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The Striped Polecat (Ictonyx striatus, also called the African Polecat, Zoril,
Zorille or Zorilla) is a member of the Mustelidae family (weasels) which some-
what resembles a skunk. It is found in savannahs and open country in sub-saharan
Africa excluding the Congo basin and west Africa.

Like other polecats, this carnivore is nocturnal. It has several means of avoiding
predators — including the ability to emit foul-smelling secretions from its anal
glands, playing dead and climbing trees. The animal is mainly black but has four
prominent white stripes running from the head, along the back to the tail. The
Striped Polecat is typically 60 centimeters long including a 20-centimeter tail. It
lives for up to 13 years.

The Striped Polecat is solitary, tolerating contact with others only to mate.
Young are generally born between September and December, with one to three
young per litter.

∗ From Wikipedia, the free encyclopedia [84].
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Chapter 1

Introduction

Ever since the invention of the computer, users have desired higher and higher per-
formance. For an average user the solution was simply a matter of patience: each
newer model computer has been faster than the previous generation for as long
as computers have existed. However, for some users this was not enough, as they
required more compute power than any normal machine could offer. Examples of
high performance computing users are meteorologists performing weather predic-
tions using complex climate models, astronomers running simulations of galaxies,
and medical researchers analyzing DNA sequences.

To explain some of the major challenges encountered by high performance
computing users, we use an analogy: making coffee. What if I was responsible for
making coffee for a group of people, for instance a group of scientists on break
during a conference? If the group is small enough, I could use my own coffee
maker, analogous to using my own computer to do a computation. However, this
will not work if the group is too large, as it would take too long, leading to a large
queue of thirsty scientists. I could also brew the coffee in advance, but that would
lead to stale and probably cold coffee.

The obvious solution to my problem is to get a bigger, faster, coffee maker. I
could go out and buy an industrial-size coffee maker, like the one in a cafeteria,
or even a coffee vending machine. Unfortunately, these are very expensive. In
computing, large, fast, expensive computers are called supercomputers.

Fortunately, several alternatives exist that will save money. Instead of a single
big coffee maker, I could use a number of smaller machines (a cluster in computing
terms). I could also rent a coffee maker (cloud computing), or even borrow one (grid
computing). In reality, I would probably use a combination of these alternatives,
for instance by using my own coffee maker, borrowing a few, and renting a machine.

Although combining machines from different sources is the cheapest solution,
it may cause problems. For one, different coffee machines need different types of
coffee, such as beans, ground coffee, pads, or capsules. Moreover, these different
machines all need to be operated in different ways, produce coffee at different
speeds, and may even produce a different result (for instance, espresso). In the
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Figure 1.1: A ‘worst-case’ real-world distributed system.

end, I may be spending a considerable amount of time and effort orchestrating all
these coffee makers.

When running high performance applications, users employ a strategy to ac-
quire resources much like the one used in the example. Ideally, a single system
(supercomputer, cluster, or otherwise) is used to run computations. However, a
significant fraction of all users does not have access to a machine which is powerful
enough and available when needed. Availability is a particularly large problem,
as queue times on computing infrastructure may be considerable, and machines
may be down for maintenance, or even switched off. As a result, users are forced
to use a combination of resources, acquired from various sources.

In this thesis we use the term real-world distributed system (see Figure 1.1) for
the collection of resources generally available to users. A real-world distributed
system may consist of different systems, including clusters, grids, desktop grids,
clouds, as well as stand-alone machines. By their nature, real-world distributed
systems are very heterogeneous, containing resources with different paradigms,
available software, access policies, etc. Also, these systems are very dynamic:
new resources can be added to or removed from a system at any time, and as a
real-world distributed system has many independent parts, the chance of a failure
occurring at a given time is high.

Because of these problems, usage of real-world distributed systems for high
performance computing is currently rather limited [12]. In general, users install
and run their software manually on a small number of sites. Moreover, parallel
applications are often limited to coarse-grained parameter-sweep or master-worker
programs. More advanced use cases such as automatically discovering resources,
or running applications across multiple sites, are currently impractical, if not im-
possible. This is unfortunate, as many scientific and industrial applications can
benefit from the use of distributed resources (e.g., astronomy [41], multimedia [70],
and medical imaging [56]).
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The ultimate goal of the Ibis project [44], in which the research described in
this thesis is embedded, is to provide users of high performance computing with
transparent, easy use of resources, even on very heterogeneous distributed systems.
This is not unlike the original goal of grid computing: “efficient and transparent
(i.e., easy-to-use) wall-socket computing over a distributed set of resources” [35],
sometimes referred to as the promise of the grid. The distributed computing
paradigms introduced since then, including desktop grids, volunteer computing,
and more recently cloud computing, all share many of the goals of grid comput-
ing, ultimately trying to give end-users access to resources with as little effort as
possible.

The central research question of this thesis is how to run distributed super-
computing applications on very heterogeneous, dynamic, systems. Problems faced
include how to find resources in such systems, how to acquire these resources once
found, and how to start an application on available resources. Also, it is vital to
track exactly which resources are available in a computation once the application
is running. In all cases, we explicitly take into account distributed supercomputing
applications, in which resources from multiple sites cooperate in a single high-
performance distributed computation.

In this thesis, we focus mainly on the system aspects of running distributed
supercomputing applications, i.e., how to get an application to run on a large-scale
distributed system. Problems related to how to create such distributed supercom-
puting applications in the first place, and how the distributed application should
communicate once running, are out of scope of this work. Examples of these
problems are performance optimizations ,and how to effectively debug large scale
applications.

In the Ibis project, other research is done that complements that described in
this thesis, and that addresses problems not covered by this work. Topics include
research on how to communicate reliably [54] and efficiently [60], and how to
create programming models [10, 53, 61] that allow users to make efficient use of
all resources available in these large systems.

Research overview

Recently, cloud computing has emerged as a high-performance compute platform,
offering applications a homogeneous environment by using virtualization mecha-
nisms to hide most differences in the underlying hardware. Unfortunately, not
all resources available to a user offer cloud services. Also, combining resources of
multiple cloud systems is far from trivial. To use all resources available to a user,
software is needed which easily combines as many resources as possible into one
coherent computing platform.

To address these problems we introduce Zorilla: a peer-to-peer (P2P) middle-
ware that creates an instant cloud from any available set of compute resources. Zo-
rilla imposes minimal requirements on the resources used, is platform independent,
and does not rely on central components. In addition to providing functionality on
bare resources, Zorilla can exploit locally available middleware. Using Zorilla as
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an example, we show that the combination of virtualization and P2P techniques
greatly simplifies the design and implementation of many aspects of middleware,
including resource discovery, deployment, management, and security. Zorilla acts
as a software platform for much of the research presented in this thesis.

Gossiping is an effective way of disseminating information in large dynamic
systems, and is used in Zorilla for resource discovery. Until now, most gossiping
algorithms have been designed and evaluated using simulations. However, these
algorithms often cannot cope with several real-world problems that tend to be
overlooked in simulations, such as node failures, message loss, non-atomicity of
information exchange, and firewalls. We introduce Actualized Robust Random
Gossiping (ARRG), an algorithm specifically designed to take all of these real-
world problems into account simultaneously.

In Zorilla, P2P techniques are used effectively to run applications on large
systems. However, the lack of central components make scheduling on P2P sys-
tems inherently difficult. Especially distributed supercomputing applications are
problematic, as these require the simultaneous allocation of multiple, possibly dis-
tributed, resources (so-called co-allocation). As a possible solution, we introduce
flood scheduling. Flood scheduling supports co-allocation, is locality aware, de-
centralized, and flexible. We show that flood scheduling is a good alternative to
centralized algorithms.

Zorilla allows users to run applications on dynamic systems. Unfortunately,
this may cause the set of resources used to change during a computation as ma-
chines crash, reservations end, and new resources become available. It is vital for
applications to respond to these changes, and therefore necessary to keep track of
the available resources, a notoriously difficult problem. We propose a new function-
ality to be added to any system designed for dynamic environments: resource track-
ing. We introduce a general solution to resource tracking: the Join-Elect-Leave
(JEL) model. JEL provides unified resource tracking for parallel and distributed
applications across environments. JEL is a simple yet powerful model based on
notifying when resources have Joined or Left the computation. We demonstrate
that JEL is suitable for resource tracking in a wide variety of programming models,
and compare several JEL implementations.

Zorilla, and the techniques it incorporates described in this thesis, greatly
enhance the applicability of real-world distributed systems for everyday users.
Instead of limiting usage of these systems to a single site at a time, it is now possible
to routinely use large numbers of resources, possibly distributed across the globe.
Moreover, the work described in this thesis, combined with the complementary
research done in the Ibis project, allows users to do this transparently, and with
little effort. Instead of constantly managing files, jobs, and resources, users can
now focus on the actual computations performed with their application.

The software∗ developed for this thesis, and other software part of the Ibis
project, has been put to the test in international competitions [5]. In several of
these competitions we have won awards, i.e., at the International Scalable Comput-

∗Zorilla and other software referred to in this thesis can be freely downloaded from http:

//www.cs.vu.nl/ibis

http://www.cs.vu.nl/ibis
http://www.cs.vu.nl/ibis
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ing Challenge at CCGrid 2008 (Lyon, France), at the International Data Analysis
Challenge for Finding Supernovae at IEEE Cluster/Grid 2008 (Tsukuba, Japan),
and at the Billion Triples Challenge at the 2008 International Semantic Web Con-
ference (Karlsruhe, Germany). For more details, see Chapter 6. These awards
clearly show the real-world applicability of our research.

Thesis outline

This thesis is structured as follows. In Chapter 2 we discuss the design and imple-
mentation of Zorilla, our P2P middleware. In Chapter 3, we introduce our ARRG
gossip algorithm, and explore the problems in designing and applying gossiping
algorithms in real systems. Chapter 4 addresses the problem of scheduling on P2P
systems, and introduces flood-scheduling as a possible solution. In Chapter 5, we
discuss resource tracking and introduce our JEL model. In Chapter 6, we perform
world-wide experiments using up to 8 sites with over 400 cores. These experiments
show Zorilla, and other techniques and algorithms described in this thesis, in real-
world scenarios. Finally, in Chapter 7 we summarize the results of this research,
and provide conclusions.
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Chapter 2

Zorilla: Instant Cloud
Computing∗

The emergence of real-world distributed systems (see Figure 1.1) has made the
running of applications complex for end-users. The heterogeneity of these systems
makes it hard to install and run software on multiple resources, as each site requires
configuring, compiling and possibly even porting the application to the specific
resource. Current systems also lack so-called global functionality, such as system-
wide schedulers and global file systems. Standardized hardware and software, as
well as global functionality, requires coordination between all resources involved.
In grids, coordination is done in a Virtual Organization (VO) specifically created
for each grid. Since a real-world distributed system is created ad hoc, no such
VO can exist. The resulting heterogeneity and lack of global functionality greatly
hinders usability.

Recently, cloud computing has emerged as a promising new computing plat-
form. Although originally designed to run mostly web servers, cloud computing,
is now also used as a high performance computing platform [43, 65]. Although
clouds are capable of offering high-level services, high performance computing is
mostly concerned with low-level computing infrastructure, so-called Infrastructure
as a Service (IaaS).

One of the defining properties of cloud computing is its use of virtualization
techniques. The use of a Virtual Machine such as Xen, VirtualBox, or the Java Vir-
tual Machine (JVM) allows applications to run on any available system. Software
is created and compiled once for a certain virtual environment, and this environ-
ment is simply deployed along with the software. Virtualization of resources is an
effective way of solving the problem of heterogeneity in distributed systems today.

Although cloud computing allows a user to run applications on any available
cloud resource, this is only part of the required solution. Users also have access to
clusters, grids, desktop grids, and other platforms, which do not offer virtualiza-

∗This chapter is based on our paper submitted for publication [28].
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tion. Moreover, ad hoc created collections of resources still lack global functionality
such as a global filesystem. What is needed is a platform capable of turning any
(possibly distributed) collection of resources into a single, homogeneous, and easy
to use system: an instant cloud.

