
Cashmere: Heterogeneous Many-Core Computing

Pieter Hijma∗, Ceriel J.H. Jacobs∗, Rob V. van Nieuwpoort† and Henri E. Bal∗
∗ VU University Amsterdam, The Netherlands

Email: {pieter,ceriel,bal}@cs.vu.nl
†Netherlands eScience Center

Email: R.vanNieuwpoort@esciencecenter.nl

Abstract—New generations of many-core hardware become
available frequently and are typically attractive extensions for
data-centers because of power-consumption and performance
benefits. As a result, supercomputers and clusters are becoming
heterogeneous and start to contain a variety of many-core
devices. Obtaining performance from a homogeneous cluster-
computer is already challenging, but achieving it from a
heterogeneous cluster is even more demanding. Related work
primarily focuses on homogeneous many-core clusters.

In this paper we present Cashmere, a programming system
for heterogeneous many-core clusters. Cashmere is a tight
integration of two existing systems: Satin is a programming
system that provides a divide-and-conquer programming model
with automatic load-balancing and latency-hiding, while Many-
Core Levels is a programming system that provides a powerful
methodology to optimize computational kernels for varying
types of many-core hardware. We evaluate our system with
several classes of applications and show that Cashmere achieves
high performance and good scalability. The efficiency of het-
erogeneous executions is comparable to the homogeneous runs
and is >90% in three out of four applications.

Keywords-many-core; heterogeneous; cluster; divide-and-
conquer

I. INTRODUCTION

Many-core devices offer enormous potential in compute-
power and can increase the performance of supercomputer
and data-center applications significantly. Developments in
the many-core field move fast: new generations of many-
core hardware become available frequently and are fitted in
data-centers because of performance and power consumption
benefits. However, older-generation accelerators may still be
powerful for some applications. For instance, in our DAS-4
cluster, we have older-generation Fermi GTX480 GPUs that
for some applications are as fast as the newer generation
Kepler GTX680 GPUs [1].

The result is that supercomputers and data-centers will
more and more contain multiple types of many-core hard-
ware. As an example, our DAS-4 cluster [2] has a wide vari-
ety of many-core hardware, multiple generations of NVIDIA
GPUs, AMD GPUs, and Intel Xeon Phi’s. As another
example, Table I shows several TOP500 supercomputers
(as of November 2014) that contain more than one type of
many-core device [3].

Extracting performance from many-core clusters is dif-
ficult in general, but heterogeneity makes it even more

challenging. There is a variety of problems that need to be
solved to obtain high-performance:

1) Since execution times are likely to vary among many-
core devices, some form of load-balancing is needed.

2) Load-balancing is especially challenging for hetero-
geneous many-core clusters, because it requires com-
munication between nodes. However, because many-
cores are so fast, the network speed is relatively slow
compared to clusters without many-cores, resulting in
a skewed computation/communication ratio.

3) The computational kernels that will run on the many-
core devices have to be identified, written, and opti-
mized for each type of hardware.

4) The run-time system should know the type and number
of available many-core devices in each node and map
the right kernels to the devices.

5) The application needs logic to drive the execution on
these many-core devices.

Related work focuses mostly on extracting high-
performance from homogeneous many-core clusters, an al-
ready difficult task. Often, the overall solution is based on
MPI combined with a programming language for many-
core devices, such as OpenCL [4] or CUDA [5]. However,
because execution times vary among types of many-core
hardware, a solution based on MPI with its rigid communi-
cation patterns is not the ideal solution.

In this paper, we present Cashmere, a programming
system that focuses on obtaining performance from hetero-
geneous many-core clusters. Cashmere is a tight integration
of two existing systems: Satin, a programming system that
provides a divide-and-conquer programming model with
load-balancing and latency-hiding [6] and Many-Core Levels
(MCL) providing a powerful methodology to optimize com-
putational kernels for varying types of many-core hardware
[7]. Satin addresses problems 1) and 2) described above,
MCL addresses problem 3), and Cashmere integrates the
two systems providing solutions for problems 4) and 5)
and extends Satin’s load balancing for multiple many-core
devices per node. We named our system Cashmere because
it offers parallelism in the form of fine-grained threads.

Our contributions are the following:

• We seamlessly integrate coarse-grained divide-and-

Table I
TOP500 SUPERCOMPUTERS WITH HETEROGENOUS MANY-CORE DEVICES.

name institute ranking configuration
Quartetto Kyushu University 49 K20, K20X, Xeon Phi 5110P
Lomonosov Moscow State University 58 2070, PowerXCell 8i
HYDRA Max-Planck-Gesellschaft MPI/IPP 77 K20X, Xeon Phi
SuperMIC Louisiana State University 88 Xeon Phi 7110P, K20X
Palmetto2 Clemson University 89 K20m, M2075, M2070
Armstrong Navy DSRC 103 Xeon Phi 5120D, K40
Loewe-CSC Universitaet Frankfurt 179 HD5870, FirePro S10000
Inspur TS10000 Shanghai Jiaotong University 310 K20m, Xeon Phi 5110P
Tsubame 2.5 Tokyo Institute of Technology 392 K20X, S1070, S2070
El Gato University of Arizona 465 K20, K20X, Xeon Phi 5110P

conquer parallelism with multiple fine-grained many-
core parallelism levels for a variety of many-core
devices with minimal changes to the original Satin
programming model (Sec. II).

• We describe several optimizations that are necessary to
obtain high-performance (Sec. III).

• We demonstrate that our stepwise-refinement for per-
formance methodology enables us to develop large
amounts of optimized many-core kernels. This scalable
development is a prerequisite for achieving the hetero-
geneity that Cashmere targets (Sec. IV and V).

• We evaluate Cashmere with several classes of applica-
tions and show that we can achieve good scalability and
performance despite the skewed communication and
computation ratio (Sec. IV and V). Our heterogeneous
runs are comparable to homogeneous runs and in three
of four applications we achieve >90% efficiency with
optimized kernels.

