
A Polyphase Filter for GPUs and Multi-Core Processors

Karel van der Veldt
Universiteit van Amsterdam

The Netherlands
karel.vd.veldt@uva.nl

Rob van Nieuwpoort
Vrije Universiteit Amsterdam

The Netherlands
r.v.van.nieuwpoort@vu.nl

Ana Lucia Varbanescu
Technische Universiteit Delft

The Netherlands
a.l.varbanescu@tudelft.nl

Chris Jesshope
Universiteit van Amsterdam

The Netherlands
c.r.jesshope@uva.nl

ABSTRACT
Software radio telescopes are a new development in radio
astronomy. Rather than using expensive dishes, they form
distributed sensor networks of tens of thousands of simple re-
ceivers. Signals are processed in software instead of custom-
built hardware, taking advantage of the flexibility that soft-
ware solutions offer. In turn, the data rates are high and
the processing requirements challenging. GPUs and multi-
core processors are promising devices to provide the required
processing power. LOFAR1, the largest radio telescope, is a
prime example of a software radio telescope.
In this paper, we discuss an optimized implementation of the
polyphase filter bank used by LOFAR. We compare the fol-
lowing architectures: Intel Core i7, NVIDIA GTX580, ATI
HD5870, and MicroGrid[7]. We present a novel way to com-
pute polyphase filters efficiently on GPUs, and also discuss
hardware limitations and energy efficiency.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming—parallel programming ; D.2.8 [Software Engineer-
ing]: Metrics—performance measures

General Terms
Algorithms, Measurement, Performance

Keywords
LOFAR, Radio Astronomy, Digital Signal Processing, Polyphase
Filter, FIR Filter, CUDA, OpenCL, MicroGrid

1. INTRODUCTION
Modern radio telescopes use many separate receivers as build-
ing blocks, and combine their signals to form a single large

1LOw Frequency ARray

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AstroHPC’12, June 19, 2012, Delft, The Netherlands.
Copyright 2012 ACM 978-1-4503-1338-4/12/06 ...$10.00.

and sensitive instrument. The enormous amounts of data
collected are processed mostly in software, in real-time, since
the data streams simply are too large to store on disk. There-
fore, a scalable solution for processing all this data is needed.
For example, the LOFAR radio telescope produces over 100
TB of data daily. If clever solutions can be found for LO-
FAR, they can also be applied to the future SKA2 tele-
scope[3], estimated to produce exa-scale data collections ev-
ery day.
In practice, receivers (antennas) are grouped in stations. At
the station level, signals from the antennas are combined and
streamed to the digital signal processing pipeline. One such
pipeline is the imaging pipeline, used to create images of the
sky. The first stage in the imaging pipeline is the polyphase
filter (PPF)[12]. The channelized data streams that it pro-
duces enable better removal of Radio Frequency Interference
(RFI), and allows more accurate processing in general. For
example, dispersion of the different signal frequencies can
be corrected more accurately. A fast PPF allows for more
accurate RFI removal, increasing the accuracy of the entire
telescope.
The main reason to process radio astronomy data in soft-
ware rather than custom-built hardware is flexibility: the
pipelines can easily be reconfigured and reprogrammed at
observation time. However, in supercomputer-based infras-
tructures such as the Blue Gene/P currently used by LO-
FAR, the price-to-scale ratio becomes steep in terms of both
energy and maintenance costs. Moreover, for the future
SKA telescope, we need to scale up the processing with sev-
eral orders of magnitude, to exascale. A possible alternative
to supercomputers is the use of many-core processors, which
promise to be cheaper and more energy efficient.
In this paper, we investigate how a PPF can be implemented
efficiently in terms of both performance and power consump-
tion. Our investigation covers several many-core architec-
tures: Intel Core i7 920 CPU, NVIDIA GTX580 GPU, ATI
Radeon HD5870 GPU, and MicroGrid[7] (a research project
by the University of Amsterdam), including different pro-
gramming models (where applicable). We expect the results
of this research to be of high interest for SKA, as it will face
the same data processing issues at exa-scale level.
Our main contributions in this work are the parallel solu-
tions for building efficient PPFs on many-core architectures,
and GPU-specific optimizations that allowed us to obtain
very high performance. Additionally, our PPF is the first
”real-world” application written and benchmarked on the

2Square Kilometer Array

mailto:karel.vd.veldt@uva.nl
mailto:r.v.van.nieuwpoort@vu.nl
mailto:a.l.varbanescu@tudelft.nl
mailto:c.r.jesshope@uva.nl
http://www.lofar.org
http://www.skatelescope.org

MicroGrid architecture, exposing the programmability and
performance abilities of this research architecture. Finally,
both the optimizations and the results presented can be used
to implement the entire pipeline (or other signal processing
kernels) on many-core platforms.

