below.

Performance
Our results show that we achieved the highest performance on the GTX480 using CUDA, near-
ing 500 GFLOP/s in the best case, excluding memory transfers. This very good performance is
achieved because we make efficient use of the available registers to mask memory access latency,
and because of the very good performance of the CUFFT library. We can conclude that using
many registers per thread can in some cases greatly improve performance.

The same implementation ported to OpenCL on the GTX480 achieves similar, but lower per-
formance. On the HD5870, the same OpenCL implementation performs not nearly as well, but
does scale better with the number of registers per thread. The reason for the worse performance
compared to CUDA is likely because the AMD OpenCL compiler does not yet generate code
that is efficient enough.

On a GPU the memory transfers that are required to send data to and from the GPU have
a large impact on performance, because it is very time consuming compared to the GPU ker-
nels. We have reached the conclusion that this performance loss can be mitigated by performing
many operations on that data, so that the memory transfer cost is offset by the computational
performance of GPUs versus CPUs.
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Our implementation on the Intel Core i7 is obviously not as efficient as our GPU implemen-
tations, but it achieves decent performance for this platform. Unlike a GPU, it has predictable
performance no matter which parameters are chosen.

At the moment, Microgrid does not appear to perform as well in general as the other platforms.
However, it excels in some specific scenarios, precisely those where GPUs are not very efficient.
Since Microgrid is still in development, we expect that the performance will increase in the future.

Energy efficiency
We have shown that the GTX480 is the most energy efficient platform, achieving almost 1.0
GFLOPs/W excluding memory transfers, and 0.19 GFLOPs/W including memory transfers.
The Intel Core i7 achieves 50% of that, and the HD5870 30% including memory transfers. Since
Microgrid has no hardware implementation yet, we have no energy measurements on it.

Programmability
Although the CUDA and OpenCL platforms are not necessarily hard to program, they require
a lot of prior knowledge of the underlying hardware to make optimal use of it. OpenCL is still
immature compared to CUDA and is somewhat more difficult to program, because it requires
extra code that CUDA generates automatically. Microgrid requires similar knowledge, though
not as much. However, there is not much documentation, because Microgrid is still in develop-
ment. Since the Intel Core i7 is a common platform with which we were already familiar, we had
no issues programming it.

Overall conclusion
We have implemented the polyphase filter on several multicore platforms, and have reached the
conclusion that our implementation on the GTX480 using CUDA is in most cases the most effi-
cient in terms of performance and energy efficiency. Our findings are promising for the LOFAR
pipeline, and may benefit the implementation of other pipeline stages in the future.

Future work
In the short term there are still more opportunities for optimization on the GPU, the most promis-
ing platform. There are research opportunities to alleviate the performance penalty caused by
memory transfers. This might be accomplished by better data transfer or adding more stages of
the pipeline. In our implementation there are some cases where GPUs do not deliver the best
performance, and alternative implementations for those cases should be investigated as well.

In the long term the full LOFAR pipeline will be integrated and tested on GPUs. In that
case many GPUs will be needed, which all have to communicate to perform correlation. The
challenge will be to achieve real time performance in the face of the memory transfer latencies
between many GPUs in a network.
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