Although an instant cloud system must support any number of resources, typ-
ically, everyday scenarios will most likely be somewhat simpler. As an example
use case of an instant cloud, a scientist may have access to a local cluster. When
this cluster is busy, or simply not powerful enough, he or she can combine the pro-
cessing power of this cluster with acquired cloud computing resources, for instance
Amazon EC2 [29] resources. Alternatively, the scientist can acquire additional
resources by deploying the instant cloud on a number of desktop machines. Unfor-
tunately, it is impossible to predict exactly which types of resources are combined
by users. As a result, instant cloud middleware must support all combinations
of resources. In this chapter, we will assume the worst-case scenario of all possi-
ble types of resources, ensuring the resulting system is applicable in all possible
scenarios.

This chapter investigates middleware specially designed to create instant clouds
on real-world distributed systems. This middleware has unique design require-
ments. For instance, since it needs to function on ad hoc created systems, it too
must support ad hoc installation. This is different from existing grid and cloud
middleware, where a more or less stable system is assumed. Also, instant clouds are
created by users, not system administrators. As a result, instant cloud middleware
must be very easy to install, and not require special privileges. Moreover, since
resources usually utilize some form of middleware already, our new middleware
must be able to cooperate with this local middleware.

The use of virtualization allows for a simplified design of our instant cloud
middleware. For example, finding resources commonly requires complex resource
discovery mechanisms. Virtualization allows applications to run on a much bigger
fraction of all resources, allowing a greatly simplified resource discovery mecha-
nism. In addition to virtualization, we also use peer-to-peer (P2P) techniques in
implementing instant cloud middleware. P2P techniques allow for easy installation
and maintenance-free systems, and are highly suited for large-scale and dynamic
environments. Together, virtualization and P2P techniques combine into a rela-
tively simple design for our cloud middleware.

In this chapter we introduce Zorilla: our P2P instant cloud middleware. Zo-
rilla is designed to run applications remotely on systems ranging from clusters
and desktop grids, to grids and clouds. Zorilla is fully P2P, with no central com-
ponents to hinder scalability or fault-tolerance. Zorilla is implemented entirely
in Java, making it highly portable. It requires little configuration, resulting in
a system which is trivial to install on any machine with a Java Virtual Machine
(JVM). Zorilla can be either installed permanently on top of a bare-bone system,
or deployed on-the-fly exploiting existing local middleware.

As Zorilla can be installed on virtually any system, the size of a Zorilla system
can vary greatly, from dozens of large clusters, for very few nodes with a lot of
resources, to an entire University campus full of student PCs running Zorilla, for
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thousands of nodes with few resources. In contrast, it could consist of 4 desktop
machines in a single room too. How to get Zorilla itself running on these machines
is outside the scope of this thesis, though one option is to use IbisDeploy (see
Chapter 6).

Zorilla is a prototype system, explicitly designed for running distributed super-
computing applications concurrently on a distributed set of resources. It automat-
ically acquires resources, copies input files to the resources, runs the application
remotely, and copies output files back to the users’ local machine.

Being a prototype system, our current implementation of Zorilla focuses on this
single use-case, does not include all functionality present in a typical middleware.
Most notable are its limited security mechanisms, and its lack of long term file
storage functionality. Other groups are researching distributed filesystems and
security in a P2P context [58, 75], and we consider integrating such systems as
future work.

The contributions of this chapter are as follows:

• We establish the requirements of instant cloud middleware.

• We describe the design and implementation of Zorilla: a new lightweight,
easy to use Java-based P2P instant cloud middleware.

• We show how the combination of virtualization and P2P helps in simplifying
the design and enhancing the functionality of middleware. We especially
explore resource discovery, deployment, management, and security.

• We show how the use of instant cloud middleware designed for real-world dis-
tributed systems brings closer the goal of easy-to-use distributed computing
on these systems.

In this chapter we provide an overview of Zorilla. Chapter 3 and Chapter 4
provide more details on several techniques used in Zorilla. In Chapter 5 we discuss
resource tracking, a vital part of application running in dynamic systems such as
instant clouds, and explicitly supported in Zorilla. Chapter 6 shows several world-
wide experiments done with Zorilla.

The rest of this chapter is organized as follows. In Section 2.1 we define the
requirements of instant cloud middleware. Section 2.2 gives a description of Zorilla,
our P2P instant cloud middleware. We discuss related work in Section 2.3. Finally,
we conclude in Section 2.4.

2.1 Requirements

In this section we discuss the requirements of instant cloud middleware.

Resource independence: The primary function of instant cloud middleware is
to turn any collection of resources into one coherent platform. The need for
resource independence, the ability to run on as many different resources as
possible, is paramount.
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Middleware independence: As most resources already have some sort of mid-
dleware installed, instant cloud middleware must be able to interface with
this local middleware†. The implementation of instant cloud middleware
must be such that it is as portable as possible, functioning on different types
of local middleware. This and the requirement of resource independence can
be summed up into one requirement as well: platform independence.

Decentralization: Traditional (grid) middleware uses central servers to imple-
ment functionality spanning multiple resources such as schedulers and dis-
tributed file systems. Centralized solutions introduce a single point of fail-
ure, and are a potential performance bottleneck. In clusters and grids this
is taken into account by hosting these services on high capacity, partially
redundant machines. However, in an instant cloud, it is hard to guarantee
such machines are available: resources are not under the control of the user,
and reliability is hard to determine without detailed knowledge of resources.
Therefore, middleware should rely on as little central functionality as possi-
ble. Ideally, instant cloud middleware uses no centralized components, and
instead is implemented in a completely decentralized manner.

Malleability: In an instant cloud, the set of available resources may change, for
instance if a resource is removed from the system by its owner. Middleware
systems should support malleability, correctly handling new resources joining
and leaving.

System-level fault-tolerance: Because of the many independent parts of a real-
world distributed system, the chance that some resource fails at a given time
is high. Middleware systems should be able to handle these failures grace-
fully. Failures should not hinder the functioning of the entire system, and
failing resources should be detected, and if needed replaced. Note that this
does not include application-level fault-tolerance: restoring the state of any
application running on the failing resource. Application-level fault-tolerance
is usually implemented either in the application programming model, or the
application itself. Support for application-level fault-tolerance in the mid-
dleware can be limited to failure detection and reporting.

Easy deployment: Since an instant cloud is created ad hoc by end-users, mid-
dleware is typically deployed by the user, possibly for the duration of only a
single experiment. Therefore, instant cloud middleware needs to be as easy
to deploy as possible. Complicated installation and setup procedures defeat
the purpose of clouds. Also, no additional help from third parties, such as
system administrators, should be required to deploy the middleware.

Parallel application support: Many high-performance applications can bene-
fit from using multiple resources in parallel, even on distributed systems [5].

†We will use the term local middleware for existing middleware installed on resources, through-
out this chapter.
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Parallel applications require scheduling of multiple (distributed) resources
concurrently, tracking which resources are available (see Chapter 5), and
providing reliable communication in the face of firewalls and other prob-
lems [54].

Global file storage: Besides running applications, clouds are also used for stor-
ing files. In the simplest case files are used as input and output of applica-
tions. However, long term storage of data, independently of applications, is
also useful. Ideally, instant cloud middleware should provide a single filesys-
tem spanning the entire system. This filesystem must be resilient against
failures and changes in available storage resources.

Security: As in all distributed systems, instant clouds must provide security.
Middleware must protect resources from users, as well as users from each
other. Because of the heterogeneous nature of the resources in an instant
cloud, and the lack of a central authority, creating a secure environment for
users and applications is more challenging than in most systems.

The large number of requirements for instant cloud middleware presented above
lead us to the conclusion that using existing techniques for implementing instant
cloud middleware is not possible. Some of the fundamental assumptions of tra-
ditional (grid) middleware (e.g. the presence of a reliable, centralized server), do
not hold in an instant cloud. Therefore, our instant cloud middleware, discussed
in the next section, uses a number of alternative approaches for implementing
middleware functionality.

2.2 Zorilla

In this section we describe the design of Zorilla, our prototype instant cloud mid-
dleware. We will first give an overview of Zorilla, followed by a more detailed
discussion of selected functionality. The main purpose of Zorilla is to facilitate
running applications (jobs) remotely on any resource in the instant cloud.

Zorilla relies heavily on P2P techniques to implement functionality. P2P tech-
niques have proved very successful in recent years in providing services on a large
scale, especially for file sharing applications. P2P systems are highly robust against
failures, as they have no central components which could fail, but instead imple-
ment all functionality in a fully distributed manner. In general, P2P systems are
also easier to deploy than centralized systems, as no centralized list of resources
needs to be kept or updated. One downside of P2P systems is a lack of trust.
For instance, a reliable authentication system is hard to implement without any
central components. We argue that P2P techniques can greatly simplify the design
of middleware, if the limitations of P2P techniques are dealt with. Implementing
all functionality of middleware using P2P techniques is the ultimate goal of our
research.

A Zorilla system is made up of nodes running on all resources, connected by a
P2P network (see Figure 2.1). Each node in the system is completely independent,
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Figure 2.1: Example of an instant cloud created by Zorilla. This instant cloud
consists of two clusters, a desktop grid, a laptop, as well as cloud resources (for
instance acquired via Amazon EC2). On the clusters, a Zorilla node is run on the
headnode, and Zorilla interacts with the local resources via the local scheduler.
On the desktop grid and the cloud a Zorilla node is running on each resource,
since no local middleware capable of scheduling jobs is present on these systems.
All Zorilla nodes are connected by a P2P overlay network.

and implements all functionality required of a middleware, including handling
submission of jobs, running jobs, storing of files, etc. Each Zorilla node has a
number of local resources. This may simply be the machine it is running on,
consisting of one or more processor cores, memory, and data storage. Alternatively,
a node may provide access to other resources, for instance to all machines in
a cluster. Using the P2P network, all Zorilla nodes tie together into one big
distributed system. Collectively, nodes implement the required global functionality
such as resource discovery, scheduling, and distributed data storage, all using P2P
techniques.

Jobs in Zorilla consist of an application and input files, run remotely on one
or more resources. See Figure 2.2 for an overview of the life cycle of a (parallel)
job in a Zorilla system.

Zorilla has been explicitly designed to fulfill the requirements of an instant
cloud middleware. Table 2.1 presents an overview of the requirements, and how
Zorilla adheres to these. As in most cloud computing platforms, virtualization
is used extensively in Zorilla. Zorilla is implemented completely in Java, making
it resource independent : it is usable on any system with a suitable Java Virtual
Machine (JVM). Virtualization is also used when applications are started. Instead
of exposing the application to the underlying system, we hide this by way of a
virtual machine (VM), currently either the JVM or Sun VirtualBox [79]. Although
using virtual machines causes a decrease in performance, we argue that this is more
than offset by the increase in usability and flexibility of the resulting system.

Another virtualization technique used in Zorilla is the use of a middleware in-
dependent API to access resources. As said, resources in a real-world distributed
system commonly have existing local middleware installed. Zorilla will have to in-
teract with this local middleware to make use of these resources. We use a generic
API to interface to resources, in this case the JavaGAT [59]. The JavaGAT allows
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Figure 2.2: Job life cycle in a Zorilla system consisting of 5 nodes connected
through an overlay network. (a) A (parallel) job is submitted by the user to a
node. (b) The job is disseminated to other nodes. (c) Local schedulers at each
node decide to participate in the job, and start one or more Worker processes
(e.g. one per processor core available). (d) Output files are copied back to the
originating node.

Requirement
Approach

Solution in Zorilla
P2P Virt.

Resource independence X JVM

Middleware independence X JavaGAT [59]

Decentralization X P2P implementations of functionality

Malleability X Replacement resources allocated

System-level fault-tolerance X Faulty resources detected and replaced

Easy deployment X X No server, sole requirement a JVM

Parallel application support X X Flood scheduler (see Chapter 4)
SmartSockets [54], JEL (see Chapter 5)

Global file storage X Per-job files only

Security X Sandboxing of applications

Table 2.1: Design overview of Zorilla. Listed are the requirements of an instant
cloud, the approach used to address the issue (be it virtualization or peer-to-peer),
and how this affects the design of Zorilla.
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Zorilla to interact with a large number of middlewares, including Globus, Unicore,
Glite, SGE, and PBS. Support for new middleware is added to JavaGAT regularly,
and automatically available in Zorilla. The JavaGAT has a very stable API, and
is currently being standardized by OGF as the SAGA API [39]. Zorilla uses the
JavaGAT API whenever it uses resources, hiding the native API of the middle-
ware installed on each specific resource. In effect, this makes Zorilla middleware
independent.