2. RELATED WORK
In this section we discuss other work related to FIR filter
and polyphase filter implementations.
In their paper[15], Rob V. van Nieuwpoort and John W.
Romein describe their optimized implementation of the LO-
FAR correlator on various multicore platforms. The best
performance is achieved on the IBM Cell/B.E. (full blade),
reaching 91% peak performance, compared to 96% on the
Blue Gene/P. The Cell/B.E. is also 3.9x more energy effi-
cient than the BG/P.
In 2005, Smirnov and Chiueh describe a GPGPU imple-
mentation of a FIR filter using OpenGL [14]. At the time,
CUDA and OpenCL did not exist yet.
An implementation of a polyphase filter on the Cell Broad-
band Engine that is similar to ours was presented by Hamil-
ton in his master’s thesis [6]. His results show that the
implementation is over 6x more efficient than on a normal
processor, depending on the amount of input.
The master’s thesis by Pettersson and Wainwright [11] dis-
cusses the implementation and performance of FIR filters
on CUDA and OpenCL. They achieve good performance on
CUDA, but they do not provide much detail on the actual
implementation. Their FIR filter parameters also differ from
ours.
The SPIRAL Project [13] researches automatic code gen-
eration for the development and optimization of DSP algo-
rithms and other numerical kernels, including FIR filters and
FFTs. The generated code outperforms existing, handwrit-
ten libraries, but is not very flexible and there is no GPU
code generation.
Overall, we believe that although signal processing in general
and FIR filters in particular are of interest to the many-core
community, this is the first thorough study of FIR filters
using so many platforms, programming models, and perfor-
mance metrics.

3. SIGNAL PROCESSING BACKGROUND
In this section we give a short description of the signal pro-
cessing concepts required to understand polyphase filters.

3.1 Signals
A signal is defined as any physical quantity that varies with
time, space, or other independent variable(s) [12]. A signal
can be mathematically described as a function of one or more
independent variables. In this work, we are only interested
in discrete signals.
Discrete signals can be obtained by sampling at (usually)
equally spaced intervals from an analog signal source. In
our case, LOFAR antennas sample discrete, complex-valued
samples, using sampling frequencies of 160 or 200 MHz.

3.2 FIR filter
A Finite Impulse Response (FIR) filter multiplies a finite
number of recent input signals (impulses) relative to a given
discrete time by coefficients (impulse responses) and accu-

mulates the results. It can be described mathematically as

y(n) =
N∑
i=0

cix(n− i), where:

• y(n) is the output signal at discrete time n.
• x(n) is the input signal at discrete time n.
• ci are the coefficients, also called weights.
• N is the number of recent signals to consider, called

the filter order. The terms on the right-hand side of
the equation are called taps. An Nth order FIR filter
has N + 1 taps.

A FIR filter must remember its last N input samples, which
are stored in what is called the delay line. One can design
a FIR filter by carefully choosing the filter order and coeffi-
cients such that the system has specific characteristics. For
the purpose of our work, the values of the coefficients are
irrelevant as they do not affect the implementation. While
generally it is possible to reduce the complexity of FIR fil-
ters by strength reduction [10], this is not feasible for us as
it involves designing a specific FIR filter for a specific set of
coefficients. In LOFAR there are hundreds of different FIR
configurations, all of which can be changed at any time.

3.3 Discrete Fourier Transform
A Fourier transform splits a sequence of input signals into a
sequence of frequencies. In doing so it transforms the input
from the time domain to the frequency domain. It can be
compared to how a prism splits white light into separate
light beams of a single frequency.
A DFT operates on discrete signals and can be described

mathematically as fk =
N−1∑
n=0

x(n)e−i 2π
N

nk, where:

• x(n) is an input signal; there are N input signals.
• fk is the kth frequency and is a complex number,

k = 0, 1, 2, ..., N − 1.

The complexity of this algorithm is O(N2), since computing
any of the N frequencies requires iterating over N inputs.
DFTs are not used directly in practice, because there are
better algorithms known as Fast Fourier Transforms (FFT)
which have a complexity of only O(N log2(N)) [4].

3.4 Polyphase filter
Polyphase filters are used by LOFAR to channelize input
streams and reduce interference. They split an input se-
quence into N subsequences of M samples, where each sub-
sequent input signal is the input to one of M FIR filters
(or channels). This can be described mathematically as

ym(n) =
N∑
i=0

cix((n− i)M + m), where:

• N is the number of recent samples to consider (the
filter order).

• M is the number of FIR filters (channels).
• ym(n) is the nth output signal of the mth FIR filter,

m = 0, 1, 2, ...,M − 1.

The M outputs ym(n) are used as inputs to a DFT as de-
scribed in the previous subsection. The output of the DFT
is the output of the polyphase filter.

4. THE LOFAR POLYPHASE FILTER
In this section we present the implementation details com-
mon to all architectures we implemented the polyphase filter
on, and how we measure performance. We focus on the im-
plementation of the FIR filter, as we use third-party FFT
libraries when possible.

4.1 Polyphase filter
In the LOFAR system, receivers are grouped into stations.
As all stations are completely independent, we explain how
the polyphase filter works for a single station.
A station has Nchannels channels, which each have two po-
larizations (X and Y). Polarizations are separate interleaved
data streams that share the same FIR coefficients. There are
a total of 2 × Nstations × Nchannels polyphase filters. Each
station combines the samples of its receivers and streams it
to the LOFAR pipeline.
Samples from the stream are 4, 8, or 16-bit interleaved com-
plex integers, which the polyphase filter first converts to 32-
bit floating point. The FIR coefficients are 32-bit floating
point real numbers. There is a coefficient for every chan-
nel and tap combination, but all stations and polarizations
share the same coefficients. The FIR delay line can be seen
as a bounded FIFO buffer. When a new sample is processed
it is stored in the front of the buffer, all other samples shift
to the next tap, and the last sample is discarded. After all
FIRs of a given polarization have processed a sample, the
FFT is computed. There are 2×Nstations FFTs of Nchannels

length.
In our implementation the input samples are read from an
input array, and the result is stored in an output array, which
are large enough to store a number of samples described
above for the Nstations we want to process. We also use a
delay line array and a coefficients array.