After an overview of related work (Sec. VI) we present our
conclusions (Sec. VII).

II. CASHMERE PROGRAMMING MODEL

Cashmere is a system for programming high-performance
applications for clusters with many-core accelerators and
forms a tight integration of two existing programming sys-
tems: Satin [6] and MCL [7]. Section II-A gives a brief
overview of Satin and its programming model, Sec. II-B
describes MCL, and Sec. II-C discusses how Satin and MCL
interact and form the Cashmere programming model.

A. Satin

Satin [6] is a programming system that targets grids or
clouds of clusters. It is inspired by Cilk [8] that targets multi-
core processors. Similar to Cilk, Satin has a divide-and-
conquer programming model that allows programmers to
express computation in a hierarchical manner. Satin achieves
very good scalability by mapping this computation to the
hierarchical structure of grids or clouds of clusters.

The key features of Satin that we use are:
• load-balancing Satin uses random work-stealing to

achieve load-balancing.

1 spawnable f (a) {
2 i f (s m a l l _ e n o u g h _ f o r _ l e a f (a)) {
3 re turn d o _ l e a f _ c o m p u t a t i o n (a)
4 }
5
6 r1 = f (make_sma l l e r (a)) / / a s y n c h r o n o u s
7 r2 = f (make_sma l l e r (a)) / / a s y n c h r o n o u s
8 sync
9

10 re turn combine (r1 , r2)
11 }

Figure 1. Skeleton of a Satin program.

• latency hiding Overlap slow communication with com-
putation.

• fault tolerance Satin recovers from nodes that are no
longer responding.

• shared objects Shared objects make the divide-and-
conquer programming model less restrictive by allow-
ing programmers to use a custom consistency model.

Figure 1 shows a basic skeleton of a Satin program in
pseudo-code. Line 1 shows a recursive function f() that is
declared to be spawnable, which means that a function call
will execute asynchronously. Lines 6 and 7 show recursive
calls to f(). The Satin system creates a child job for each
call that will be asynchronously computed on a compute
node that Satin has available. This may be the same node,
another node in the cluster, or a node on another cluster.
The results of the two calls are stored temporarily in r1
and r2 but are not available until the sync statement has
finished. The function blocks on the sync statement until all
previous child jobs have finished. After the sync statement,
the function can return the result based on r1 and r2.

The above mechanism creates (possibly) recursive jobs
that are spread among the compute nodes of clusters. Satin
achieves good scalability since all nodes steal from each
other using random work-stealing. At some point, the jobs
are small enough to perform the actual computation. Lines 2
to 4 show the stop-condition based on an application defined
parameter that decides to perform the leaf computation.
Section II-C will show how we extend this model with MCL.

perfect

mic gpu

nvidia amd

fermi

xeon phi

kepler

accelerator

k20 gtx680titanc2050

hd7970

gtx480

Figure 2. Hierarchy of hardware descriptions.

B. MCL

Many-Core Levels is a programming system that allows
programmers to write computational kernels for many-core
hardware. The programming system is designed such that
programmers can choose their own abstraction-level for their
program to trade-off performance, portability and ease of
programming.

MCL offers abstraction levels by providing a library of
hardware descriptions that are organized in a hierarchy.
Figure 2 shows the hierarchy of hardware descriptions used
for Cashmere. Each child hardware description specifies
more details about the many-core hardware than its parent.
At the root is hardware description perfect that describes
idealized hardware with unlimited compute units and 1 cycle
latency for memory, providing a high level of abstraction.

MCL contains two languages: the hardware description
language HDL allows one to define many-core hardware
and the programming language MCPL is used to express
the computational kernels. The languages are designed such
that the compiler and programmers understand how the com-
putation is mapped to the hardware. The compiler leverages
this knowledge to give performance feedback.

As such, the system supports a methodology that we
call “stepwise-refinement for performance”: Programmers
choose an initial hardware description, receive feedback
from the compiler, and modify the program manually until
there is no feedback left. Subsequently, the compiler can
translate the program automatically to a lower-level hard-
ware description. The optimization process starts again, but
on this level the compiler can give more detailed feedback
because it has more hardware knowledge.

Figure 3 shows a matrix multiplication kernel written in
MCPL for hardware description perfect. MCPL is a C-like
language with multi-dimensional arrays that keep track of
their sizes. The keyword perfect on line 1 indicates that the
kernel is written for hardware description perfect. The two
foreach statements on lines 4 and 5 express parallelism of n
and m threads. The keyword threads refers to an identifier
defined in the hardware description and gives the compiler
information on how the expressed parallelism is mapped to
the hardware.

1 p e r f e c t void matmul (i n t n , i n t m, i n t p
2 f l o a t [n ,m] c ,
3 f l o a t [n , p] a , f l o a t [p ,m] b) {
4 foreach (i n t i in n t h r e a d s) {
5 foreach (i n t j in m t h r e a d s) {
6 f l o a t sum = 0 . 0 ;
7 f o r (i n t k = 0 ; k < p ; k ++) {
8 sum += a [i , k] ∗ b [k , j] ;
9 }

10 c [i , j] += sum ;
11 } } }

Figure 3. Matrix multiplication written in MCPL.

C. Cashmere programming model

Cashmere is targeted at leveraging the fine-grained par-
allelism that many-core hardware offers on a large scale,
typically clusters with compute nodes that contain a variety
of many-core hardware such as GPUs or Intel’s Xeon Phi.

Adding many-cores to the original Satin programming
model provides additional levels of parallelism:

1) parallelism on a many-core device A many-core
device itself exposes many levels of parallelism:
instruction-level parallelism, task parallelism, and
SIMD parallelism.

2) multiple many-core devices per node A compute node
in a cluster can contain multiple (heterogeneous)
many-core devices.