The P2P design of Zorilla allows it to fulfill several of the established require-
ments of Table 2.1. All functionality is implemented without central components.
Fault-tolerance and malleability is implemented in the resource discovery, sched-
uling, and job management subsystems of Zorilla. Any node failing has a very
limited impact on the entire system, only influencing computational jobs the node
is directly involved in. Likewise, removing a Zorilla node from the system is done
by simply stopping the node. Other nodes will automatically notice that it is gone,
and the remaining nodes will keep functioning normally.

Besides being useful techniques in themselves, the combination of virtualiza-
tion and P2P provides additional benefits. Zorilla is very easy to deploy, partially
because no central servers need to be setup or maintained. When a Zorilla node
is started on a resource, it can be added to an existing Zorilla system by simply
giving it the address of any existing node in the system. Also, as Zorilla is im-
plemented completely in Java, it can be used on any resource for which a JVM is
available, with no additional requirements. Another benefit of using both P2P and
virtualization is that it allows Zorilla to support parallel applications. Zorilla ex-
plicitly allows distributed supercomputing applications by supporting applications
which span multiple resources, and optimizing scheduling of these resources (see
Section 2.2.1 and Chapter 4). Besides scheduling, parallel applications are also
supported by offering reliable communication by way of SmartSockets (see Sec-
tion 2.2.2), and resource tracking in the form of our JEL model (see Section 2.2.3
and Chapter 5).

Zorilla supports files when running applications as executables, virtual machine
images, input files, and output files. Files are automatically staged to and from
any resources used in the computation. To keep the design of Zorilla as simple as
possible, files are always associated with jobs. This allows Zorilla to transfer files
efficiently when running jobs, and makes cleanup of files trivial. However, this also
limits the usage of files in Zorilla, as long-term file storage is not supported. We
regard adding such a filesystem as future work.

The last requirement of Zorilla is security. The virtualization used by Zorilla
allows us to minimize the access of applications to resources to the bare minimum,
greatly reducing the risk of applications damaging a resource. However, Zorilla
currently has little to no access restrictions. Since it is hard to implement a reliable
authentication system using only P2P techniques, one alternative is to integrate
support for the Grid Security Infrastructure (GSI) [34] also used in Globus into
Zorilla.
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2.2.1 Resource Discovery and Scheduling

We will now discuss several subsystems of Zorilla, starting with resource discov-
ery. Whenever a job is submitted by a user, the first step in executing this job is
allocating resources to it. In a traditional (grid) middleware system this is usu-
ally done by a centralized scheduler. In a P2P system, this approach obviously
cannot be implemented. Instead, a distributed discovery and scheduling system is
required.

Resource discovery in a P2P context is, in essence, a search problem. An impor-
tant aspect of the resource discovery process is how exactly the required resources
are specified, as this influences the optimal search algorithm considerably. One
option for the specification of resources is to precisely specify the requirements
of an application, including machine architecture, operating system (version), re-
quired software, libraries, minimum memory, etc. Unfortunately, finding a match
for the above resource specification is difficult. As real-world distributed systems
are very heterogeneous, a resource is likely to match only a small subset of the
requirements. The chance of finding a resource fulfilling all of the requirements is
akin to finding the proverbial needle in a haystack.

Instead of trying to search for resources matching all requirements of an appli-
cation, we exploit the fact that virtualization is used when running applications.
Using virtualization, any application can be deployed on any suitable hardware,
independent of the software running on that hardware. The virtualization of
resources greatly reduces the number of requirements of an application. What
remains are mostly basic hardware requirements such as amount of memory, pro-
cessor speed, and available disk space, in addition to a suitable virtual machine
(Java, VirtualBox, VMware, Xen, or otherwise).

Most remaining requirements have a very limited range of values. For instance,
any machine used for high performance computing is currently likely to have a
minimum of 1GB of main memory. However, machines with over 16GB of main
memory are rare. Other requirements such as processor speed, and hard disk size
have a very limited range as well. Also, the number of virtual machines, and
different versions of these virtual machines available, is not very large. Finally,
most requirements can be expressed as minimum requirements, satisfied by a
wide range of resources. From our analysis we conclude that the chances that
a randomly selected machine matches the requirements of a randomly selected
application are quite high when virtualization is used.

In Zorilla, the resource discovery process is designed explicitly for supporting
virtualized resources. Because of virtualization, it is sufficient for our system to be
capable of finding commonly available resources. Support for uncommon resources
(the needle in a haystack), is not required. Instead, our system is optimized for
finding hay.

As said, Zorilla explicitly supports parallel applications. This influences its
design in a number of aspects, including resource discovery. As parallel appli-
cations require multiple resources, the middleware must support acquiring these.
Besides the resources themselves, the connectivity between the acquired resources
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Figure 2.3: Resource discovery in Zorilla. (a) Random overlay created for resource
discovery. (b) Neighbor connections created. (c) Flood scheduling (iterative ring
search) performed using neighbors to schedule resources.

is also important. A parallel application may send and receive a large amount
of data during its lifetime, so high bandwidth connections between the resources
are required. Also, most parallel applications are sensitive to the latency between
resources used. Zorilla supports parallel applications by allowing a user to request
multiple resources, and by striving to allocate resources close (in terms of network
latency) to the user. This gives applied resources a higher chance of having low
latency, high bandwidth connections between them.

Resource discovery in Zorilla is a three step process (see Figure 2.3). First, a
P2P overlay network consisting of all Zorilla nodes is built up. Second, the P2P
overlay is then used to build up a list of close-by nodes or neighbors. Last, vir-
tualized resources are searched using this neighbor list, using an iterative flooding
algorithm. We will now briefly discuss each step in turn. For a more detailed
description of the resource discovery and scheduling system of Zorilla, see Chap-
ter 4).

Zorilla’s overlay network is based on the ARRG gossiping algorithm (see Chap-
ter 3). ARRG provides a peer sampling service [46] which can be used to retrieve
information about peer nodes in the P2P overlay. Gossiping algorithms work on
the principle of periodic information exchange between nodes. In ARRG, informa-
tion on the nodes of the P2P network itself is kept in a limited size cache. On every
gossip, entries in this cache are exchanged with peer nodes. These exchanges lead
to a random subset of all nodes in the cache of each node. Taking entries from this
cache thus yields a random stream of nodes in the P2P overlay (see Figure 2.3(a)).

Next, Zorilla uses the stream of random nodes to create a list of neighbors:
nodes close-by in the network. For this purpose, Zorilla implements the Vivaldi [18]
synthetic coordinate system. Vivaldi assigns coordinates in a Cartesian space to
each node of a P2P overlay. Coordinates are assigned as to reflect the round trip
latency between nodes. Given two Vivaldi coordinates, the distance between these
two nodes can be calculated without any direct measurements. Vivaldi updates
the coordinates of each node by periodically measuring the distance to a randomly
selected node. Zorilla determines the distance to a node by comparing their virtual
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coordinates with the coordinates of the local node. Zorilla continuously checks the
random stream of nodes for potential neighbors, replacing far away neighbors with
new close-by nodes (see Figure 2.3(b)).

Once a suitable P2P network and neighbor list is built up, this is then used
for the actual allocation of resources to jobs. When a job is submitted at a node,
Zorilla’s flood scheduling algorithm (see Chapter 4) sends a request for resources to
all neighbors of the node. Besides sending a reply if they have resources available,
these neighbors in turn forward the message to all their neighbors. The search is
bound by a maximum hop count, or time to live (TTL) for each request. If not
enough resources are found, the search is repeated periodically with an increasingly
larger TTL, causing more and more resources to be searched, further and further
away (see Figure 2.3(c)). In effect, close-by resources (if available) are used before
far away resources.

The resource discovery mechanism of Zorilla relies on the fact that resources
are virtualized. Flooding a network for resources can be prohibitively expensive if
a large portion of the network needs to be searched. This was for instance the case
in the Gnutella [38] system, where flooding was used for searching for a specific
file. However, since virtualization of resources allows us to assume resources to
be common, Zorilla will on average only need to search a small number of nodes
before appropriate resources are found. Moreover, the properties of the network
automatically optimizes the result for parallel applications, with resources found
as close-by (measured in round-trip latency) as possible.

The resource discovery mechanism of Zorilla is very robust due to its P2P
nature. Failing nodes do not hinder the functioning of the system as a whole, as
resource requests will still be flooded to neighboring nodes. Also, new resources
added to the system are automatically used as soon as neighbors start forwarding
requests. We conclude that the combination of P2P and virtualization allows us
to create a simple, efficient and robust scheduling mechanism in Zorilla.

2.2.2 Deployment

After resources for a job have been discovered, the job is deployed. This requires
copying all input files, application executables, and possibly virtual machine (VM)
images, to all nodes participating in the computation. For this reason, the sub-
mitting node acts as a file server for the job. It hosts files required to run the
job, and provides a place to store output files. Unfortunately, the submitting node
quickly becomes a bottleneck if a large number of nodes is participating in the job,
or if it has a slow network connection. To alleviate this problem we again use P2P
techniques: instead of transferring files from the submitting node only, nodes also
transfer files among each other. Whenever a node requires a certain input file, it
contacts a random node also participating in the job, and downloads the file from
this peer node, if possible. As a fallback, the submitting node is used when the
file is not present at any peer node.

When all files are available, the application is started on all resources, using
a VM. Our current prototype implementation supports the Java Virtual Machine
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(JVM) and the generic Open Virtualization Format (OVF), using Sun Virtual-
Box [79]. Apart from the benefit of platform independence, using a VM to deploy
the application has three advantages. First, it allows for a very simple scheduling
mechanism, as described in Section 2.2.1. Second, using a VM greatly simplifies
the deployment of an application, especially on a large number of resources. Nor-
mally, an application needs to be compiled or at least configured for each resource
separately. With a VM, the entire environment required to run the application
is simply sent along with the job. This approach guarantees that the application
will run on the target resource, without the need for configuring the application,
or ensuring that all dependencies of the application are present on the resource.

The third advantage of using a VM is that it improves security. Since all calls to
the operating system go through the VM, the system can enforce security policies.
For instance, Zorilla places each job in a sandbox environment. Jobs can only read
and write files inside this sandbox, making it impossible to compromise any data
on the given resources. Although not implemented in Zorilla, the VM could also be
used to limit access to the network, for instance by letting a job connect only with
other nodes participating in the same job. Traditionally, security in distributed
systems relies primarily on security at the gates, denying access to unknown or
unauthorized users. As virtualization provides complete containment of jobs, the
need for this stringent policy is reduced: unauthorized access to a machine results
mainly in a loss of compute cycles.

Besides running the application on all used resources, Zorilla also offers sup-
port for communication between these resources. Since the resources used may
be in different domains, communication may be limited by Firewalls, NATs and
other problems. To allow all resources to communicate, Zorilla deploys a Smart-
Sockets [54] overlay network. Applications which use the SmartSockets communi-
cation library automatically route traffic over this overlay, if needed. This ensures
reliable communication between all resources used, regardless of NAT and Fire-
walls.

2.2.3 Job Management

The last subsystem of Zorilla that we will discuss is job management. On tradi-
tional (grid) middleware this mostly consists of keeping track of the status of a
job, for instance scheduling, running, or finished. Instant cloud middleware has an
additional task when managing a job: keeping track of the resources of each job.
As resources may fail or be removed from the system at any time, a node partic-
ipating in a parallel job may become unavailable during the runtime of the job.
Traditional middleware usually considers a job failed when one of the resources
fails. However, in an instant cloud changes to the set of available resources are
much more common, making this strategy inefficient. Instead, in Zorilla users can
specify a policy for resource failures. A job may be canceled completely when a
single resource fails, resource failures can simply be ignored, or a new resource
can be acquired to replace the old one. The last two cases require the application
to support removing and adding resources dynamically. This can for instance be
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achieved with FT-MPI [33], or the Join-Elect-Leave (JEL) model (see Chapter 5).
Zorilla explicitly supports JEL, where the application is notified of any changes
to the resources. Using this information, the application, or the runtime of the
application’s programming model, can react to the changes.

Zorilla implements all management functionality on the submitting node. This
node is also responsible for hosting files needed for the job, and collecting any
output files. Although it is in principle possible to delegate the management of a
job to other nodes, for instance by using a Distributed Hash Table, we argue that
this is hard to do reliably, and regard it as future work.