4.2 Measuring performance
In this section we explain how we measure the performance
of our kernels.

4.2.1 Floating point operations
Computing the output of a FIR filter requires a number of
multiply-add operations. There are Ntaps complex samples
in the delay line. Each sample is multiplied by a real coef-
ficient and these results are summed. This requires 2Ntaps

floating point multiplications and 2(Ntaps−1) floating point
additions. The total amount of FLOPs per FIR filter is thus
2 + 4(Ntaps − 1).
Since we use third-party FFT libraries we do not know the
exact number of FLOPs for the FFT, but it can be approx-
imated as 5Nchannels log2(Nchannels) [9]. LOFAR only uses
power of two FFTs, because those can be computed most
efficiently.

4.2.2 Memory traffic
Computing the output of a FIR filter requires the following
memory loads and stores:

• Read one (2 x 4 bit), (2 x 8 bit) or (2 x 16 bit) input
sample, which is converted to a (2 x 32 bit) floating
point sample. Note that for simplicity of the calcula-
tions we need to make we assume (2 x 16 bit) samples.

• Read (Ntaps − 1) (2 x 32 bit) samples from the delay
line.

• Read Ntaps 32 bit coefficients.

• Write one (2 x 32 bit) output.
• Write one (2 x 32 bit) sample to the delay line.

So, the total amount of memory traffic for one FIR filter is
4 + 8(Ntaps − 1) + 4Ntaps + 8 + 8 = (12Ntaps − 4) + 16 =
12Ntaps + 12 bytes.
One FFT has in total 4Nchannels [9] complex floating point
inputs and outputs, so the amount of memory traffic is 8 ×
4Nchannels = 32Nchannels bytes.

4.2.3 Peak performance
We use the Roofline model[16] to determine the maximum
attainable performance of our implementation on a given
architecture:
perfmax = min(perfpeak,MemoryBandwidth×AI), where:

• perfmax is the maximum attainable floating point per-
formance of our implementation on the given architec-
ture (GFLOP/s).

• perfpeak is the theoretical peak floating point perfor-
mance of the architecture (GFLOP/s).

• MemoryBandwidth is the peak memory bandwidth of
the architecture (GB/s).

• AI is the arithmetic intensity of the implementation,
which is defined as the number of FLOPs per byte of
memory traffic. The AI of the polyphase filter is given
in the following subsection.

Using the Roofline model we can determine whether our
kernels are bounded by computational power of the pro-
cessor or by the memory bandwidth. If the measured per-
formance of a kernel is lower than perfmax, it is memory
bound. Otherwise, it is compute bound. Note that because
the Roofline model does not take all possible optimizations
(such as caching) into account, there are cases when the
measured performance is higher than perfmax.

4.2.4 Arithmetic intensity
To use the Roofline model, we must determine the arithmetic
intensity of our kernel. Arithmetic intensity is defined as the
number of FLOPs per byte of memory traffic, so we need to
calculate both. We calculate the AI of the FIR filter and
FFT separately.

FLOPfir = 2 + 4(Ntaps − 1)

BytesAccessedfir = 12Ntaps + 12

AIfir = FLOPfir/BytesAccessedfir

FLOPfft = 5Nchannels log2(Nchannels)

BytesAccessedfft = 32Nchannels

AIfft = FLOPfft/BytesAccessedfft

(1)

Note that for some of our implementations there are certain
optimizations which improve the AI, as explained in Sec. 5.

4.3 Parameters and metrics
We made test programs to measure the performance of our
kernels based on general and implementation-specific param-
eters. The general parameters are: sample size, Nstations,
Nchannels, Ntaps, and the number of input samples per chan-
nel Nruns (in other words the number of times to run the
polyphase filter). We call the act of starting the kernel to
process a sample a run, and every run is performed in lock-
step by all polyphase filters. Implementation-specific pa-
rameters include enabled optimizations (determined at com-
pilation time) and additional command line parameters, for

example the number of threads in the CPU implementation.
We kept Nruns at 10000, but varied all the other parameters.
The following metrics are used to evaluate performance: ex-
ecution time in seconds for computing the total number of
samples, average time for all channels of all stations to pro-
cess one input sample, and energy consumption in Watt.

5. ARCHITECTURES
In this section we explain how we optimized the polyphase
filter for the following architectures: Intel Core i7 920, NVIDIA
GTX580 Fermi, ATI HD5870, and MicroGrid. For compar-
ison, we also have an unoptimized reference implementation
for all architectures. Reference implementations are des-
ignated with subscript ref, and optimized implementations
with subscript opt.

5.1 Intel Core i7 920
The Core i7 920 is a quad-core running at 2.67 GHz, 32Kb L1
cache, 85 GFLOPs/chip theoretical peak, and the memory
bandwidth is 25.6 GB/s. We use the FFTW[5] library for
the FFT.
The delay line is implemented as a bounded circular FIFO
buffer. On insertion the oldest sample is overwritten, dis-
carding it. Insertion is O(1) as it only requires the start of
buffer index to be incremented by 1 mod Ntaps and the new
sample is stored in that location. No copying takes place.
To compute the FIR output we iterate over the whole buffer
starting at the aforementioned buffer index.
We use a combination of loop unrolling and SSE to opti-
mize iteration and computation. Since polarized samples
are stored interleaved they can be loaded into one SSE reg-
ister in a single SSE instruction, and both polarizations can
be computed in parallel. Finally, we use OpenMP to paral-
lelize the stations over a number of threads. We measured
with 1, 2, 4, and 8 threads. Not surprisingly 4 threads gave
the best performance, as it is equal to the number of cores.