3) overlap in communication and computation Typically,
many-cores are connected through a PCI Express
bus. Many-core devices can overlap communication
between host and device with computation.

Cashmere aims to exploit these levels of parallelism with
minimal changes to the original Satin programming model
and leveraging MCL for writing the computational kernels.

1) parallelism on a many-core device: Expressing the
parallelism on the device is completely handled by MCL.
Programmers write a kernel in MCL’s programming lan-
guage MCPL targeting a hardware description from the
library. The MCL compiler will generate code for each of
the leaf hardware descriptions and glue-code for Cashmere.
This results in a minimal and convenient way to call MCL
code from within Cashmere while maintaining Satin’s fault-
tolerance. Figure 4 shows a possible leaf computation. In
this figure, the MCL kernel needs parameters a and b (lines
1 and 5). On line 3 in the try/catch clause, we retrieve the
MCL kernel from Cashmere. From the kernel we create a
launch kl on line 4 that we launch with the MCL front-end
with parameters a and b. The MCL front-end makes sure
that all necessary data is copied to the many-core device,
it selects the appropriate kernel(s) for the devices available
on the node, executes the kernel, and copies the data back.
In case something goes wrong with the kernel execution,
the system raises an exception which will then start the leaf
computation on the CPU (line 7).

Figure 4 shows the basic scheme, but more advanced
schemes are possible:

1 l e a f (a , b)
2 t r y {
3 Ke rn e l k e r n e l = Cashmere . g e t K e r n e l ()
4 Kerne lLaunch k l = k e r n e l . c r e a t e L a u n c h ()
5 MCL. l a u n c h (kl , a , b)
6 ca tch (e x c e p t i o n) {
7 leafCPU (a , b)
8 } }

Figure 4. Calling an MCL kernel in Cashmere.

• multiple kernels The above scheme works for an
application with only one kernel. Cashmere will auto-
matically find this kernel and load it. If there are more
kernels, the Cashmere.getKernel() function should
have a string parameter that identifies the kernel to be
loaded.

• multiple kernel-launches It is possible to launch the
kernel multiple times in succession. For example, it is
possible to put a loop around lines 4 and 5.

• device copies If there are multiple kernel launches,
it may be unnecessary to transfer all the parameters
to the many-core device each time. Cashmere offers
the functions Kernel.getDevice() and Device.copy()
to copy data to and from the many-core device for
multiple kernel launches.

2) multiple many-core devices per node: If there are
multiple many-core devices on a node, the standard Satin
programming model and calling MCL as explained in the
above paragraph will not lead to parallel execution of MCL
kernels on both devices, because a call to MCL.launch()
is blocking. We solved this problem with a minimal change
to the divide-and-conquer programming model. Since the
spawnable functions already express parallelism, we reuse
this to express parallelism for the many-core devices. Figure
5 shows a skeleton of a typical Cashmere program. Com-
pared to the Satin skeleton in Fig. 1, lines 5 to 7 have been
added. If on line 5 the job is small enough, then the function
Cashmere.enableManyCore() disables generating jobs for
the compute nodes in the cluster. Instead, it continues
to create jobs using the same mechanism of spawnable
functions and sync, only now for the many-core devices on a
node. If in turn the jobs generated for the many-core devices
are small enough to execute the leaf computation, governed
by the stop-condition on line 2, then the leaf computation
running the MCL kernels will be started. In conclusion, by
adding one library function, the divide-and-conquer model
of Cashmere expresses parallelism among nodes and among
many-core devices on a node.

3) overlap in communication and computation: The
above mechanism also overlaps computation and commu-
nication to the many-core device over the PCI Express bus.
If a node has multiple jobs available, Cashmere can launch
kernels for one job and copy data for another. Cashmere
automatically manages the available memory on a device.

In summary, the Cashmere programming model is similar

1 spawnable f (a) {
2 i f (s m a l l _ e n o u g h _ f o r _ l e a f (a)) {
3 re turn d o _ l e a f _ c o m p u t a t i o n (a)
4 }
5 e l s e i f (sma l l _enou gh_ fo r_man y_co re (a)) {
6 Cashmere . enableManyCore ()
7 }
8
9 r1 = f (make_sma l l e r (a)) / / a s y n c h r o n o u s

10 r2 = f (make_sma l l e r (a)) / / a s y n c h r o n o u s
11 sync
12
13 re turn combine (r1 , r2)
14 }

Figure 5. Skeleton of a Cashmere program.

to the original Satin programming model. It is extended with
a library call to express parallelism between many-core jobs
and it provides a simple front-end to call MCL kernels. MCL
is used to write the kernel code and is extended to generate
glue code for Cashmere.

III. IMPLEMENTATION

This section describes the Cashmere implementation. Sec-
tion III-A explains the role of MCL in Cashmere while
Sec. III-B describes how the MCL kernels fit in the divide-
and-conquer system.

A. MCL

To write kernels for multiple many-core devices, Cash-
mere makes use of several capabilities of MCL:

translation between abstraction-levels: Hardware de-
scriptions consist of definitions for the physical device and
for the programming abstractions that define how code is
mapped to the physical device. For example, in Fig. 3 the
keyword threads on lines 4 and 5 refers to a programming
abstraction defined in the hardware description that tells how
the threads are mapped to the compute units. MCL can
automatically translate kernels written for the programming
abstractions of hardware description x to the programming
abstractions of a child level y. Since each lower-level
hardware description contains more detailed information,
the mapping between programming abstraction and physical
device becomes more precise. During this translation process
the compiler does not apply optimizations.

generating OpenCL code: For each leaf node in the
hierarchy, there is a configuration file that tells the com-
piler how the programming abstractions from the hardware
description map onto the OpenCL constructs. This means,
together with translation between abstraction levels, that
MCL can generate code from each abstraction level.