2.3 Related Work

There are several projects that share at least some of the goals and techniques of
Zorilla. The most obvious related work to Zorilla are cloud middlewares, including
Amazon EC2 [29], Eucalyptus [63] and Globus Nimbus [62]. All these middlewares
are designed to turn a collection of machines into a cloud. One difference to Zorilla
is the fact that these middleware assume no other middleware to be present, while
Zorilla can also run on top of other middleware. Also, these middlewares all have
centralized components, while Zorilla is completely decentralized. These systems
are assumed to be installed (semi) permanently by system administrators, while
Zorilla can be deployed on demand by users. One advantage the above systems
have over Zorilla is the fact that all are generic systems, while Zorilla is mostly
targeted to running HPC applications.

Zorilla can, through its use of the JavaGAT, use many, if not all, compute
resources available to it. Some cloud computing systems sometimes support a
so-called hybrid cloud model, where local, private resources are combined with
remote, public, clouds. However, this model is more limited than Zorilla, which is
able to use any resources, be it clusters, grids, clouds, or otherwise. Examples of
systems supporting hybrid clouds are Globus Nimbus [62], OpenNebula [73], and
InterGrid [22].

An element of Zorilla also present in other systems is its use of P2P techniques
to tie together resources into a single system. However, these other systems [1,
13, 16] focus on providing middleware on bare resources, not taking into account
existing middleware. Also, not all these systems assume virtualized resources,
leading to rather complex resource discovery and allocation mechanisms.

Much like Zorilla, WOW [37] is able to create a single, big, distributed system
out of independent resources. However, WOW was designed for high-throughput,
rather than high-performance distributed applications. WOW only supports sys-
tem level virtualization (VMware), while Zorilla also supports the much more
lightweight Java virtual machine. Also, WOW routes all traffic between machines
over a DHT style overlay network, limiting network performance. Lastly, WOW
uses client-server schemes for services such as scheduling and files, while Zorilla
implements these using P2P techniques.
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ProActive [4] is another system which, like Zorilla, strives to use Java and
P2P techniques [15] to run high-performance computations on distributed systems.
However, Proactive primarily supports applications which use an ActiveObject
model, while Zorilla supports any application, even non-Java applications. Also,
ProActive requires the user to manually handle all connection setup problems and
to manually (and statically) select the appropriate middleware.

Another approach to creating a cloud spanning multiple resources is used in the
InterGrid [22] project. Here, gateways are installed which allow users to allocate
resources from all grids which enter into a peering arrangement with the local grid.
If remote resources are used, InterGrid uses virtualization to create a software
environment equal to the local system. Unlike Zorilla, where resources can be
added on demand, InterGrid gateways and peering agreements need to be setup
in advance by system administrators.

2.4 Conclusions

The emergence of real-world distributed systems has made running high-perfor-
mance and large-scale applications a challenge for end-users. These systems are
heterogeneous, faulty, and constantly changing. In this chapter we suggest a
possible solution for these problems: instant cloud middleware. We established
the requirements of such a middleware, consisting mainly of the capability to
overcome all limitations of real-world distributed systems. Requirements include
fault-tolerance, platform independence, and support for parallel applications.

We introduced Zorilla, a prototype P2P middleware designed for creating an
instant cloud out of any available resources, including stand-alone machines, clus-
ters, grids, and clouds used concurrently, and running distributed supercomputing
applications on the resulting system. Zorilla uses a combination of Virtualization
and P2P techniques to implement all functionality, resulting in a simple, effective,
and robust system. For instance, the flood-scheduling system in Zorilla makes
use of the fact that resources are virtualized, allowing for a simple yet effective
resource discovery mechanism based on P2P techniques.

Zorilla serves as a platform for the research presented in this thesis. Chap-
ters 3 and 4 provide more detail on the techniques used in Zorilla. In Chapter 5
we discuss resource tracking, a vital part of application running in dynamic systems
such as instant clouds, and explicitly supported in Zorilla. Chapter 6 describes
world-wide experiments performed with Zorilla.
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Chapter 3

ARRG: Real-World
Gossiping∗

Information dissemination in distributed systems is usually achieved through broad-
casting. Commonly, broadcasting is done by building a broadcast tree, along which
messages are sent. This approach can also be taken in peer-to-peer (P2P) sys-
tems [76]. However, maintaining such a tree structure in a large dynamic network
is difficult, and can be prohibitively expensive. The broadcast tree may have to
be rebuilt frequently due to changing network conditions or machines, or nodes,
joining and leaving.

For P2P systems, an alternative to building broadcast trees is to use flood-
ing [86]. Unlike broadcasting, flooding does not use any specific network structure
to control the flow of messages between nodes. Upon receiving a new message,
a node simply sends it to all its neighbors. With flooding, nodes can receive
messages multiple times from different neighbors. Especially in situations where
many nodes need to simultaneously and frequently disseminate information, both
tree-based broadcasting and flooding are ineffective, because the number of mes-
sages passing through each node quickly exceeds its network capacity, processing
capacity, or both.

Gossiping algorithms offer [32] an alternative to broadcasting and flooding
when efficiency, fault tolerance and simplicity are important. The aim of gossiping
algorithms is to severely limit the resources used at each node at any point in
time. These algorithms are usually based on a small cache of messages stored
on each node. Periodically, nodes exchange, or gossip, these messages with each
other, thus updating their caches. This results in each node receiving a constantly
changing set of messages. Over time, each node is likely, but not guaranteed, to
receive each message in the system. Thus, with gossiping, the resource usage of a
node is bounded in exchange for a slower rate of information dissemination. Also,

∗This chapter is based on our paper published in Proceedings of the 16th IEEE International
Symposium on High-Performance Distributed Computing (HPDC 2007) [24].
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gossiping does not guarantee messages to be received in the same order they were
sent, and messages might be lost or delivered multiple times.

Gossiping techniques are used in many applications, such as replicated name
services [21], content replication [74, 47, 81], self configuration and monitoring [8],
and failure detection [68]. In Zorilla, gossiping techniques are to manage the over-
lay network used for resource discovery. Most research on gossiping has relied on
theory and simulations for evaluation of algorithms. However, because of inher-
ent limitations, simulations cannot take into account all aspects of a real-world
system.

This chapter focuses on the design, deployment and evaluation of gossiping
algorithms in real-world situations. We focus on a gossiping-based membership
algorithm capable of providing a uniform random set of members at each node, a
problem commonly solved with gossiping techniques. Membership algorithms are
an important building block for gossiping algorithms in general. In a membership
algorithm, the messages which are gossiped actually contain identifiers of nodes, or
members, of the system. Since most applications for gossiping algorithms rely on
disseminating information uniformly across a certain system, the random members
produced by the algorithms described in this chapter are ideally suited as targets
for gossip messages.

The contributions of this chapter are as follows.

• We give an overview of all known and some new difficulties encountered when
moving from simulation to application. These difficulties include race condi-
tions due to non-atomic gossips, failing nodes, unreliable networks, and the
inability to reach nodes because of firewalls and Network Address Translation
(NAT).

• Although most gossiping algorithms are able to cope with some of the prob-
lems in real-world systems, there currently are no gossiping algorithms specif-
ically designed to cope with all known problems simultaneously. We there-
fore introduce a simple, robust gossiping algorithm named Actualized Robust
Random Gossiping (ARRG). It is able to handle all aforementioned prob-
lems.

• To address the connectivity problems encountered, we introduce a novel
technique for ensuring the proper functioning of a gossiping algorithm, a
Fallback Cache. By adding this extra data structure to an existing gossiping
algorithm, the algorithm becomes robust against connectivity problems such
as firewalls. The Fallback Cache is not limited to ARRG, but it can be
used with any existing gossiping algorithm. We have, for instance, also
applied it to Cyclon [81]. Maintaining a Fallback Cache does not incur any
communication overhead and does not alter the properties of the existing
algorithm, except for making it more robust.

• To compare gossiping algorithms and techniques, we introduce a new per-
formance measurement: Perceived Network Size. This novel metric has the



3.1. Real-World Problems & Related Work 23

advantage that it can be measured locally on a single node. Traditional
metrics require global knowledge, which is impractical, if not impossible, to
obtain in real-world systems. In addition, the Perceived Network Size metric
can be used to determine behaviors of gossiping algorithms previously evalu-
ated using multiple separate metrics. Also, our metric is able to clearly show
differences in both efficiency and correctness between gossiping algorithms.

• We evaluate ARRG in simulations and on a real-world system, using several
realistic scenarios with NAT systems, firewalls and packet loss. In these con-
ditions, ARRG significantly outperforms existing algorithms. We also apply
ARRG’s Fallback Cache technique to an existing gossiping algorithm (Cy-
clon), and compare its performance with ARRG. We show that, in systems
with limited connectivity, algorithms with the Fallback Cache significantly
outperform gossiping algorithms without it. Even under pathological condi-
tions with a message loss rate of 50% and with 80% of the machines behind
a NAT, ARRG still performs virtually the same as under ideal conditions.
Existing gossiping algorithms fail under these circumstances.

ARRG forms the basis of the overlay network used in Zorilla for resource dis-
covery (see Chapter 2). ARRG is also used in the distributed implementation of
our JEL resource tracking model (see Section 5.4.2 on page 68). For large-scale
experiments done with Zorilla, including ARRG, see Chapter 6.

The rest of this chapter is organized as follows. In Section 3.1 we focus on
the problems present in real-world systems as opposed to simulations and theory.
We investigate to what extent current gossiping algorithms are able to handle
these problems. In Section 3.2 we introduce the ARRG algorithm, followed by
the introduction of the Fallback Cache technique in Section 3.3. We introduce
the Perceived Network Size metric in Section 3.4. In Section 3.5 we evaluate the
different algorithms and techniques in a number of use cases. Finally, we conclude
in Section 3.6.

3.1 Real-World Problems & Related Work

In this section we give an overview of all known problems that must be addressed
when implementing an abstract gossiping algorithm in a real system, and identify
some problems not currently considered. We also examine related work, focusing
on the solutions for these problems used by current algorithms. Table 3.1 gives an
overview of the capability of different gossiping algorithms to address these prob-
lems. Each algorithm is rated according to its ability to overcome each problem.
NC, sometimes listed alongside a rating, indicates that the literature available for
this protocol does not consider this problem. In these cases we analyzed the al-
gorithm itself to determine the rating. We also list ARRG, a simple and robust
gossiping algorithm introduced in Sections 3.2 and 3.3.
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Node Network Non- Limited
Failures Unreliability Atomicity Connectivity

SCAMP [36] +/- +/- NA - NC
lpbcast [31] + NC +/- NC NA - NC
ClearingHouse [21, 2] + + NC + - NC
PROOFS [74] + + +/- - NC
Newscast [47, 82] + +/- NC +/- NC - NC
Cyclon [81] + +/- +/- - NC
ARRG, no Fallback + + + +/-
ARRG + + + +

- = unaddressed
+/- = partially addressed
+ = fully addressed
NA = Not Applicable
NC = Not Considered in the literature covered by this chapter

Table 3.1: Robustness of gossiping algorithms.

3.1.1 Node failures

The first problem is that of node failures. A node may leave gracefully, when the
machine hosting it is shut down, or it might fail, for instance when the machine
crashes. In this context, the joining and leaving of nodes during the operation of
the system is often called churn. Most, if not all existing gossiping algorithms take
node failures into account.

A common method to handle node failures is refreshing, where new identifiers of
nodes are constantly inserted in the network, replacing old entries. Combined with
redundant entries for each node, this ensures that invalid entries are eventually
removed from the network, and an entry for each valid node exists. All protocols
listed in Table 3.1 exhibit this behavior, except the SCAMP [36] algorithm.

As an optimization, failures can also be detected. For example, the Cyclon [81]
algorithm removes nodes from its cache when a gossip attempt fails. This technique
requires the algorithm to be able to detect failures. If an algorithm only sends out
messages, without expecting a reply, a failure cannot be detected without extra
effort.

3.1.2 Network unreliability

The second problem we face is network unreliability. Most simulations assume that
all messages arrive eventually, and in the same order as they were sent. In real
networks, however, messages may get lost or arrive out of order. This may have an
influence on the proper functioning of the algorithm, especially when the message
loss rate increases. If non-reliable protocols such as UDP are used, message loss
can be caused by network congestion, limited buffer space, and firewalls dropping
UDP traffic.
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A partial solution for this problem is to use a network protocol capable of
guaranteeing message delivery and ordering, such as TCP. However, whereas UDP
is connectionless, TCP connections have to be initiated, and consume more local
and network resources than the more lightweight UDP protocol. Finally, using
TCP still does not make communication completely reliable, as TCP connections
themselves can still fail due to network problems, timeouts or crashes.