5.1.1 Maximum performance
To compute the maximum performance, we need to know
the number of FLOPs and bytes accessed per FIR filter and
FFT. For the FIR reference implementation and FFT we
already know the number of flops and bytes accessed from
section 4.2.3. Since we use SSE to compute two polariza-
tions at once, the numbers are computed differently for the
optimized implementation:

FLOPfir,ref = 2 + 4(Ntaps − 1)

BytesAccessedfir,ref = 12Ntaps + 12

FLOPfir,opt = 4 + 8(Ntaps − 1)

BytesAccessedfir,opt = 20Ntaps + 24

(2)

Based on these equations, we can compute the arithmetic
intensity and peak performance of the polyphase filter. The
performance of the FIR depends on Ntaps, and the perfor-
mance on the FFT depends on Nchannels.
The peakmax in GFLOP/s for the FIR and FFT are shown
in Table 1. The observed performance (see Section 6) is
actually much higher, due to the effect of caching.

5.2 NVIDIA GTX580 Fermi
The GTX580 GPU has 512 cores with a clock frequency of
772 MHz divided over 16 symmetric multiprocessors (SM).

Ntaps 4 8 16 32 64
AIfir,ref 0.23 0.28 0.30 0.31 0.33
AIfir,opt 0.26 0.33 0.36 0.38 0.39
perfmax,fir,ref 6.0 7.1 7.8 8.1 8.3
perfmax,fir,opt 6.9 8.3 9.2 9.7 10.0

Nchannels 64 128 256 512 1024
AIfft 0.94 1.1 1.25 1.4 1.6
perfmax,fft 24 28 32 36 40

Table 1: The arithmetic intensity and maximum
performance of the polyphase filter on the Intel Core
i7 920 determined using the Roofline model. perfpeak
is 85 GFLOP/s and MemoryBandwidth is 25.6 GB/s.

The theoretical peak performance is 1581.1 GFLOP/s per
chip. The theoretical peak global memory bandwidth is
192.4 GB/s, and the theoretical peak PCI express bus 2.0
bandwidth is 8 GB/s. Every SM has a register file of 32768
32-bit registers, which is shared between all its cores. We
used CUDA 4.1 with CUFFT. We also experimented with
the GTX480 using CUDA 3.1 and OpenCL with Apple’s
FFT library.
The GTX580 has multiple memories with different charac-
teristics, but we only used the global memory for the in-
put, output and delay lines arrays, and the constant mem-
ory to store the coefficients. All arrays are arranged in
such a way that accesses are coalesced as much as possi-
ble. Furthermore, while diverging branches in GPU threads
are known to be expensive, our implementation has no di-
verging branches.
In the following subsections we present and analyze a novel
approach to FIR filter computation on GPUs using a com-
bination of register heavy threads, aggressive loop unrolling,
and batching. These optimizations go hand in hand to make
effective use of available resources, and give a very substan-
tial performance boost over a naive implementation.

5.2.1 Batch processing
Just as in the CPU implementation (see section 5.1), the
FIR delay line is stored in a bounded circular FIFO buffer,
but now the buffer is completely loaded into registers, and
we only use global memory to store the delay line in be-
tween kernel calls. Because of the large number of registers
required, a thread computes only a single polarization, and
we create 2 ×Nstations ×Nchannels FIR filter threads.
Since registers cannot be indexed, we unrolled the FIR loop
Ntaps times using manual register renaming (using C macros)
to simulate shifting taps in the delay line without needing to
do any copying. The unrolled loop is repeated another Ntaps

times and wrapped in an outer loop. This lets us compute
Nbatches batches of Ntaps samples each within a single kernel
call, greatly reducing the total number of memory accesses.
The number of samples processed by the kernel is Nsamples =
Nbatches ×Ntaps. Since the delay line is only read from and
written to global memory once every Nsamples samples, the
number of bytes accessed is:

BytesAccessedfir = 2
8Ntaps

Nsamples
+ 4Ntaps + 12 =

16
Nbatches

+ 4Ntaps + 12

Now it is clear that, as Nbatches increases, the factor 16
Nbatches

approaches zero, and effectively BytesAccessedfir ≈ 4Ntaps+
12, meaning batching masks the memory access latencies
that would otherwise be caused by accessing the delay lines
from global memory. Since fewer memory accesses are re-

4 8 16 32 64
Taps

0

100

200

300

400

500

600

700

G
FL

O
P

/s

CUDA GTX580 FIR 16-bit samples x 64 Stations x 256 Channels

Batches

1

2

4

8

16

32

Figure 1: Performance graph showing the impact
of the number of taps and batches of the optimized
FIR filter without I/O on the GTX580 using CUDA.

quired for the same amount of computation, the arithmetic
intensity increases as Nbatches increases. We measured with
Nbatches = 1, 2, 4, 8, 16, and 32, the latter giving the best
performance. From the equation above we also know that a
larger Nbatches does not give further performance increase.
Table 2 shows the best case arithmetic intensity when
Nbatches = 32, and the maximum performance as deter-
mined by Roofline. The actual performance is much higher,
because of caching [15] and our use of the constant memory
which has a higher bandwidth than the global memory.