Generating Cashmere code: Applying the stepwise-
refinement methodology leads to multiple files with different
versions of the same kernel. For instance, given a kernel
written on level perfect, suppose programmers know the
AMD HD7970 GPU well and choose to apply optimizations
on level gpu, amd, and hd7970. This leads to four different

files: a file with a kernel on level perfect and files on levels
gpu, amd, and hd7970. The programmers can select these
files and generate Cashmere code for these devices.

MCL will generate OpenCL code for each of the seven
leaf nodes in Fig. 2 and automatically chooses the most
specific kernel version for a device. This means that in
the above situation, the Xeon Phi has a kernel on level
perfect, all NVIDIA GPUs have kernels on level gpu and
the HD7970 GPU has a kernel on level hd7970.

Together with the OpenCL code, MCL automatically
generates glue code that calls the kernels with the right
configuration for OpenCL’s work-groups and work-items
(parameters that determine the available parallelism) for
inclusion in the divide-and-conquer framework of Cashmere.

This is important because the different devices have differ-
ent granularity needs. For example, the Xeon Phi needs more
coarse-grained parallelism than a GPU. MCL determines the
work-group and work-item configuration based on the kernel
parameters and its hardware-descriptions.

B. Cashmere

This section explains how Cashmere runs an application.
On initialization: In the initialization phase of an

application, Cashmere assigns one node to be the master; the
others become slaves. The kernels for the many-core devices
may depend on run-time information that only the master
node has. Therefore, the master broadcasts this run-time
information to each slave. On each node, Cashmere retrieves
which devices are available and after receiving the run-
time information, compiles the most specific kernels for its
compute devices. If there is a device on a compute node that
is not available in the hierarchy of hardware descriptions,
Cashmere suggests to add a hardware description for this
device, so that it can compile a kernel for this device.

spawning jobs to other nodes: If the application en-
counters a spawnable function, Cashmere generates jobs
that can be stolen by other nodes. The master is the first
that generates jobs that other nodes can steal. As soon as
a node has jobs, each node in the cluster can randomly
steal from other nodes which contributes to scalability and
load-balancing. Stealing a job encompasses transferring the
input data to the requesting node, execution of the job on
the requesting node (possibly generating new jobs that can
be stolen) and transferring back the output data. This all
happens automatically.

spawning jobs to the many-core devices: If the appli-
cation encounters Cashmere.enableManyCore() Cashmere
switches to a new mode. On encounter of a spawnable
function, Cashmere no longer generates jobs that other
compute nodes can steal, but instead it creates a thread
that executes the spawnable function. The main thread
will continue executing, possibly creating new threads for
spawnable functions and will block on the sync statement
until all threads have finished.

These threads can either generate more threads or en-
counter a call to an MCL kernel. In the last case, the
input data for the kernel is scheduled to be copied to
the device, the kernel is scheduled to run after the copies
have completed, and the data transfer back to the device
is scheduled to be run after the kernel execution. Because
multiple threads are scheduling transfers and kernels, the
data transfers can be completely overlapped with kernel
executions except for the first and last data transfers.

Cashmere automatically load-balances the jobs scheduled
to run on the many-core devices of a compute node. Initially,
Cashmere uses a heuristic based on a static table of relative
many-core device speeds to schedule the first jobs. For
example, the table states that a K20 GPU has speed 40 and
a GTX480 speed 20. When these jobs have completed, we
know the execution time for each kernel for a specific device.
Based on this time Cashmere submits the jobs to the different
queues for each device trying to minimize the overall execu-
tion time for all jobs. For example, if the queue for a K20 has
3 jobs with an execution time of 100ms and the queue for the
GTX480 has a queue with one job of 125ms, then Cashmere
submits the job to the GTX480 queue because the execution
time of this scenario is less: min(scenario1, scenario2)
where scenario1 = max(4 ∗ 100ms, 1 ∗ 125ms) and
scenario2 = max(3 ∗ 100ms, 2 ∗ 125ms). This is possi-
ble because leaf jobs in a divide-and-conquer application
typically have the same size.

IV. METHODOLOGY

In this section we describe our methodology to show
that Cashmere obtains high performance on heterogeneous
many-core clusters. Our test-bed is the main DAS-4 cluster
[2], consisting of 74 dual Xeon E-5620 quad-core nodes that
communicate with a QDR Infiniband interconnect. We eval-
uated Cashmere with the seven many-core devices available
on this cluster:

• 22 NVIDIA GTX480 GPUs
• 8 NVIDIA K20 GPUs
• 2 Intel Xeon Phi (each fitted in a K20 node)
• 2 NVIDIA C2050 GPUs
• 1 NVIDIA Titan GPU
• 1 NVIDIA GTX680 GPU
• 1 AMD HD7970 GPU
We use 4 applications to evaluate Cashmere. Each appli-

cation has its own characteristics and represents a class of
applications. Table II shows an overview of how we classify
each application to evaluate Cashmere.

Raytracer: This application is based on smallpt [9],
and its GPU port SmallptGPU [10]. It is a path tracing
raytracer that leads to very realistic images given that each
pixel is computed with many random samples from each
object in the scene. This is an interesting application for
Cashmere because of two reasons: First, the application
is highly compute intensive. The amount of data that is

Table II
THE CLASSES OF APPLICATIONS THAT WE USE TO EVALUATE

CASHMERE.

application type computation communication
raytracer irregular heavy light
matmul regular heavy heavy
k-means iterative moderate light
n-body iterative heavy moderate

processed is O(no) where n is the number of pixels and
o the number of objects in a scene. The computation is
O(nods) where d is the depth (the number of times a ray is
bounced off an object) and s is the number of random sam-
ples. The number of samples determines the quality of the
picture. Raytracer is also interesting because, although the
application is compute-intensive, the application is highly
irregular because of the random samples. The application has
much control-flow based on randomness, making it difficult
to optimize. Raytracer represents the class of highly parallel
and compute-intensive irregular applications.