To completely overcome the network unreliability problem a gossip algorithm
needs to expect, and be robust against, message failures and out of order delivery.
In the ClearingHouse [2] algorithm this is, for instance, handled by sending out
multiple requests, while only a portion of the replies are required for a proper
functioning of the protocol.

A gossiping algorithm is, by definition, unable to completely overcome network
unreliability if it tries to maintain an invariant between communication steps. For
instance, the Cyclon [81] algorithm swaps entries in each gossip exchange, where
some entries from one node are traded for entries from another. Because this swap
mechanism does not create or destroy entries, the number of replicas of each node
identifier in the entire network remains constant. However, if a reply message is
lost, this invariant does not hold, as the entries in the message have already been
removed from the sender, but are not added to the cache of the node to which the
message is sent.

3.1.3 Non-atomic operations

The third problem that is encountered when implementing gossiping algorithms on
a real system is the non-atomicity of operations that involve communication. For
example, the exchange of data between the caches of two nodes is often considered
to be an atomic operation during the design and simulation of gossiping protocols.
In reality, the exchange consists of a request and a reply message, separated in
time by the latency of the network. Therefore, after a node has initiated a gossip,
it can receive one or more gossip requests before its own gossip has finished (i.e.,
the gossip reply has not arrived yet). With some existing protocols, this can lead
to data corruption of the gossiping cache.

In simulations, message exchanges are often instantaneous, and network latency
is implicitly assumed to be zero. In reality however, latency can of significance,
as the window for the aforementioned race condition increases as the network
latency increases. Simply delaying incoming gossip requests until the initiated
gossip has finished, leads to a deadlock if there happens to be a cycle in the
gossiping chain. Another possible solution, ignoring concurrent gossips, as the
PROOFS [74] algorithm does, leads to a high failure rate, as shown in [80].

We argue that, when a gossiping algorithm is designed, exchanging information
between nodes cannot be considered an atomic operation. Care must be taken that
the state of the cache remains consistent, even when a request must be handled
while a gossip attempt is underway.
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3.1.4 Limited connectivity

The fourth and last problem that must be faced in real-world networks is limited
connectivity between nodes in the network. Most private networks use firewalls
that block incoming connections. This effectively makes machines unreachable
from the outside. Systems can usually still make connections to the outside, though
sometimes even these are restricted.

Another type of device which limits connectivity between computers is a Net-
work Address Translation system. These NAT devices make it possible for multiple
computers in a network to share a single external IP-Address. The drawback is
that, in general, the machines behind this NAT are not reachable from the outside.

Though methods exist to make connections between machines despite fire-
walls and NATs [54], these techniques cannot successfully be applied in all cir-
cumstances, and some connectivity problems remain. Moreover, mechanisms to
circumvent firewalls and NATs often require considerable configuration effort, and
typically need information about the network topology.

Most current gossiping algorithms are designed with the explicit [80] assump-
tion that any node can send messages to any other node. Therefore these algo-
rithms are not resilient to network connectivity problems.

There are systems that try to overcome limited connectivity, such as Smart-
Sockets [54], Astrolabe [67, 8], Directional Gossip [51, 52] and Failure Detec-
tion [68]. However, these systems use an explicit structure on top of a traditional
gossiping algorithm. Usually, a hierarchical network is built up manually to route
traffic. To overcome the connectivity problem without requiring manual configu-
ration and explicit knowledge of the network, new techniques are needed. We will
introduce a novel solution, the Fallback Cache, in Section 3.3.

3.2 Actualized Robust Random Gossiping

To address the problems mentioned in Section 3.1, we introduce a simple gossiping
algorithm, named Actualized Robust Random Gossiping (ARRG). This gossiping
algorithm is an example of a gossiping algorithm specifically designed for robust-
ness and reliability. ARRG is able to address node failures, network unreliability
and does not assume that operations involving communication are atomic. ARRG
uses randomness as a basis for making all decisions. This is done to make the
algorithm robust against failures and to reduce complexity.

The pseudo code for ARRG is shown in Figure 3.1. Every time a node in-
stantiates a gossip, it selects a random target node from its cache, and sends it a
random set of cache entries, containing a number of elements from its own cache.
The exact number is a parameter of the algorithm, denoted by SEND SIZE. The
node also adds an entry representing itself to the list sent (lines 6–11).

Upon receipt of the message, the target sends back a random set of cache
entries, again including itself (lines 24–27). It also adds the received entries to its
cache, ignoring entries already present in its cache. Since the cache has a fixed
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1 void s e l e c t T a r g e t ( ) {
2 return cache . selectRandomEntry ( ) ;
3 }
4
5 void doGossip ( Entry t a r g e t ) {
6 // s e l e c t e n t r i e s to send
7 sendEntr i e s = cache .
8 se lectRandomEntr ies (SEND SIZE ) ;
9 sendEntr i e s . add ( s e l f ) ;

10
11 //do reques t , wai t f o r r e p l y
12 sendRequest ( target , s endEntr i e s ) ;
13 r e p l y E n t r i e s = rece iveRep ly ( ) ;
14
15 // update cache
16 cache . add ( r e p l y E n t r i e s ) ;
17 while ( cache . s i z e ( ) > CACHE SIZE) {
18 cache . removeRandomEntry ( ) ;
19 }
20 }
21
22 Entry [ ] handleGossipMessage (
23 Entry [ ] s endEntr i e s ) {
24 // s e l e c t en try to send back
25 r e p l y E n t r i e s = cache .
26 se lectRandomEntr ies (SEND SIZE ) ;
27 r e p l y E n t r i e s . add ( s e l f ) ;
28
29 // update cache
30 cache . add ( sendEntr i e s ) ;
31 while ( cache . s i z e ( ) > CACHE SIZE) {
32 cache . removeRandomEntry ( ) ;
33 }
34
35 return r e p l y E n t r i e s ;
36 }

Figure 3.1: Pseudo code for ARRG.

maximum size, the target may need to remove some entries if the maximum size
is exceeded. The purged entries are selected at random (lines 29–33).

When the initiator of the gossip receives the reply from the target, the received
entries are added to the local cache, ignoring duplicates. If this action increased
the size of the cache beyond its maximum, random entries are removed until the
number of entries becomes equal to the size of the cache, denoted by CACHE SIZE
(lines 13–19).
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ARRG was explicitly designed to address the problems listed in Section 3.1
in a simple and robust manner. The main difference between other algorithms
and ARRG is the explicit design choice to use the simplest solution available for
each functionality required, while taking the problems listed in Section 3.1 into
account. Moreover, any decision must be as unbiased as possible. An example of
a bias is the removal of nodes after a failed gossip exchange with that node. This
creates a bias against nodes which are not directly reachable because of a firewall
or a NAT, making the content of a node’s cache less random.

Table 3.1 on page 24 lists the capabilities of ARRG in comparison to other
algorithms. An algorithm which can also overcome many problems in real-world
systems is ClearingHouse [2]. However, ClearingHouse is significantly more com-
plex than ARRG. This may create a bias against some nodes, hindering robustness.
For instance, ClearingHouse combines caches from other nodes with the identifiers
of nodes which requested its own cache. Therefore, nodes with better connectivity
have a higher chance of appearing in caches. Another difference between Clearing-
House and ARRG is the bandwidth usage. ClearingHouse requests the complete
cache from multiple nodes in each round, but disregards a large part of this infor-
mation, wasting bandwidth. ARRG in contrast only transfers a small fraction of
a single cache.

Node failures are handled in ARRG by the constant refreshing of entries. New
entries are constantly added to the system, as old ones are purged. ARRG depends
on random chance to purge old entries. Some protocols [81] also take into account
the age of entries, but as this adds both complexity and a bias against old entries,
ARRG simply replaces randomly selected entries each time a gossip exchange is
done.

To address both the non-atomicity and the unreliability issue, a gossip request
and its reply in ARRG can be seen as two separate gossips; there is no data
dependency between the two. If either the request or the reply gets lost, both the
node initiating the gossip and the receiver of the request are in a consistent state,
and no information is lost. Because of this decoupling between a gossip request and
reply, non-atomicity issues such as race conditions do not occur. ARRG explicitly
does not assume the exchange to be an atomic operation.

To make ARRG more robust against connectivity problems nodes are not re-
moved from the cache when a gossip attempt to this node fails. This is done
because the difference between a node which is unreachable and a node which is
defective is undetectable. So, to guarantee that nodes behind a firewall don’t get
removed from all caches, failed gossip attempts are simply ignored. The random
replacement policy will eventually remove invalid entries.

Ignoring failed gossip attempts gives nodes behind a NAT or firewall a better
chance of remaining in the cache of other nodes, and eventually getting to the
cache of a node which is able to reach it. There is still a chance that a node may
loose all cache entries to nodes it is able to reach, effectively leaving it with no
nodes to contact and possibly removing itself from the network. ARRG contains
an additional mechanism to keep this from occurring, our novel Fallback Cache.
This technique is described in the next section.
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Another reason ARRG is more robust against connectivity problems, is the
push-pull mechanism used to perform a gossip exchange. When a node sends
a gossip request containing some entries of its cache, the target of this message
replies with some of its own entries. When a message is sent out by a machine
behind a NAT or firewall, a reply is usually expected by this firewall or NAT. This
makes it possible for a node to receive entries from the target node it sent a request
to, even though the requesting node normally is unable to receive messages.

3.3 The Fallback Cache

As described in Sections 3.1 and 3.2, current solutions for the network connectivity
problem do not always suffice. As a possible solution we introduce the Fallback
Cache. This technique adds robustness to an existing gossiping algorithm, without
changing in any way the functioning of the algorithm itself. The Fallback Cache
acts as a backup for the normal membership cache present in the gossiping algo-
rithm. Each time a successful gossip exchange is done, the target of this gossip is
added to the Fallback Cache, thus filling it over time with peers which are reach-
able by this node. Whenever a gossip attempt fails, the Fallback Cache is used to
select an entry to gossip with instead of the one selected by the original algorithm.
Since this Fallback entry has already been successfully contacted once, there is a
high probability that it can be reached again.

Figure 3.2 shows the necessary extra (pseudo) code to add a Fallback Cache to
an existing algorithm. Line 2 shows the initialization of the Fallback Cache. The
cache itself is a set of node identifiers. We assume the original gossiping algorithm
performs a gossip once every T seconds by first selecting a target in a selectTarget
function, followed by an attempt to contact this node to do the actual gossiping by
a doGossip method. To use the Fallback mechanism, the doGossipWithFallback
function starting at line 5 has to be called instead.

The doGossipWithFallback function mimics the original algorithm, by initially
calling selectTarget and doGossip in lines 7 and 8. If the gossip attempt is success-
ful, this node is added to the Fallback Cache in line 14 after which the function
returns. The cache has a maximum size. If a new entry is added while it has
already reached the maximum size, a random entry is removed from the cache
after the new entry is added (lines 15–17).

If the attempt is unsuccessful, an entry is selected from the Fallback Cache in
line 20, and another gossip attempt is done (line 22) with this new target. This
retry is only done once. When it also fails (or when the Fallback Cache is empty)
the algorithm gives up, and the next gossip attempt will be done whenever the
function is called again (usually after some fixed delay).

Although the original gossiping algorithm may remove entries when a gossip
attempt fails, the Fallback Cache will never remove invalid entries. This is done
to make the Fallback Cache more robust. A node that is currently not reachable
because of network problems, or because it is overloaded with requests, may be-
come reachable again later. If invalid entries are removed from the Fallback Cache
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1 // ex t ra i n i t i a l i z a t i o n
2 fa l lbackCache = new Set ( ) ;
3
4 // go s s i p func t i on
5 void doGossipWithFallback ( ) {
6 // c a l l e x i s t i n g a l gor i thm func t i on s
7 t a r g e t = s e l e c t T a r g e t ( ) ;
8 doGossip ( t a r g e t ) ; // cou ld f a i l because
9 // o f a t imeout or a

10 // connect ion problem
11
12 i f ( s u c c e s s f u l ) {
13 // remember t h i s t a r g e t
14 fa l lbackCache . add ( t a r g e t ) ;
15 i f ( fa l lbackCache . s i z e ()>CACHE SIZE) {
16 fa l lbackCache . removeRandomEntry ( ) ;
17 }
18 } else {
19 // r e t r y wi th Fa l l b a c k entry
20 t a r g e t = fa l lbackCache .
21 selectRandomEntry ( ) ;
22 doGossip ( t a r g e t ) ; // i f t h i s f a i l s ,
23 // j u s t i gnore i t
24 }
25 }

Figure 3.2: Fallback Cache pseudo code.

it might become empty, leaving the node with no nodes to contact. Invalid entries
will eventually be overwritten by new entries when successful gossip exchanges are
performed, thanks to the random replacement policy.