Ntaps x 32 batches 4 8 16 32 64
BytesAccessedfir,ref 60 108 204 396 780
BytesAccessedfir,opt 28 44 76 140 268
AIfir 0.49 0.67 0.81 0.90 0.95
perfmax,fir,ref 44.9 53.4 58.5 61.2 62.7
perfmax,fir,opt 96.2 131.2 157.0 173.2 182.3

Nchannels 64 128 256 512 1024
AIfft 0.94 1.1 1.25 1.4 1.6
perfmax,fft 180.9 211.6 240.5 269.36 307.8

Table 2: The maximum performance of the
polyphase filter on the NVIDIA GTX580, excluding
host-to-device memory transfers. perfpeak = 1581.1
GFLOP/s and MemoryBandwidth = 192.4 GB/s.

5.2.2 Occupancy
Occupancy is a measure of how well the multiprocessor is
utilized by a kernel which is based on the number of registers
per thread, amount of shared memory per thread (although
we do not use shared memory), and the number of threads
per block. Best practice guidelines state that it should be
as close to 100% as possible. Table 3 shows the occupancy
for FIR filters of different lengths, which we computed using
the CUDA Occupancy Calculator.
On the GTX580, threads can use a maximum of 63 registers
without spilling registers to device memory, and each multi-

Ntaps Registers Max. threads Total nr. Occupancy
per thread per block of registers

4 18 512 27684 100%
8 26 512 26624 67%
16 42 256 32256 50%
32 74 128 28416 25%
64 138 32 30912 15%

Table 3: CUDA occupancy on compute ability 2.0.
Registers per thread = 2Ntaps + 10.

processor has 32678 registers to allocate between threads in
a warp [1]. Keeping that in mind, the table shows that the
16 taps FIR filter makes near optimal use of the available
registers (32256 out of 32768 registers are used) without ex-
ceeding the max. registers/thread. This is reflected in the
performance measurements shown in Figure 1, as this FIR
filter is by far the best performing one. FIR filters with
more taps exceed the max. registers/thread and therefore
must spill registers, impacting their performance. Moreover,
smaller FIR filters have higher occupancy but less perfor-
mance than the 16 taps FIR filter, because the hardware is
sub-optimally utilized.
This shows that higher occupancy does not imply better per-
formance, and to get the best performance one should use as
many registers as possible without exceeding the max. regis-
ter per thread. It also means our FIR filter implementation
scales with the max. registers/thread, which is unfortunate
as it is a hardware limit we cannot do anything about. As
also implied by the table, we need a separate kernel for each
Ntaps, because the number of registers must be hardcoded.
As shown in Table 3, the maximum size of a thread block

depends on the number of taps. There is one thread for each
channel and polarization in a station, so if 2Nchannels >
MaxThreadsPerBlock, we must use multiple thread blocks
per station. MaxThreadsPerBlock is given in Table 3.
However, all thread blocks must have the same size, so we
choose ThreadsPerBlock and BlocksPerStation such that:

2Nchannels = ThreadsPerBlock ×BlocksPerStation
where ThreadsPerBlock ≤ MaxThreadsPerBlock

Our implementation computes ThreadsPerBlock and
BlocksPerStation automatically, based on the number of
channels and taps.
The consequence of this dynamic sizing is that depending
on the number of channels, thread blocks may be smaller
than optimal, affecting performance (since the occupancy
will be lower than shown in Table 3). We strongly rec-
ommend choosing Nchannels such that ThreadsPerBlock =
MaxThreadsPerBlock.

5.2.3 I/O transfers
The input array is pagelocked (or pinned), write-combined,
and mapped into device memory. This minimizes transfer
overhead and the GPU can automatically overlap I/O trans-
fers with computations. We did not apply this to the output
array as it is supposed to be reused as input for the follow-
ing pipeline stage kernel, while the mentioned optimizations
only apply to device read-only or write-only data. These
optimizations give a substantial I/O performance boost.

5.3 ATI Radeon HD5870
The Radeon HD5870 GPU has 320 stream cores running at
850 MHz divided over 20 compute cores. Its theoretical peak
performance is 2720 GFLOP/s, its peak memory bandwidth
is 154 GB/s, and the theoretical peak PCI express bus 2.0
bandwidth is 8 GB/s. ATI uses different terms to describe
its GPU architecture, but it is for the most part similar to
NVIDIA GPUs. Each stream core has 5 FPUs and its own
vector register file. Each register is 4 x 32-bit wide. This is
different from the GTX580, where one SM shares its register
file between all its cores and registers can only store 1x32-
bit values. Each stream core can use at most 1024 registers.
The memory architecture is very similar to CUDA, and the
same recommendations apply. The HD5870 is programmed
using OpenCL.

5.3.1 Implementation
We have two OpenCL implementations. One is a direct port
of the CUDA implementation, in which a thread computes
one polarization of one channel. In the second (vectorized)
implementation a thread computes both polarizations of a
channel at once, taking advantage of the vector registers in
the same way we applied SSE in the CPU implementation.
This means there are half as many threads, but each thread
requires twice as many registers. Since two delay lines are
accessed and two samples are computed in parallel, but both
use the same set of coefficients:

BytesAccessedfir = 32
Nbatches

+ 4Ntaps + 24

And, because both polarizations are computed at once:
FLOPfir = 4 + 8(Ntaps − 1)

The OpenCL compiler was unable to compile kernels for 64
taps (it just crashed), so we have no results of that. This
is a problem with the compiler, not our code. We also use
pagelocked memory to boost I/O performance.
Table 4 shows the maximum performance of the vector-
ized and non-vectorized reference and optimized implemen-
tations.