Matrix Multiplication: Matrix multiplication multiplies
two dense matrices of single-precision floating-point num-
bers. For multiplying two n×n square matrices, the amount
of data that is processed in 3n2. The amount of computation
is about 2n3, which means that we have a factor n more
computation than communication.

This application is interesting for evaluating Cashmere
because although it is a compute-intensive application, the
application is highly regular, making it relatively easy to
optimize. However, this then results in relatively high com-
munication costs making this application difficult to scale.
This application represents the class of regular, compute-
and communication-intensive applications.

K-means: K-means clusters a set of n d-dimensional
data-points in k clusters. Given an initial set of d-
dimensional centroids that represent the k clusters, k-means
assigns the n data-points based on the distance to the
centroid of the cluster. Based on the set of data-points
belonging to one of the centroids, a new value for the
centroid is computed. This process is repeated until there
are no changes.

This application is interesting for evaluating Cashmere
because it is an iterative algorithm that needs to update
k values after each iteration and distribute these back to
the compute nodes. A single iteration is compute-intensive
and spawns the jobs over the nodes. For one iteration,
communication is O(k) and computation is O(kn+ k).

This application represents the class of iterative applica-
tions with minimal (constant) communication between the
iterations.

N-body simulation: This application simulates the
forces between n bodies over time. As K-means, it is
an iterative application but has a different complexity for
computation and communication. Each iteration, the effect

of each body on each other body has to be computed,
which makes the computation O(n2). After each iteration,
the positions and accelerations have to be updated for each
body, making the communication O(n).

N-body represents the class of iterative applications with
intensive communication and is interesting for evaluating
Cashmere because of its communication pattern (all-to-all
for each compute node).

We use MCL to write kernels for each application. First,
we write a kernel on level perfect and generate code for each
of the 7 leaf hardware descriptions in Fig. 2. This is a kernel
written on a high level and we consider this the unoptimized
kernel. For each application we also optimize for each
device. We consider this the optimized version. In [7] we
compared the performance of MCL applications against that
of hand-optimized applications from the literature, showing
that MCL performance overall is in line with other published
results.

We then perform the following scalability studies on one
type of hardware:

• Satin These measurements show the original perfor-
mance of Satin and how well it scales. The results
from these measurements help to put in perspective the
performance that we obtain with many-core hardware
and the scalability that we achieve.

• Cashmere with non-optimized kernels These mea-
surements show the scalability and performance differ-
ence between Satin and Cashmere with minimal effort
because the kernels are written on a high level.

• Cashmere with optimized kernels These measure-
ments show the performance of Cashmere when the
computational time is reduced several factors.

Finally, we evaluate heterogeneous runs using various
types of hardware and compute the efficiency by divid-
ing the measured performance by the maximum attainable
performance. We determine this by summing the measured
performance for one node for each node in the configuration.
We compare the efficiency to the efficiency of the homoge-
neous execution. We use the optimized kernels to evaluate
the heterogeneous runs. For each study we are strong scaling
the problem.

V. EVALUATION

The following subsection discusses the kernel perfor-
mance differences between the optimized and non-optimized
versions. Section V-B shows the scalability studies and the
absolute performance difference between the applications.
Finally, Sec. V-C presents our findings on heterogeneous
runs.

A. Kernel performance

This section shows the effect of the “stepwise-refinement
for performance” methodology applied to the computational
kernels. Since the hardware descriptions are organized in

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

titan
hd7970

gtx480

c2050

xeon_phi

k20
gtx680

titan
hd7970

gtx480

c2050

xeon_phi

k20
gtx680

titan
hd7970

gtx480

c2050

xeon_phi

k20
gtx680

titan
hd7970

gtx480

c2050

xeon_phi

k20
gtx680

P
e
rf

o
rm

a
n
ce

 i
n
 G

FL
O

P
S

non-optimized
optimized

n-bodyk-meansmmultraytracer

Figure 6. The performance of the kernels for the applications for the
unoptimized version and the optimized version.

a hierarchy, optimizing the kernels becomes scalable. For
example, optimizations that have been applied on level
gpu are used for both NVIDIA and AMD GPUs, so these
optimizations are used for four different devices.

Fig. 6 shows the kernel performance. The performance
numbers are based on the timings of kernel execution alone
without any overhead such as copying data to the device. It
is clear that optimizing has a drastic effect on the kernel
performance for most devices except for Raytracer. This
can be explained by the irregularity of the kernel. Raytracer
has much control-flow overhead and since the control-flow
is based on randomness, threads often diverge, which has
severe performance penalties. To obtain better performance
from the raytracer would mean a different algorithm, some-
thing MCL cannot suggest. Raytracing is known to be
challenging on many-cores and Xiang et al. discuss hardware
solutions for this kind of kernels [11].

B. Scalability

This section evaluates whether Cashmere is able to obtain
similar scalability results as Satin, which is our aim. We
also compare the absolute performance difference between
Satin and Cashmere. To our surprise, Satin scales worse
than Cashmere in most of the cases. We found that there
are two factors that contribute to this reduced scalability.
Firstly, Satin has more overhead in job creation because it
needs to create 8 times more jobs to keep one node busy.
This can be explained by the difference in programming
models: In the Satin programming model, a leaf computation
is single-threaded, whereas one node has two quad-core
processors, which means that to keep one node busy, Satin
has to run 8 jobs in parallel. In contrast, a leaf computation
in Cashmere already exposes parallelism for the many-core
device. Hence, Cashmere does not have to create as many
jobs as Satin. The second factor that contributes to worse
scaling is that since all cores on the CPUs are fully occupied
with computation, communication and load-balancing tasks

Table III
PERFORMANCE OF THE HETEROGENEOUS EXECUTIONS.

application performance (GFLOPS) configuration
raytracer 1883 10 gtx480, 2 c2050,

1 gtx680, 1 titan, 1 hd7970
matmul 3927 10 gtx480, 2 c2050,

1 gtx680, 1 titan, 1 hd7970
k-means 10644 10 gtx480, 2 c2050,

1 gtx680, 1 titan, 1 hd7970,
7 k20, 1 xeon_phi

n-body 13517 10 gtx480, 2 c2050,
1 gtx680, 1 titan, 1 hd7970,
7 k20, 2 xeon_phi

suffer from the lack of available compute-power.
1) Raytracer: Figure 7 shows that Raytracer scales better

with Cashmere than with Satin. This is a good achievement
as the absolute performance of Cashmere is an order of
magnitude higher as shown in Fig. 8. Since the optimized
and non-optimized kernels are similar in performance, the
two Cashmere versions overlap. We performed our measure-
ments on the Cornell scene [9], [10] with a resolution of
16384× 8192 with 500 random samples.