The Fallback mechanism does not interfere with the normal operation of a gos-
siping algorithm. If no errors occur, the Fallback Cache is never used. Therefore,
all the properties present in the original algorithm are retained. This makes it
possible to add robustness against connectivity problems without redesigning the
rest of the algorithm.

When errors do occur, the Fallback mechanism guards against the cache of the
node containing only invalid entries. Since the Fallback Cache holds only entries
which were valid at the time and location they were added, this provides a much
more reliable source of valid entries than the original cache, greatly reducing the
risk that a node gets disconnected from the network, and reducing the risk that
the network partitions.

The Fallback Cache in itself is not a good source for uniformly random nodes.
The update rate is slow at one entry per gossip round, and the mechanism relies on
the original gossip cache to provide new entries. The combination of the original
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and the Fallback Cache is therefore needed to provide a valid and robust gossiping
algorithm. The original cache will contain a random subset of all the nodes in the
system, while the Fallback Cache contains a random set of all the reachable nodes.

3.4 Perceived Network Size

Ideally, a gossiping algorithm should populate node caches such that the chance
of finding an item in a particular cache is both independent of the other items
in the cache, and independent of the items in neighboring nodes’ caches. We
define a gossiping algorithm to be viable if it is unlikely to result in a partitioning
of the network. The closer an algorithm is to the ideal random case, the faster
information is likely to move between any two chosen nodes, and thus the more
efficient it is.

Previous analytical studies have mostly measured the degree of randomness
in communication of gossiping algorithms by considering properties of the overlay
network formed by neighborhood caches. For instance, the eventual occurrence of
network partitions [31, 2], the presence of small-worlds like clustering [47, 82], or
a widely varying node in-degree [2, 81] all indicate a certain amount of relatedness
between cache contents. Such measures, however, require taking a snapshot of the
state of all nodes, something which is non trivial in a real network. Voulgaris [80]
also examines the randomness of the stream of items received by a single node using
the Diehard Benchmark of statistical tests for pseudo-random number generators.
These tests, however, only allow protocols to be labeled as random-enough, or
not-random-enough. Moreover, running such a benchmark is costly, making it
impractical to use in most systems.

For this study we introduce a novel measure of gossiping randomness, the Per-
ceived Network Size, that can be applied at a single node, and that can distinguish
differences in the degree of randomness of two algorithms, or in the degree of ran-
domness at different locations in a network.

Consider the inter-arrival times, R, of items from a given node at another node
in the network. Given that in a gossiping protocol all nodes enter the same number
of items into the system, for a fully random protocol each item received should
have a probability of 1/N of being from the selected node, where N is the number
of nodes in the network. The distribution of the random variable R thus gives an
indication of the randomness of the gossiping process. For instance, the average
value of R, for a large enough sample size, will be N . Further, for a uniformly
random process, a smaller sample size will be needed to get the correct average,
than for a process where the distribution of items is skewed. Based on this, we
define the Perceived Network Size, as the average inter-arrival time of a specific
node identifier in a node’s cache. In practice, we calculate the Perceived Network
Size using the inter-arrival time of all nodes in the network (and aggregating all
these separate rates) rather than a single node, to increase accuracy and to speed
up data collection. By examining the rate at which Perceived Network Size reaches
the correct value as a node receives more information over time, we can compare
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Figure 3.3: Perceived Network Size for four protocols.

the relative randomness of two gossiping processes, or of the same process at
different nodes.

Figure 3.3 compares perceived network size versus time for ARRG, Cyclon, a
protocol like ARRG but in which nodes’ neighbors are fixed (Fixed Overlay), and
for a stream of node IDs generated using a random number generator (Random
IDs). All of these protocols can be considered to be viable in this setup as they all
eventually reach the correct perceived network size of 800 nodes. The rate at which
this value is reached, however, shows that the protocols in which the neighborhood
overlay changes are significantly more efficient than the Fixed Overlay protocol.
It can also be seen that ARRG is slightly less random than Cyclon, indicating the
effect of the more precise age-based item removal used in Cyclon. Cyclon is almost
indistinguishable from the “true” random process.

Besides allowing us to accurately compare viable protocols, the Perceived Net-
work Size can also be used to detect the various behaviors considered in earlier
studies. Protocols that result in small-worlds like clustering or exhibit widely vary-
ing node in-degrees are less efficient, and thus find the correct Perceived Network
size more slowly. Network partitions result in a Perceived Network Size that is
smaller than expected, as seen later in Figure 3.9. Slowly partitioning networks
result in a decreasing Perceived Network Size (Figure 3.12).

3.5 Experiments

To test the effectiveness of ARRG and its Fallback Cache technique we examine
a number of different use cases. All experiments where done with Zorilla, which
uses gossiping mechanism for resource discovery purposes (see Chapter 2). We
evaluate the techniques described in this chapter both with a real application on
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a real system, and using simulations. For the experiments we use the Distributed
ASCI Supercomputer (DAS-3) [20] , which consists of 5 compute clusters located
across the Netherlands.

Zorilla includes implementations for both ARRG and Cyclon using the TCP
protocol, and a Fallback Cache for both algorithms. Connections are set up using
the SmartSockets library [54]. Both the normal and the Fallback Cache (if present)
hold 10 entries. Each gossiping algorithm initiates a gossip exchange with a node
from its cache every 10 seconds. During this exchange 3 entries are sent by each
node.

To make a fair comparison between the algorithms, we implemented the pos-
sibility to run multiple gossiping algorithms with different implementations and
settings concurrently. Each running algorithm has its own private data structures,
and does not interact with other instances in any way.

When a gossiping algorithm starts, it needs some initial entries to gossip with.
To start, or bootstrap the gossiping algorithm in Zorilla, or in this case multiple
algorithms running concurrently, each node is given one or more other nodes when
it starts running. This is usually a single node started before the others. In
practice, the node used to bootstrap the system will probably not run permanently.
So, to make the experiment as realistic as possible, the bootstrap entry is only
available to each gossiping algorithm for a limited time, in this case 100 seconds.
If a gossiping algorithm could use this bootstrap indefinitely, it would always be
possible to restart an algorithm, making the difference between a failing gossiping
algorithm and one performing poorly less distinguishable.

For the experiments on a real system with 80 nodes we use small cache and
gossip sizes of 10 and 3 items respectively. For simulations of 8000 nodes, we
maintain the same cache-to-gossip-ratio, but speed up the system by using larger
values of 100 and 30 items.

3.5.1 The Fully Connected Scenario

For reference, and to determine the overhead of the Fallback Cache technique,
we first measure on a network without any connectivity problems. We compare
ARRG to ARRG without a Fallback Cache. Figure 3.4 shows the results for the
test system. There is no significant difference between ARRG with and without
a Fallback Cache. As a Fallback Cache is only used when connectivity problems
occur, this is expected. From this graph we can conclude the Fallback Cache causes
no overhead. The simulated results are not shown here, as they are identical to
the results from the experiment. Also note that the Perceived Network Size of
ARRG is converging to 80, the actual network size, thus showing that ARRG is
functioning properly in this setting.

3.5.2 The X@Home Scenario

To test the effectiveness of a Fallback Cache in more demanding situations, we
continue with some experiments in a X@Home setting. In this scenario, a number



34 Chapter 3. ARRG: Real-World Gossiping

Time (seconds)
0 600 1200 1800 2400 3000 3600P

er
ce

iv
ed

 N
et

w
or

k 
S

iz
e 

(#
 n

od
es

)

0

10

20

30

40

50

60

70

80

ARRG without Fallback
ARRG

Figure 3.4: ARRG in a fully connected network.

of home users join together to form one big peer-to-peer network. Examples of
such systems are the SETI@Home [71] project and file sharing applications.

The main reason for home users to have connectivity problems are NAT sys-
tems. As explained in Section 3.1.4, these are used to share a single connection
between multiple machines, leaving these machines unreachable from the outside.
Not all home users have a NAT system, as they may only have a single machine
and do not need to share the connection. Also, some methods [54] exist to allow
a machine behind a NAT to be reachable from the outside. In this scenario the
machines connected to the peer-to-peer network can therefore be divided into two
types. One type which is reachable from other nodes in the system, and one which
is not.

As running an experiment with a large number of home machines is impracti-
cal, we use a simple technique to achieve the same result on our DAS-3 system.
Each node which is in the group of home machines does not accept any incoming
connections, and is only able to make outgoing connections. This is done at the
socket level, so neither the application nor the gossiping algorithm itself are aware
of their inability to receive gossip requests.

As a reference, we also include a retry version of ARRG. If an attempt to gossip
fails, this version, like the Fallback version, attempts a new gossip with a different
target. However, this new target is not selected from a special cache, but uses
the normal selection mechanism instead. In the case of ARRG, this is simply a
random entry from the cache.

This experiment consisted of 64 unreachable home machines and 16 global
machines which are reachable normally, for a total of 80 nodes. Figure 3.5 shows
the performance of ARRG on a global node. We compare ARRG with a version
without a Fallback Cache and with a version that uses retries. The graph shows
that ARRG without the Fallback Cache is not a viable algorithm. As expected,
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Figure 3.5: ARRG in the X@Home scenario.
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Figure 3.6: Gossip exchanges for ARRG in the X@Home scenario.

it is unable to overcome the connectivity problems present in this scenario. The
Perceived Network Size does not reach the actual network size, but only reaches 40,
indicating that the gossiping network has partitioned. It also shows that employing
a retry strategy, where another target is picked at random when a gossip attempt
fails, also does not result in a viable protocol. However, when a Fallback cache
is used, ARRG is able to perceive the entire network, showing almost identical
performance to the fully connected reference case shown in Figure 3.4.

To clarify the underlying reasons for this difference in performance between
the various versions of ARRG, Figure 3.6 shows the number of successful gossip
exchanges for each version. These include both gossip exchanges initiated by the
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Figure 3.7: ARRG in a 8000 node simulation of the X@Home scenario.

node and incoming requests from other nodes. The graph clearly shows that the
Fallback Cache version of the algorithm performs almost an order of magnitude
more successful gossip exchanges than the other versions. A large percentage of
entries in the cache of each version are home nodes, which causes a gossip attempt
to fail when selected. With the Fallback Cache in place, the algorithm will always
choose a valid node in the second attempt. In the version without a Fallback
Cache and with the retry version, there is no such guarantee, causing gossips to
fail frequently.

To test the validity of our findings in a larger environment, we also ran a simu-
lation of the X@Home scenario. The simulation considers 8000 nodes, consisting of
6400 home nodes and 1600 global nodes. To produce an information dissemination
rate similar to that in Figure 3.5 we changed several parameters of the algorithm,
as discussed in the introduction of this section. The cache size of each node was
100, and 30 entries were exchanged in each gossip. The size of the Fallback Cache
was not increased, and remained at 10. Figure 3.7 shows the results of a simulated
run of 2 hours. It shows that the performance of ARRG and the Fallback Cache
technique are comparable to our real measurements.

3.5.3 The Real-World Distributed System (RWDS) Scenario

The last scenario where we test the Fallback Cache mechanism is the Real-World
Distributed System (RWDS) scenario, depicted in Figure 3.8. This system consists
of multiple separate clusters of machines which are protected by a firewall. This
firewall will deny incoming connections from outside the cluster. However, con-
nections between nodes inside a single cluster and outgoing connections are still
possible. Each cluster has a single node which resides on the edge of the cluster,
a so called head node. This node is able to receive incoming connections from
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Figure 3.8: RWDS use case Network Model.