Ntaps x 32 batches 4 8 16 32 64
Non-vectorized
BytesAccessedfir,ref 60 108 204 396 780
BytesAccessedfir,opt 28 44 76 140 268
AIfir 0.49 0.67 0.81 0.90 0.95
perfmax,fir,ref 33.9 41.6 46.2 49.3 49.3
perfmax,fir,opt 75.6 103.8 124.8 138.1 145.7
Vectorized
BytesAccessedfir,ref 108 188 348 668 1308
BytesAccessedfir,opt 41 57 89 153 281
AIfir 0.68 1.05 1.39 1.64 1.80
perfmax,fir,ref 39.0 47.9 53.2 56.8 56.8
perfmax,fir,opt 105.2 162.1 214.6 253.6 278.4

Nchannels 64 128 256 512 1024
AIfft 0.94 1.1 1.25 1.4 1.6
perfmax,fft 144.8 169.4 192.5 215.6 246.4

Table 4: The maximum performance of the
polyphase filter on the HD5870 (non-vectorized
and vectorized), excluding host-to-device mem-
ory transfers. perfpeak = 2720 GFLOP/s and
MemoryBandwidth = 154 GB/s.

5.4 MicroGrid
MicroGrid is an NWO (Netherlands Organisation for Sci-
entific Research) funded research project conducted at the
University of Amsterdam, aiming to improve the speedup,
programmability, power dissipation, scalability and concur-
rency management of many-core processor architectures [2].
It introduces a new concurrency model called SVP (Self-
adaptive Virtual Processor) [7].
We used the MicroGrid simulator to run our experiments.
The simulator is cycle-accurate, allowing for accurate mea-
suring. It can simulate different architectures with differ-
ent memory models. We ran our experiments only on the
128-core Random Banked Memory architecture (rbm128), of
which we used one place [7] of 64 cores. Each core is clocked
at 1 GHz. due to simulation overhead, we could not run
as many experiments as on the other platforms presented in
this paper.

5.4.1 Implementation
The implementation consists of two parts: the FFT and the
FIR filter. We did not implement the FFT ourselves, but
used the already available benchmarking implementation [8].
However, we modified it to use single precision floating point
instead of double precision, and so it can run many FFTs in
parallel, not just one.
The FIR filter reference implementation is an intentionally
naive implementation, where each station, channel and tap
has its own microthread. Ideally, this would be both the
most efficient and easiest to program implementation, ex-
ploiting Microgrid’s features as much as possible. The pro-
gram creates a family of Nstation station threads which each
run on a different core, each of which create a family Nchannels

channel threads on the same core (to avoid the cache co-
herency protocol between cores), each of which in turn create
a family of Ntaps threads to compute the FIR outputs. Thus
there are a total of Nstations × Nchannels × Ntaps threads.
The tap threads compute the output of both polarizations
of the FIR filter at the same time (as in the CPU implemen-
tation), using shared parameters to sum the results. The
station and channel threads do not need to communicate
and only have global parameters.
The optimized implementation is similar, except that the
tap threads are replaced by an unrolled loop inside the chan-
nel thread. This is very similar to our CPU implementation.
Our experiments suggest that the Microgrid architecture is
more efficient when using a high number of stations and
taps, and a comparatively low number of channels. That
means LOFAR scenario 1024 channels x 4 taps is the worst
case scenario, and scenario 64 channels x 64 taps is the best
case scenario. Microgrid benefits more from increasing the
number of stations than the other platforms. This is the
opposite of the GPU platforms.

5.4.2 Maximum performance
Unfortunately, we cannot calculate the maximum perfor-
mance, because we do not know the memory bandwidth of
the Random Banked Memory architecture. Moreover, Mi-
crogrid development has mostly switched to COMA (Cache-
Only Memory Architecture), but we were unable to run our
application on the COMA architecture due to bugs in the
simulator. However, our results show that the FIR filter on
Microgrid achieves 45 GFLOP/s in the best case (64 sta-
tions x 64 taps), which is 70% of the peak performance on

1024 x 4 512 x 8 256 x 16 128 x 32 64 x 64
Channels x Taps

0

100

200

300

400

500

600

700

G
FL
O
P
/s

LOFAR Scenarios 16 stations x 16-bit samples GFLOP/s (excl. I/O)

Platforms

PPF GTX580

FIR GTX580

PPF HD5870

FIR HD5870

PPF HD5870 V

FIR HD5870 V

(a)

1024 x 4 512 x 8 256 x 16 128 x 32 64 x 64
Channels x Taps

0

10

20

30

40

50

G
FL
O
P
/s

FIR LOFAR Scenarios 16 stations x 16-bit samples GFLOP/s (incl. I/O)

Platforms

FIR Core i7

FIR GTX580

FIR HD5870

FIR HD5870 V

FIR MicroGrid

(b)

1024 x 4 512 x 8 256 x 16 128 x 32 64 x 64
Channels x Taps

0

10

20

30

40

50

G
FL
O
P
/s

PPF LOFAR Scenarios 16 stations x 16-bit samples GFLOP/s (incl. I/O)

Platforms

PPF Core i7

PPF GTX580

PPF HD5870

PPF HD5870 V

PPF MicroGrid

(c)

Figure 2: Performance of LOFAR scenarios: (a) GPUs excl. I/O, (b) FIR incl. I/O, (c) PPF incl. I/O.