2) Matrix Multiplication: Figure 9 shows the perfor-
mance results of multiplying 2 32768 × 32768 single-
precision floating point matrices. We can see that Matrix
Multiplication does not scale very well, also for Satin.
The graph makes clear that the scalability suffers from
the relatively slower networking speed when the kernel is
optimized. However, Fig. 10 shows that there is still a factor
four absolute performance difference between optimized and
non-optimized versions.

3) K-means: Figure 11 shows that K-means scales well,
even for the optimized version and better than Satin. Figure
12 shows the absolute performance of the three versions.
We computed 4096 clusters out of 268 million points with
4 features in three iterations.

4) N-body: Figure 13 and 14 show that N-body has
similar results as K-means despite higher communication
costs. We simulated two iterations of 2 million bodies.

C. Heterogeneity

In Table III we show the performance of the four applica-
tions with 2 configurations dependent on the availability of
nodes on the cluster. For the K-means and N-body experi-
ments all 7 types of hardware were available simultaneously.
We used the optimized kernels for our measurements. Fig. 15
shows the efficiency of the applications compared to the
combined performance of one-node execution for each type
hardware (i.e., the sum of 10× #GFLOPS of a one-node
execution on the GTX480, 2× #GFLOPS of the one-node
execution on the C2050, etc.). We compared this to the
efficiency of the homogeneous executions for 16 GTX480
nodes from Sec. V-B. We conclude that the efficiency for
heterogeneous runs is similar to the homogeneous runs.

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 2 4 8 16

sp
e
e
d

u
p

nodes

Ideal
Satin

Cashmere unoptimized
Cashmere optimized

Figure 7. Scalability of Raytracer up to 16 GTX480 GPUs.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

1 2 4 8 16

G
FL

O
P
S

nodes

Satin
Cashmere unoptimized

Cashmere optimized

Figure 8. Absolute performance of Raytracer up to 16 GTX480 GPUs.

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 2 4 8 16

sp
e
e
d

u
p

nodes

Ideal
Satin

Cashmere unoptimized
Cashmere optimized

Figure 9. Scalability of Matrix Multiplication up to 16 GTX480 GPUs.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

1 2 4 8 16

G
FL

O
P
S

nodes

Satin
Cashmere unoptimized

Cashmere optimized

Figure 10. Absolute performance of Matrix Multiplication up to 16
GTX480 GPUs.

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 2 4 8 16

sp
e
e
d

u
p

nodes

Ideal
Satin

Cashmere unoptimized
Cashmere optimized

Figure 11. Scalability of K-means up to 16 GTX480 GPUs.

 0

 1000

 2000

 3000

 4000

 5000

 6000

1 2 4 8 16

G
FL

O
P
S

nodes

Satin
Cashmere unoptimized

Cashmere optimized

Figure 12. Absolute performance of K-means up to 16 GTX480 GPUs.

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 2 4 8 16

sp
e
e
d

u
p

nodes

Ideal
Satin

Cashmere unoptimized
Cashmere optimized

Figure 13. Scalability of N-body up to 16 GTX480 GPUs.

 0

 1000

 2000

 3000

 4000

 5000

 6000

1 2 4 8 16

G
FL

O
P
S

nodes

Satin
Cashmere unoptimized

Cashmere optimized

Figure 14. Absolute performance of N-body up to 16 GTX480 GPUs.

 0

 20

 40

 60

 80

 100

raytracer mmult k-means n-body

efficiency homogeneous (%)
efficiency heterogeneous (%)

Figure 15. Efficiency of heterogeneous executions.

These results are especially impressive considering that in
Matrix Multiplication the performance between the kernel
versions varies widely (Fig. 6), thus showing that Cashmere
prevents load-imbalance very well. The results for K-means
and N-body are noteworthy as well because the efficiency is
about the same as the homogeneous execution while using
one third more nodes, achieving twice the performance with
the heterogeneous runs, and after each iteration communi-
cation between all nodes is necessary.

Finally, to gain insight in these excellent results, we show
a Gantt chart of the K-means run. Since there is so much
parallelism, it is difficult to show all details. We therefore
show a zoomed-in version of the Gantt chart (Fig. 16) where
we can see two nodes, one with a GTX480 GPU and one
with a Xeon Phi and a K20 GPU. The y-axis shows different
queues denoted with ‘qn’. Each queue contains activities
that can be overlapped with activities in other queues. The
narrow bars are for CPU tasks, sending data from and to
the device and to other nodes. The wider bars in q4 are
kernel executions. The chart shows parallel execution of a
Xeon Phi kernel, overlapped with (faster) K20 kernels and
GTX480 kernels on node 3.

Figure 16 also shows our load balancing algorithm at
work explained in Sec. III-B. Node 16 executes sets of 8
jobs and after each set synchronization is required. Our load
balancing algorithm schedules 1 job on the Xeon Phi and 7
on the K20 which is the fastest configuration. Since the Xeon
Phi is about 4 times slower than the K20 (see Fig. 6), one
job more on the Xeon Phi would lead to a longer overall
execution time and not scheduling a job on the Xeon Phi
would also be longer.