Time (seconds)
0 600 1200 1800 2400 3000 3600P
er

ce
iv

ed
 N

et
w

or
k 

S
iz

e 
(#

 n
od

es
)

0

10

20

30

40

50

60

70

80

ARRG without Fallback
ARRG without Fallback, with Retry

ARRG

Figure 3.9: ARRG in the RWDS scenario.
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Figure 3.10: Gossip exchanges for ARRG in the RWDS scenario.

the outside, as well as connect to the nodes inside the cluster. We implemented
this setup using the SmartSockets library [54], which is able to selectively deny
connections if requested using a configuration file. Again, nodes are not aware of
these restraints as they are enforced at the socket level. Our setup consisted of 4
clusters with 16 machines and one head node. The system also contained 17 global
nodes, which were not protected by a firewall. The total number of machines in
this system is therefore 85.

Figure 3.9 show the results for this experiment, measured at a global node. As
expected, both the retry version of ARRG and the version without the Fallback
Cache are not viable in this setting. From 1200 seconds onward, both versions
show a decline of the Perceived Network Size. This shows that the gossiping
network has partitioned, and nodes are only gossiping with a subset of the network.
Analysis of the contents of the gossip caches shows that each node is in fact only
communicating with nodes inside its own cluster. The Fallback mechanism, again,
is able to compensate for the connectivity problems. The Fallback Cache contains
a random subset of all reachable nodes, in this case both nodes within a node’s
own cluster and the global nodes in the system.

Figure 3.10 shows the number of successful gossip exchanges done by each
algorithm. Unlike the previous experiment, there is only a small difference between
them. In the previous experiment, failure of the protocol was caused by a lack of
reachable nodes. In the RWDS case, being able to reach nodes is not sufficient.
These nodes also need to be distributed correctly. The retry version of ARRG and
the version without the Fallback Cache are only gossiping with nodes inside their
own cluster, causing the network to partition.

Notice that the performance of the Fallback Cache in the RWDS scenario is
slightly less than its performance in the X@Home and fully connected scenarios.
This is due to the fact that the cache of the algorithm is not able to determine
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Figure 3.11: Cyclon in the X@Home scenario.

the difference between nodes inside its own cluster and global nodes. With this
information, the number of gossips within its own cluster could be limited. This
is important because nodes in the local cluster usually have a tendency to contain
a less random set of the world than global nodes. Cluster information is available
in the gossiping algorithms that use structure such as Astrolabe [67], but this
information needs to be supplied manually. We leave automatically determining
and exploiting network structure as future work.

3.5.4 Cyclon

To determine the effectiveness of our Fallback mechanism in other algorithms than
ARRG, we also tested it with the Cyclon [81] gossiping algorithm. We compared
three different versions of Cyclon, the regular Cyclon algorithm, a version which
retries once in case of a failure, and a version including our novel Fallback cache.
Figure 3.11 shows the result for the X@Home scenario (on a global node). In this
case the normal version of Cyclon is not viable. Although it almost reaches the
entire network size, the Perceived Network Size quickly starts declining. Over time,
the Cyclon network partitions. The same was observed for the retry version. With
the addition of the Fallback Cache, Cyclon performs very well in this scenario. The
Fallback cache completely compensates for the connectivity problems, and Cyclon
is as fast as it was in the ideal situation (See Figure 3.3). Thus, with Fallback
Cyclon is viable in the X@Home scenario.

Figure 3.12 shows Cyclon in the RWDS scenario. Normal Cyclon again fails,
though much faster this time. It clearly creates a partition of the network, as the
Perceived Network Size is converging slowly to the size of a single cluster. Cyclon
with retry manages to overcome the network limitations. However, this is most
likely due to the aggressive purging by Cyclon. In a slightly modified setting, for
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Figure 3.12: Cyclon in the RWDS scenario.

instance with fewer global nodes, the retry version will probably fail as well. The
Fallback version of Cyclon again is viable, converging to the full network size.

3.5.5 Pathological Situations

By design, ARRG and its Fallback cache are robust against transient network
problems such as congestion or link failure. This is achieved by retaining as much
information as possible. Both ARRG’s normal and Fallback caches do not remove
invalid entries, but only replace entries with new valid entries as they become
available. Reduced network performance therefore does not result in the loss of
entries. To test this robustness we performed experiments in two pathological
cases.

The first system setup is identical to the X@Home case, but in addition, we
introduced 50% messages loss. This performance degradation could for instance
occur in an environment where the network is congested, or where a poor wireless
connection is present. We implemented the message loss at the socket layer. Fig-
ure 3.13 shows the results for both ARRG and Cyclon. Several conclusions can
be drawn from this graph. First, the ARRG algorithm is able to overcome even
this pathological case, without any noticeable performance degradation. Second,
the Cyclon algorithm is not viable in this scenario. Even with the addition of a
Fallback Cache, Cyclon does not perform well, and is not viable.

The reason for Cyclon’s low performance can be found in the manner Cyclon
handles failures. When a gossip attempt to a node fails, Cyclon removes its en-
try. For a gossip exchange to succeed both the request and the reply need to be
delivered successfully. Since half of the messages are lost, the failure rate in this
scenario is 75%. This causes Cyclon to quickly run out of entries in its cache.
Adding a Fallback Cache only partially fixes this problem, as Cyclon is unable to
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Figure 3.13: ARRG and Cyclon in the X@Home scenario, with 50% message loss.
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Figure 3.14: ARRG and Cyclon in the Disconnect scenario.

do enough successful exchanges to fill its cache with valid entries, and relies almost
solely on the Fallback cache.

In the second test case nodes become disconnected from the network for a time.
The results of this test are shown in Figure 3.14. The setup is identical to the
Fully connected scenario of Section 3.5.1. After an hour, 16 of the 80 nodes are
disconnected from the network, and are neither able to reach the remaining 64
nodes nor the other disconnected nodes. After another half an hour the nodes are
reconnected.
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Fully X@Home RWDS Message Disconnect
Connected Loss

Cyclon + - - - -
Cyclon (retry) + - +/- - -
Cyclon (with Fallback) + + + +/- +

ARRG (no Fallback) + - - - +
ARRG (retry) + - - - +
ARRG + + + + +

+ = pass
- = fail
+/- = reduced performance

Table 3.2: Results of experiments for different scenarios and algorithms.

The graph shows ARRG recovers from the network problems, and Cyclon fails
to resume gossiping after the network is restored. ARRG is able to resume as
the normal and the Fallback cache still contain valid entries, as ARRG does not
remove any entries during the disconnect. Cyclon does remove invalid entries,
diminishing the number of entries in the Cyclon cache during the time the network
is disconnected. At the time the network is restored, Cyclon does not have any
entries in its cache left, and is thus not able to resume gossiping. We found that
adding an additional Fallback cache makes Cyclon robust against this failure, as
the Fallback cache still contains valid entries (not shown).

3.5.6 Experiment Summary

Table 3.2 provides a summary of all experiments performed in this section. It shows
that ARRG with a Fallback cache is able to overcome all problems presented. It
also shows that the Fallback cache is an invaluable part of ARRG, as without
it ARRG does not function properly in all cases. Adding the Fallback cache to
Cyclon significantly increases its robustness, making it robust against all problems,
though in the scenario where we introduce message loss Cyclon’s performance is
reduced.

3.6 Conclusions

In this chapter we studied the design and implementation of gossiping algorithms
in real-world situations. We addressed the problems with gossiping algorithms in
real systems, including connectivity problems, network and node failures, and non-
atomicity. We introduced ARRG, a new simple and robust gossiping algorithm.
The ARRG gossiping algorithm is able to handle all problems we identified by
systematically using the simplest, most robust solution available for all required
functionality. The Fallback Cache technique used in ARRG can also be applied to
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any existing gossiping protocol, making it robust against problems such as NATs
and firewalls.

We introduced a new metric for the evaluation of gossiping algorithms: Per-
ceived Network Size. It is able to clearly characterize the performance of an algo-
rithm, without requiring information from all nodes in the network. We evaluated
ARRG, in several real-world scenarios. We showed that ARRG performs well in
general, and better than existing algorithms in situations with limited connectiv-
ity. In a pathological scenario with a high loss rate and 80% of the nodes behind
a NAT system, ARRG still performs well, while traditional gossiping techniques
fail.

ARRG is used as the basis of our Zorilla middleware (see Chapter 2). Also,
ARRG is used in the distributed implementation of our JEL resource tracking
model introduced in Chapter 5. In Chapter 6 we discuss large-scale experiments
that include ARRG.
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Chapter 4

Flood Scheduling: Simple
Locality-Aware
Co-allocation∗

In this chapter we will examine the design and implementation of the scheduling
mechanisms present in Zorilla. Figure 4.1 shows the life cycle of a (parallel) job
on Zorilla. For an overview of Zorilla, see Chapter 2.

The scheduler of Zorilla is very much tailored for the Instant Cloud nature
of Zorilla. It assumes the system is used by relatively small numbers of users
concurrently, and that most application are fault-tolerant, and are malleable, i.e.,
able to handle changes in the number of resources used.

The scheduler of Zorilla has a number of requirements. The defining property
of Zorilla is that it uses peer-to-peer (P2P) techniques extensively, and that it has
no central components. As a first requirement, the scheduler therefore needs to
be fully distributed, as it would otherwise compromise the P2P nature of Zorilla.

Zorilla provides support for distributed supercomputing applications: high-
performance applications which use resources spanning multiple sites simultane-
ously. Therefore, the second requirement of the scheduler is that it must support
co-allocation [55], the simultaneous allocation of multiple computational resources,
even if these resources are distributed over multiple sites.

Third, the scheduler needs to be locality aware [88] in that it should schedule
jobs with regard for the distance between machines. If a single computation is
executed on resources which are too far apart, the communication cost may become
too high. Fourth and last, the scheduling algorithm needs to be robust against
changes in the environment.

The scheduler of Zorilla is based on flooding (a form of selective broadcast). It
floods messages over a P2P overlay network to locate available resources. Flooding

∗This chapter is based on our paper published in Sixth International Workshop on Global
and Peer-2-Peer Computing (GP2P 2006) [25].
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Figure 4.1: Job life cycle in a Zorilla system consisting of 5 nodes connected
through an overlay network. (a) A (parallel) job is submitted by the user to a
node. (b) The job is disseminated to other nodes. (c) Local schedulers at each
node decide to participate in the job, and start one or more Worker processes
(e.g. one per processor core available). (d) Output files are copied back to the
originating node. (This figure is identical to Figure 2.2, but is repeated here for
convenience.)
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is done within a certain radius, which influences the number of nodes reached.
Zorilla dynamically determines a suitable flood radius. This scheduling algorithm
adheres to all the requirements stated above.

This chapter is organized as follows. Section 4.1 describes related work. Sec-
tion 4.2 describes how scheduling is performed and implemented in Zorilla. In
Section 4.3 we perform several experiments to see how efficient Zorilla is in sched-
uling jobs. Finally, we conclude in Section 4.4.

4.1 Related Work

In this section we will give an overview of other distributed systems and compare
them to Zorilla, focusing on scheduling mechanisms.

Zorilla shows similarities to so-called global computing (GC) systems such as
SETI@home [71], XtremWeb [14] and distributed.net [23]. GC systems use spare
cycles of workstations to run primarily master-worker type programs. Workers
download jobs from a server and upload results when the job is completed. This
server is the main difference with Zorilla. In Zorilla, jobs are not stored on a server.
Instead, storage and scheduling of jobs is performed in a decentralized manner.
Another difference between Zorilla and GC systems is that few GC systems support
supercomputing applications. If they do (e.g. in the case of XtremWeb) a central
scheduler is used to perform the necessary co-allocation.

Another type of system related to Zorilla is grid computing with systems such
as Globus and Unicore. These systems typically use compute clusters located at
different sites. Every site has a scheduler for the jobs local to the site, and it is
possible to submit jobs to remote sites. Co-allocation is usually not directly sup-
ported but relies on a centralized meta-scheduler instead, for instance Koala [55].
The main difference to Zorilla is this centralized nature of schedulers.

The file search mechanism in the Gnutella P2P file sharing system [38] formed
a basis for the resource discovery protocol in Zorilla. In Gnutella, a node sends a
search request to its direct neighbors, which in turn send it to all their neighbors.
This process continues until a message is forwarded as many times as specified by
the user when the search was initiated. The Zorilla search algorithm extends this
algorithm in several ways, including dynamically determining a suitable number of
times to forward a message, and using the locality awareness of the P2P network
to optimize the selection of nodes reached. In Gnutella, a search will reach nodes
randomly distributed throughout the network, while in Zorilla nodes are reached
that are most likely close to the node where the flood was initiated (see Section 4.2
for more details).