Loop Vector- I/O page-
Platform unrolling ization Batching locking
Core i7 ++ +++ n.a. n.a.
GTX580 +++ n.a. +++ +++
HD5870 +++ + ++ +++
MicroGrid ++ n.a. n.a. n.a.

Table 6: Summary of impact of optimizations.

the configuration we have chosen (64 GFLOP/s). The full
polyphase filter achieves 39% of the peak performance. Both
are significantly higher than the other platforms we have in-
vestigated.

6. EXPERIMENTS AND RESULTS
In this section we compare the optimized implementations of
FIR filter and the polyphase filter on the different platforms,
using two criteria: performance of LOFAR scenarios and
energy consumption.
LOFAR scenarios are the configuration of channel and taps
used in practice by LOFAR. In these scenarios, when the
number of channels doubles, the number of taps halves, and
vice versa. This keeps the total FLOPs constant. The per-
formance results are shown in Figure 2. Table 6 summarizes
the impact of the optimizations we have applied.
To evaluate the energy consumption, we measured the en-
ergy consumption of the whole (desktop) computer using a
Voltcraft Energy Check 3000. The results are presented in
Table 5. We measured the minimum and maximum energy
consumption of all LOFAR scenarios, but for readability we
only show the average energy consumption of the 256x16
scenario. All measurements were taken with 16-bit sam-
ples. Finally, we show the amount of GFLOPs per Watt
(GFLOPs/W) to gain insight into the actual energy effi-
ciency. We have no measurements of the Microgrid archi-
tecture, as there is no hardware for it yet.
We observe that the CUDA implementation on the GTX580
gives the best performance in almost all cases. Note that the
LOFAR scenarios do not achieve the highest possible perfor-
mance. The highest performance we measured is 619 (FIR)
or 576 (PPF) GFLOP/s with 64 stations x 1024 channels
x 16 taps x 16-bit samples, excluding I/O transfers. Over-
all I/O has a huge impact on performance, reducing it by

as much as 90%. The energy measurements show that the
GTX580 is both the most energy efficient and power hun-
gry device. Compared to the GTX480 it is not as energy
efficient, but does achieve approximately 20% higher perfor-
mance. Interestingly, in LOFAR scenarios where the occu-
pancy is low (see Table 3), the power consumption is also
low, because the device is underutilized.
The HD5870 does not achieve the performance expected
from its hardware specifications. We expected the vector-
ized implementation to perform better, because it makes
better use of the vector registers, but there is little differ-
ence. We believe this is because the ATI OpenCL compiler
does not yet generate good enough code. Another reason
might be that register spilling is more costly as the registers
are 128 bits wide, compared to 32 bits on the GTX480/580.
It consumes less power than the GTX480, but is only one
third as energy efficient.
The Intel Core i7 is in a lower performance class than the
GPUs, but can be used more flexibly because, unlike the
GPU implementations, performance scales linearly with the
number of taps, and there are fewer hardware limitations in
general. It is the second most energy efficient platform.
The MicroGrid implementation excels in the specific case of
64 channels x 64 taps, which is precisely a scenario where
GPUs are not efficient. In other cases it is not so efficient,
but one should keep in mind that the MicroGrid architecture
is still in research so the performance is expected to improve
in later versions of the simulator, and eventually hardware.
Concluding, the CUDA platform for NVIDIA GPUs is at
the moment the most promising many-core platform for the
LOFAR polyphase filter. However, we have observed that
the implementation is highly I/O bound. This is due to the
low bandwidth (8 GB/s) of the PCI Express 2.0 bus. To
make GPUs worthwhile to use, the I/O transfers latencies
must be hidden by performing many operations per byte of
input/output. This can be achieved by computing the entire
LOFAR pipeline on the GPU, keeping the data inside the
GPU in between pipeline stages.

7. CONCLUSIONS
We have discussed and compared the implementation of
an efficient polyphase filter on the Core i7, GTX480/580,
HD5870, and MicroGrid architectures. We have shown that

Idle 256x16 Min - Max GFLOPs/ 256x16 Min - Max GFLOPs/
Platform (W) I/O (W) (W) W No I/O (W) (W) W
FIR Filter
Core i7 920 84 154 150 - 154 0.10 n.a. n.a. n.a.
HD5870 110 186 184 - 188 0.04 219 219 - 229 0.46
HD5870 Vectorized 110 186 184 - 188 0.04 233 233 - 243 0.52
GTX580 CUDA 165 274 269 - 297 0.11 385 275 - 389 1.6
GTX480 CUDA 134 251 251 - 270 0.12 320 265 - 340 1.0
GTX480 OpenCL 134 220 220 - 240 0.13 292 247 - 304 0.96

Polyphase Filter
Core i7 920 84 152 150 - 154 0.09 n.a. n.a. n.a.
HD5870 110 185 181 - 189 0.06 231 231 - 240 0.61
HD5870 Vectorized 110 185 181 - 189 0.06 234 234 - 243 0.64
GTX580 CUDA 165 280 276 - 295 0.16 420 299 - 425 1.20
GTX480 CUDA 134 256 252 - 270 0.19 345 282 - 362 0.99
GTX480 OpenCL 134 231 231 - 242 0.19 322 249 - 322 0.89

