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1 Introduction

Radio Frequency Interference (RFI) is an enormous challenge for radio astronomy due to the increasing scale and
sensitivity of modern radio telescopes. Furthermore, the growing number of electronic devices emitting RF signals
severely hampers the reliability of radio observations, necessitating advanced methods for RFI mitigation. While
machine learning methods have shown promise in this area, most existing approaches rely on Convolutional Neural
Networks (CNNs), which carry inherent biases in their assumptions about the inference structure and morphology.

In this paper, we explore an alternative approach using hierarchical vision transformers, specifically the Swin-
UnetR [1] architecture, to tackle RFI detection in radio astronomy. Unlike CNNs, transformers do not assume any
specific feature morphologies, allowing them to potentially identify RFI more flexibly. This being said, training
large transformer models is computationally expensive; often requiring significant resources. To overcome this,
we employ pipeline parallelism with CAPSlog [2] as the partitioning strategy, to enable more efficient use of both
computational resources and memory to facilitate scalability for future studies as larger datasets become available.

This is the first known application of transformer-based architectures for RFI detection in radio astronomy, repre-
senting a shift from traditional methods. Our experiments demonstrate that the Swin-UnetR architecture achieves
state-of-the-art performance, outperforming existing methods on three key metrics using data from the LOFAR [3]
radio telescope. This novel approach not only advances RFI mitigation but also sets the stage for broader adoption
of transformer-based models in radio astronomy.

2 Shifted window vision transformers

The Shifted Window (SWIN) Transformer architecture [1], has gained significant attention for its approach to
handling spatial hierarchies in vision tasks. Unlike traditional transformer architectures that maintain a fixed
global view, the Swin Transformer operates by gradually merging patches at multiple scales, allowing it to capture
both local and global information.

The Swin-UnetR model, which we apply to RFI detection in radio astronomy, combines the down-sampling mech-
anism of Swin Transformer with the up-sampling architecture of U-Net. The down-sampling stage uses the Swin
Transformer’s patch-merging technique to reduce the spatial dimensions while extracting essential features. The
up-sampling stage, inspired by U-Net, allows the model to generate high-resolution output, which is necessary for
accurately identifying RFI patterns within the radio spectrum.

3 Evaluation

The models in this paper are trained and evaluated on the spectrograms from a publicly available dataset generated
by the LOFAR telescope [4]. This dataset contains 7,500 training samples labelled by AOFlagger [5] and 109
test samples labelled by human experts. To manage the dataset’s size, we down-sample the input spectrograms,
reducing them to approximately 10 GB, and then crop them into 512×512 pixel images.

We use three configurations of the Swin-UNETR model, each varying a different hyper-parameter of the Swin
Transformer architecture. We train each model for 100 epochs using the AdamW optimiser with early stopping,
additionally we use 20 cosine warming-up epochs and a learning rate of 10−5 and set the decay rate at 0.001. Ta-
ble 1 presents the number of parameters and the computational resources required for training these configurations.



Model Configuration # Parameters Feature size # Transformer blocks per stage TFLOPs
Swin-6M 6.5 M 24 (2, 2, 18, 2) 1.105
Swin-100M 102.1 M 96 (2, 2, 18, 2) 12.334
Swin-400M 408.1 M 192 (2, 2, 18, 2) 67.025

Table 1. Parameters and TFLOPs per iteration for each Swin-UnetR configuration

We compare the RFI detection performance of the Swin-UnetR model with existing deep learning solutions, specif-
ically NLN [4] and U-Net [6] as well as AOFlagger [5]. In Table 2 we show the model’s detection performance
using three metrics: the AUPRC (Area Under Precision–Recall Curve) score, the AUROC (Area Under Receiver
Operating Characteristic Curve) score, and the F1-score.

It can be seen that the transformer-based models offers significant improvements across all metrics relative to the
other models. Interestingly, the Swin-400M model exhibits higher detection performance compared to both Swin-
100M and Swin-6M, suggesting that model size correlates with improved accuracy. Overall, these findings provide
insights into the performance dynamics among Swin-UnetR variants and their efficacy against other models.

Metric AOFlagger[5] U-Net [6] NLN [4] Swin-6M Swin-100M Swin-400M
AUROC 0.7883 0.8017 0.8622 0.9711 0.9743 0.9771
AUPRC 0.5716 0.5920 0.6216 0.6783 0.6831 0.6938
F1-Score 0.5698 0.5876 0.5114 0.6302 0.6281 0.6401

Table 2. RFI detection performance in AUROC, AUPRC and F1 score for each model, where bold is best.

4 Conclusion

In this paper we have demonstrated that transformer-based architectures, such as Swin-UnetR, demonstrate no-
table improvements over traditional architectures for applications in radio astronomy RFI detection. Our findings
indicate that model performance tends to improve with the number of parameters in the Swin-UnetR architecture.
Larger Swin-UnetR models consistently achieve better performance metrics compared to their smaller counter-
parts, supporting the notion that increased model capacity allows for the capture of more complex patterns. Ad-
ditionally, by utilising a parallel method to train these larger architectures, we effectively facilitated more efficient
handling of large-scale datasets and potentially reducing training times, which will be further demonstrated in the
full paper. This approach could be valuable in broader contexts within radio astronomy, especially for tasks re-
quiring many computational resources. These results not only show the potential of transformer-based models but
also open pathways for further research into scalable training techniques and their applicability to RFI detection
and other related fields.
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