Figure 17 shows the zoomed-out version of the Gantt chart
in which we left out all activities except kernel executions.
It shows that this kind of execution can be maintained each
iteration, thus showing Cashmere’s effectiveness.

VI. RELATED WORK

In this section we focus on programming systems that –
similar to Cashmere – aim to simplify many-core computing

node 3 gtx480 q5

node 3 gtx480 q4

node 3 gtx480 q3

node 3 cpu q2

node 3 cpu q1

node 16 xeon_phi q5

node 16 k20 q5

node 16 xeon_phi q4

node 16 k20 q4

node 16 xeon_phi q3

node 16 k20 q3

 1200 1250 1300 1350 1400 1450 1500 1550 1600 1650 1700 1750

time (ms)

receive input
send output

CPU part
writeBuffer

execute
readBuffer
send input

receive output
overall

Figure 16. Zoomed-in view of the Gantt chart of heterogeneous K-means
execution.

node 0 hd7970 q5
node 5 c2050 q4

node 1 titan q4
node 7 gtx680 q4

node 13 gtx480 q4
node 6 c2050 q4

node 9 k20 q4
node 20 gtx480 q4

node 12 k20 q4
node 21 gtx480 q4

node 10 k20 q4
node 4 gtx480 q4

node 14 k20 q4
node 8 gtx480 q4

node 15 k20 q4
node 11 gtx480 q4

node 17 k20 q4
node 3 gtx480 q4

node 16 xeon_phi q4
node 16 k20 q4

node 18 gtx480 q4
node 19 gtx480 q4

node 2 gtx480 q4

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

time (ms)

execute

Figure 17. Gantt chart of heterogeneous K-means execution.

on clusters and supercomputers.
MapReduce is a framework that allows programmers to

express computations in terms of map and reduce functions
[12]. Several frameworks target many-core clusters. GPMR
is a Map-Reduce framework for GPU clusters [13]. It fully
relies on CUDA which makes the framework not hetero-
geneous. Their scalability study does not take into account
copying data back and forth between compute-nodes which
is essential in practice.

HadoopCL [14] extends Hadoop [15] with OpenCL to
make the computational power of many-cores available to
Hadoop jobs. It uses APARAPI [16] to translate limited Java
code to OpenCL. Cashmere offers similar functionality in
a library to make use of MCL. HadoopCL performance is
only compared to original Hadoop and obtains a speedup
of 5 on 10 nodes with GPUs against 2 nodes of Hadoop
without GPUs on the K-means application. Cashmere is an
order of magnitude faster when compared to original Satin
(a speedup of 186 on 8 GPU nodes compared to 2 Satin
nodes).

Glasswing [17] is a MapReduce framework fully written
in OpenCL and C++ and has a significant performance

benefit over the previous two frameworks. Glasswing is
set up on top of the Hadoop filesystem and gains perfor-
mance by overlapping computation with I/O in several deep
pipelines. Glasswing supports multiple architectures but was
not evaluated with multiple different architectures at the
same time. Glasswing also performs a 32k × 32k Matrix
Multiplication on the DAS-4 and obtains a performance of
2082 GFLOPS on 16 GTX480 GPUs while we obtain 3716
GFLOPS with the optimized version. However, Glasswing
supports out-of-core data which Cashmere does not support
yet.

OmpSs [18] combines OpenMP pragmas with StarSs
[19] pragmas to program clusters of GPUs. It offers a
sequential programming model in which programmers can
annotate parallel regions with directives to indicate the data-
dependencies with in, out, and inout statements between
tasks and on what kind of device a task should run.

Planas et al. [20] extended the system with an adaptive
scheduler that can choose multiple versions of compute-
kernels and learns to choose the better performing version.
In contrast to our system, the various versions are not
organized in a hierarchy and our system does not have to
learn which version to choose, but automatically chooses the
most specific version for the many-core device.

Bueno et al. report slightly higher performance on 8
GTX480 nodes for Matrix Multiplication (just above 3
TFLOPS compared 2.8 TFLOPS for the optimized kernel
for Cashmere). However, they use a CUBLAS kernel that
has higher initial performance than our optimized kernel.

StarPU [21] provides an execution model based on tasks.
Programmers implement tasks in the native many-core pro-
gramming system, for example CUDA or a BLAS routine
and they annotate them with the tasks on which they depend.
The run-time system handles data-dependencies, scheduling
of tasks, and load balancing. Experiments in [21] have
been performed on much older GPUs making a comparison
difficult.

SkePU [22] is built on top of StarPU and provides a
skeleton framework that allows programmers to express a
program in terms of frequently used patterns that are en-
coded in generic constructs. The program remains sequential
while the implementation of the patterns is parallel. Since the
paper only reports relative speedups, comparing performance
is difficult. However, SkePU does not appear to scale as well
as Cashmere: for the best configuration of N-body, SkePU
obtains a speedup of about 2.6 on 3 GPU nodes.

PaRSEC [23], [24] is a framework with a task-based
run-time to overcome the problem that MPI does not scale
well for more dynamic applications. Programmers have to
manually annotate data-flow dependencies between tasks
with their granularity and PaRSEC does not have an in-
tegrated solution for programming kernels as Cashmere has.
However, PaRSEC provides a more general programming
model than divide-and-conquer. PaRSEC only has a CUDA

back-end and was not evaluated with heterogeneous many-
core devices.

VII. CONCLUSION

Heterogeneity is becoming the norm in clusters and data-
centers as a result of performance and power-consumption
benefits of new generations of many-core hardware. This
poses several challenges for the already demanding task of
programming many-core clusters. Our solution, Cashmere,
seamlessly integrates many levels of parallelism. It includes
a framework to write and optimize kernels for different
many-core devices in which common optimizations can be
shared thanks to the support for multiple abstraction levels.
Our approach delivers high performance and automatic load
balancing even when the many-core devices differ widely.
Cashmere achieves high efficiency (>90% in three out of
four applications) in heterogeneous executions.