Table 5: Energy consumption on CPUs and GPUs. The left side shows the energy consumption with
I/O transfers, and right shows without. Idle: Energy consumption while computer is idle. 256x16: Energy
consumption of 256x16 scenario. Min - Max: Minimum and maximum measured energy consumption between
all scenarios. GFLOPs/W: GFLOPs per Watt defines energy efficiency.

our novel implementation for the NVIDIA CUDA platform
achieves very good performance and is most energy efficient
of all investigated platforms. Moreover, our implementation
is the first ”real-world” application for the MicroGrid archi-
tecture.
Based on our results we conclude that CUDA-enabled GPUs
is the best choice for the LOFAR polyphase filter, achieving
the highest performance and the highest energy efficiency.
As far as we are aware, this is the best performing polyphase
filter implementation on CUDA-enabled GPUs so far.
In the near future, we plan to investigate alternative parallel
FIR algorithms to achieve better performance for configu-
rations in which our implementation is weak. Furthermore,
more efforts should be put into implementing the whole LO-
FAR imaging pipeline on the GPUs, thus reducing the huge
impact (up to 90%!) of the I/O transfers on performance.
In the long term there are many research opportunities in
integrating and testing the full LOFAR pipeline on GPUs.

8. REFERENCES
[1] CUDA Programming Guide.

http://developer.nvidia.com.

[2] MicroGrid website. http://www.science.uva.nl/
research/csa/microgrids.html.

[3] C. Carilli and S. Rawlings. Science with the Square
Kilometer Array: Motivation, Key Science Projects,
Standards and Assumptions. New Astronomy Review,
48:979–984, Sept. 2004.

[4] J. W. Cooley and J. W. Tukey. An algorithm for the
machine calculation of complex Fourier series.
Mathematical Computing, 19, 1965.

[5] M. Frigo and S. G. Johnson. FFTW: an adaptive
software architecture for the FFT. In Acoustics,
Speech and Signal Processing, 1998. Proceedings of the
1998 IEEE International Conference on, volume 3,
pages 1381–1384 vol.3. IEEE, May 1998.

[6] B. K. Hamilton. Implementation and Performance
Evaluation of Polyphase Filter Banks on the Cell
Broadband Engine Architecture. Master’s thesis,
University of Cape Town, October 2007.

[7] C. Jesshope, M. Lankamp, K. Bousias, and L. Guang.
Implementation and evaluation of a microthread

architecture. Journal of Systems Architecture,
55:149–161, 2009.

[8] C. Jesshope, M. Lankamp, and L. Zhang. The
implementation of an SVP many core processor and
the evaluation of its Memory Architecture. ACM
SIGARCH Computer Architecture News, 37, No. 2,
May 2009.

[9] D. Miles. Compute intensity and the FFT. In
Proceedings of the 1993 ACM/IEEE conference on
Supercomputing, Cray Res. Superservers, Inc.,
Beaverton, OR, USA, November 1993. ACM.

[10] C. Neau, K. Muhammad, and K. Roy. Low complexity
FIR filters using factorization of perturbed
coefficients. In Design, Automation and Test in
Europe, 2001. Conference and Exhibition 2001.
Proceedings, pages 268–272. IEEE, 2001.

[11] J. Pettersson and I. Wainwright. Radar Signal
Processing with Graphics Processors (GPUs).
Master’s thesis, Uppsala University, January 2010.

[12] J. G. Proakis and D. G. Manolakis. Digital Signal
Processing. Pearson Prentice Hall, fourth edition,
2007.

[13] M. Püschel, J. M. F. Moura, J. Johnson, D. Padua,
M. Veloso, B. Singer, J. Xiong, F. Franchetti,
A. Gacic, Y. Voronenko, K. Chen, R. W. Johnson, and
N. Rizzolo. SPIRAL: Code generation for DSP
transforms. Proceedings of the IEEE, special issue on
“Program Generation, Optimization, and Adaptation”,
93(2):232– 275, 2005.

[14] A. Smirnov and T. cker Chiueh. An Implementation of
a FIR Filter on a GPU. ECLS, 2005.

[15] R. V. van Nieuwpoort and J. W. Romein. Correlating
Radio Astronomy Signals with Many-Core Hardware.
Accepted for publication in Springer International
Journal of Parallel Programming, 2009. Special Issue
on NY-2009 International Conference on
Supercomputing.

[16] S. Williams, A. Waterman, and D. Patterson.
Roofline: An Insightful Visual Performance Model for
Multicore Architectures. Communications of the
ACM, 52, No. 4, April 2009.

http://developer.nvidia.com
http://www.science.uva.nl/research/csa/microgrids.html
http://www.science.uva.nl/research/csa/microgrids.html

	Introduction
	Related work
	Signal processing background
	Signals
	FIR filter
	Discrete Fourier Transform
	Polyphase filter

	The LOFAR polyphase filter
	Polyphase filter
	Measuring performance
	Floating point operations
	Memory traffic
	Peak performance
	Arithmetic intensity

	Parameters and metrics

	Architectures
	Intel Core i7 920
	Maximum performance

	NVIDIA GTX580 Fermi
	Batch processing
	Occupancy
	I/O transfers

	ATI Radeon HD5870
	Implementation

	MicroGrid
	Implementation
	Maximum performance

	Experiments and results
	Conclusions
	References