REFERENCES

[1] B. van Werkhoven, J. Maassen, H. E. Bal, and F. J. Seinstra,
“Optimizing convolution operations on GPUs using adaptive
tiling,” Fut. Gen. Comp. Systems, vol. 30, pp. 14 – 26, 2014.

[2] DAS-4: Distributed ASCI Supercomputer 4. [Online].
Available: http://www.cs.vu.nl/das4

[3] (2015, Jan) TOP500 Supercomputer Sites. [Online].
Available: http://www.top500.org

[4] J. Stone, D. Gohara, and G. Shi, “OpenCL: A Parallel Pro-
gramming Standard for Heterogeneous Computing Systems,”
Comp. in Science & Eng., vol. 12, no. 3, pp. 66–73, 2010.

[5] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable
Parallel Programming with CUDA,” Queue, vol. 6, no. 2, pp.
40–53, 2008.

[6] R. V. van Nieuwpoort, G. Wrzesińska, C. J. H. Jacobs,
and H. E. Bal, “Satin: A High-Level and Efficient Grid
Programming Model,” ACM Trans. Program. Lang. Syst.,
vol. 32, no. 3, pp. 1–39, 2010.

[7] P. Hijma, R. V. van Nieuwpoort, C. J. Jacobs, and H. E. Bal,
“Stepwise-refinement for performance: a methodology for
many-core programming,” Concurrency and Computation:
Practice and Experience, pp. n/a–n/a, 2015. [Online].
Available: http://dx.doi.org/10.1002/cpe.3416

[8] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson,
K. H. Randall, and Y. Zhou, “Cilk: An Efficient Multithreaded
Runtime System,” SIGPLAN Not., vol. 30, no. 8, pp. 207–216,
1995.

[9] K. Beason. (2008) smallpt: Global illumination in 99 lines
of c++. [Online]. Available: http://www.kevinbeason.com/
smallpt

[10] D. Bucciarelli. (2009) Smallptgpu. [Online]. Available:
http://davibu.interfree.it/opencl/smallptgpu/smallptGPU.html

[11] P. Xiang, Y. Yang, and H. Zhou, “Warp-Level Divergence
in GPUs: Characterization, Impact, and Mitigation,” in Int.
Symp. on High Perf. Comp. Arch. (HPCA), 2014, pp. 284–
295.

[12] J. Dean and S. Ghemawat, “MapReduce: Simplified Data
Processing on Large Clusters,” Commun. ACM, vol. 51, no. 1,
pp. 107–113, Jan. 2008.

[13] J. A. Stuart and J. D. Owens, “Multi-GPU MapReduce on
GPU Clusters,” in Int. Par. and Dist. Proc. Sym. (IPDPS).
Los Alamitos, CA, USA: IEEE Comp. Society, 2011, pp.
1068–1079.

[14] M. Grossman, M. Breternitz, and V. Sarkar, “HadoopCL:
MapReduce on Distributed Heterogeneous Platforms Through
Seamless Integration of Hadoop and OpenCL,” in IPDPSW
’13. Washington, DC, USA: IEEE Computer Society, 2013,
pp. 1918–1927.

[15] T. White, Hadoop: The Definitive Guide, 1st ed. O’Reilly
Media, Inc., 2009.

[16] G. Frost. (2011) APARAPI: API for data parallel Java.
https://code.google.com/p/aparapi.

[17] I. El-Helw, R. Hofman, and H. E. Bal, “Scaling MapReduce
Vertically and Horizontally,” in SC ’14: Proc. of the 2014
ACM/IEEE conf. on Supercomputing. ACM, 2014.

[18] J. Bueno, J. Planas, A. Duran, R. M. Badia, X. Martorell,
E. Ayguade, and J. Labarta, “Productive Programming of
GPU Clusters with OmpSs,” in Int. Par. and Dist. Proc. Sym.
(IPDPS). Los Alamitos, CA, USA: IEEE Comp. Society,
2012, pp. 557–568.

[19] J. Perez, R. Badia, and J. Labarta, “A Dependency-Aware
Task-Based Programming Environment for Multi-Core Ar-
chitectures,” in IEEE Int. Conf. on Cluster Computing, Sep.
2008, pp. 142 –151.

[20] J. Planas, R. M. Badia, E. Ayguadé, and J. Labarta, “Self-
Adaptive OmpSs Tasks in Heterogeneous Environments,” in
Int. Par and Dist. Proc. Sym. (IPDPS). Washington, DC,
USA: IEEE Computer Society, 2013, pp. 138–149.

[21] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier,
“StarPU: a unified platform for task scheduling on heteroge-
neous multicore architectures,” Concurrency and Computa-
tion: Practice and Experience, vol. 23, no. 2, pp. 187–198,
2011.

[22] M. Majeed, U. Dastgeer, and C. Kessler, “Cluster-SkePU:
A Multi-Backend Skeleton Programming Library for GPU
Clusters,” in Proc. of the Int. Conf. on Par. and Dist. Proc.
Techn. and Appl. (PDPTA), Las Vegas, USA, July 2013.

[23] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, T. Her-
ault, and J. Dongarra, “PaRSEC: Exploiting Heterogeneity
to Enhance Scalability,” Computing in Science Engineering,
vol. 15, no. 6, pp. 36–45, Nov 2013.

[24] G. Bosilca, A. Bouteiller, A. Danalis, T. Herault, P. Luszczek,
and J. J. Dongarra, “Dense Linear Algebra on Distributed
Heterogeneous Hardware with a Symbolic DAG Approach,”
in Scalable Computing and Communications: Theory and
Practice, S. U. Khan, L. Wang, and A. Y. Zomaya, Eds. John
Wiley & Sons, Jan 2013, pp. 699–733.