Like Zorilla, the P2P infrastructure present in ProActive [11] strives to use P2P
techniques to perform parallel computations. There are several differences though.
ProActive primarily supports applications which use an ActiveObject model. Zo-
rilla, on the other hand, supports any application. Another difference lies in the
mechanism to discover resources. Like Zorilla, ProActive uses a mechanism derived
from the Gnutella system to locate resources, but it extends it differently. For in-
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Figure 4.2: Flooding a message with a radius of two.

stance, ProActive has no way of dynamically determining a suitable parameter for
the flood of the resource request. Also, ProActive is not locality aware, as resource
selection is based on the load of a remote node, not the distance to other nodes
participating in the computation. This approach leads to performance degrada-
tion if this mechanism is used to run supercomputing applications on distributed
resources.

4.2 Flood Scheduling

In this section, we will discuss the scheduler of Zorilla. As the scheduling algorithm
uses flooding to locate resources, we dub this mechanism flood scheduling.

When a job is submitted to the Zorilla system, an advertisement is created for
this job. This advertisement is a request to join the computation of the advertised
job. It contains information needed to start the job and any resource requirements
the job has.

The advertisement for a job is flooded by the origin of that job to other nodes
in the Zorilla system. In Figure 4.2, a flood is executed of a message in a Zorilla
network consisting of eight nodes. In Figure 4.2(a), the flood is started at the node
marked with an arrow. This origin node then sends the message to all its neighbors
in the overlay network in Figure 4.2(b). The neighbors of the origin node will, in
turn, forward the message to all their neighbors, shown in Figure 4.2(c). In this
picture the two nodes on the left forward the message to each other. If a node
receives a duplicate message it will be discarded instead of being forwarded.
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A flood has a certain radius, to limit the scope of the flood. The origin of a
flood sets the time to live (TTL) of the message it sends to the radius of the flood.
When a node forwards a flood message to its neighbors it decreases the TTL of
the message by one. If the TTL reaches zero it is not forwarded anymore. In
Figure 4.2 the flood is executed with a radius of two. The neighbors forward the
message with a TTL of one in Figure 4.2(c), and these messages are subsequently
not forwarded anymore. Figure 4.2(d) shows the situation after the flood has
ended. All nodes with a distance of two or less from the origin of the flood have
received the message.

When a node receives an advertisement for a job, it checks if all the require-
ments of that job are met. Requirements are for instance the availability of pro-
cessing power, memory and disk space. If enough resources are available, the
node downloads the input files and executable for the job, and starts one or more
workers.

The effect of flooding the advertisement with a certain radius from the origin
of a job is that the advertisement is delivered to all nodes close to the origin with
a certain maximum distance. This maximum distance is dependent on the radius
of the flood. A small radius will only reach nodes very close to the node, a large
radius will reach more distant nodes as well, and a very large radius might reach
all nodes in the entire system. Since the overlay network used in Zorilla is locality
aware, nodes nearby in the overlay network are also nearby (in terms of latency)
in the physical network. A flood therefore reaches the nodes physically closest to
the origin node.

Zorilla uses the following heuristic algorithm to determine the best (as low
as possible) radius for the flood that is used to start a job. First, it calculates
an initial low estimate. The heuristic currently used by Zorilla is the base 10
logarithm of the number of nodes required, but any conservatively low estimate is
sufficient. The origin of the job then initiates a flood of the advertisement with the
estimate radius, causing a number of nodes to respond with a request to join the
computation. The origin node then checks to see if enough nodes responded to the
advert. If not, it will increase the radius used by one, and send a new flood. As
nodes usually have in the order of 10 neighbors each, this increase of the radius by
one causes the request to be send to an order of magnitude more nodes than the
previous request. Any nodes responding to the new request will be added to the
list of nodes in the computation. As long as there are not enough nodes present
to perform the computation, it will keep sending floods with increasing radius.

As each flood is done independently, any new nodes which join the network
close to the submitting node will automatically receive the request message when
the next flood is done. Also, nodes which fail are automatically ignored when a
flood is sent as they are no longer part of the network. This makes flood scheduling
both flexible and fault-tolerant.

Scheduling in Zorilla meets the four requirements as listed in the introduction
of this chapter. First, it uses a decentralized scheduling algorithm. Second, the
scheduling mechanism supports co-allocation, though in a somewhat limited way.
In contrast to most co-allocating schedulers, Zorilla does not schedule nodes on
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multiple compute sites explicitly. Instead, it treats all the nodes as one big system,
enabling usage of nodes in the entire system. Third, scheduling in Zorilla is locality
aware. It is beneficial to select nodes to compute a job from nodes nearby the
origin. Zorilla uses the latency between nodes as a measure for distance, and
schedules jobs on nodes both near the origin and close to each other. Last, the
scheduling algorithm of Zorilla is robust against changes in the environment. New
nodes are automatically considered for running a job and nodes leaving the network
do not compromise the functioning of the scheduling.

4.2.1 Optimizations

Several optimizations are present in Zorilla to further optimize scheduling. First, if
a node is not able to join a computation when it receives an advertisement because
of lack of resources, or because it is already running another job, it will not totally
discard the advertisement. Instead the advertisement is put in a pending job
queue. Periodically, each node will scan its queue and start computing any job
which resource requirements are met. To keep jobs from staying in the queue
forever, an advertisement comes with an expiration date and is discarded when it
expires.

Another optimization is a limitation on the rate at which floods are sent by
a node. Since nodes will put the job in their pending job queue if they are not
able to start computation, there is a chance some nodes which do not join the
computation immediately might do so at a later time. For this reason a node
always waits for a certain time before performing another flood. Determining the
correct value for this timeout is a problem. If the timeout is too long it will take
too long to reach the required number of nodes. If it is too short the radius of
the flood will increase too quickly, and will reach nodes far away on the network,
while more nearby nodes may still be available.

The solution for the problem of determining the timeout between floods lies
in using a flexible timeout. At first, a short timeout is used to reach a reasonable
number of nodes quickly. As more floods are send, the timeout increases. The
progressively slower rate of sending floods limits the radius and thus the distance
to the reached nodes. By default the timeout starts at 1 second and is doubled
each time a flood is send, but these values are adjustable if needed.

The last optimization present in the scheduling system of Zorilla is allowing
computations to start even when the specified number of nodes is not available
yet. Although not all requested resources are there, the limited number of nodes
available might still be able to start the computation, if the application supports
malleability. This can be done for instance by using JEL (See Chapter 5).

4.3 Experiments

As said, Zorilla uses the locality-awareness of the overlay network to achieve lo-
cality awareness of its scheduling. In principle, any locality-aware overlay can be
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Figure 4.3: Distribution of workers across sites when submitting an increasing
number of jobs from a single node.

used for this task. Instead of using the ARRG-based version of Zorilla described
in Chapter 2, the experiments done in this chapter where performed with an older
version of Zorilla which uses the overlay network of Bamboo [69] to implement
flood-scheduling. Bamboo enables nodes to communicate with any other node in
the system, and allows new nodes to join the system. It also detects node fail-
ures, and automatically adjusts the overlay network to compensate. The Bamboo
overlay network is also locality aware.

We tested Zorilla on the Grid5000 [9] testbed. Grid5000 is a system with over
a thousand processors distributed over eight sites across France. Most clusters
are made up of dual processor AMD Opteron machines connected by a gigabit
Ethernet but different processors such as Intel Xeons and IBM PowerPC processors
and high speed networks such as Myrinet are also present in the system. Latencies
between different sites are 5-20 milliseconds.

To test the scheduling algorithm, we deployed Zorilla on a total of 430 machines
on six different sites of Grid5000. The maximum number of workers in this system
is 860, as each machine again has two workers. The number of workers on each
clusters varied, ranging from 18 in Grenoble, to 356 in Orsay.
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After deployment we continuously submitted jobs to the system at one specific
node. Each job requested eight workers. As the jobs were set to run forever, the
nodes allocated in one job could not be used again in another. Figure 4.3 shows
the distribution of nodes over the different sites over time. The sites are sorted in
distance to the submitting node, located at the Sophia-Antipolis site. The graph
shows that the clusters closer to the submitting job are allocated before clusters
which are located further away.

Up until time X, nodes are almost exclusively allocated from the Sophia-
Antipolis cluster. From time X to time Y, nodes out of the big cluster in Orsay
are allocated as well. Between time Y and time Z, almost all nodes of the Sophia-
Antipolis cluster are already allocated, and newly allocated nodes mostly are from
Orsay. Finally, from time Z on, the Orsay cluster is also virtually allocated, and
nodes of the Rennes cluster are used. The graph shows that the flood scheduler
schedules the nodes in a locality-aware fashion.

Although nodes close to the submitting node are generally used before far
away nodes, the scheduling decisions made are not perfect. Workers are sometimes
started on nodes that are not the closest free node. These allocations are a result
of the structure of the Bamboo overlay network used in this version of Zorilla.
Zorilla floods messages by sending a message to all neighbors of a node. Although
Bamboo takes distance into account when selecting neighbors, it cannot only use
neighbors that are close as this would compromise the functioning of the overlay
network. For example, if a network consists of two clusters connected by a very
high latency link, selecting only the closest nodes as neighbors would mean no node
will ever connect to a node in the other cluster, leading to a partitioning of the
network. For this reason the locality awareness of Bamboo cannot be perfect. A
node will always have some connections to far away nodes to ensure the functioning
of the overlay network.

As a direct result of the measurements in this chapter, we decided to design
and implement an overlay network specifically designed to support the locality-
aware flood scheduler of Zorilla, eventually leading to the development of ARRG
(see Chapter 3), and usage of ARRG in Zorilla. Chapter 2 describes this improved
system. Although we do not include any measurements of this later version of
Zorilla here, initial findings indicate locality-awareness has indeed improved over
the version tested in this chapter. For measurements done with Zorilla including
ARRG, see Chapter 6.

4.4 Conclusions

In this chapter we have studied the scheduling of supercomputing applications in
P2P environments. We introduced flood scheduling : a scheduling algorithm based
on flooding messages over a P2P network. Flood scheduling is fully decentralized,
supports co-allocation and has good fault-tolerance properties.

Using Zorilla, we were able to deploy and run a parallel divide-and-conquer
application on 671 processors simultaneously, solving the N-Queens 22 problem in
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35 minutes. We used six clusters of the Grid5000 [9] system, located at sites across
France. This large scale experiment on a real grid showed that flood scheduling is
able to effectively allocate resources to jobs in a locality-aware way across entire
grids. For more experiments done with Zorilla, including flood scheduling, see
Chapter 6.

Flood scheduling depends on the locality-awareness of the P2P network used.
Although the Bamboo based version of Zorilla evaluated in this chapter yields sat-
isfactory results, we expect further improvements from our ARRG based Zorilla.
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Chapter 5

JEL: Unified Resource
Tracking∗

Traditionally, supercomputers and clusters are the main computing environments†

for running high performance parallel applications. When a job is scheduled and
started, it is assigned a number of machines, which it uses until the computation is
finished. Thus, the set of resources used for an application in these environments
is generally fixed.

In recent years, parallel applications are also run on large-scale grid systems [35],
where a single parallel application may use resources across multiple sites simul-
taneously. Recently, desktop grids [78], and clouds [29], systems are also used for
running parallel and distributed applications. Our Zorilla peer-to-peer (P2P) mid-
dleware introduced in Chapter 2 allows users to run high-performance distributed
supercomputing applications on very dynamic systems with less effort than pre-
viously possible. In all such environments, resources may become unavailable at
any time, for instance when machines fail or reservations end. Also, new resources
may become available after the application has started. As a result, it is no longer
possible to assume that resource allocation is static.

To run successfully in these increasingly dynamic environments, applications
must be able to handle the inherent problems of these environments. Specifi-
cally, applications must incorporate both malleability [61], the capability to han-
dle changes in the resources used during a computation, and fault tolerance, the
capability to continue a computation despite failures. Without mechanisms for
malleability and fault-tolerance, the reliable execution of applications on dynamic
systems is hard, if not impossible.

∗This chapter is based on our paper published in Proceedings of the 17th IEEE International
Symposium on High-Performance Distributed Computing (HPDC 2008) [26] and our paper in
Concurrency and Computation: Practice and Experience [27].
†We will use the term environment for collections of compute resources such as supercomput-

ers, clusters, grids, desktop grids, clouds, peer-to-peer systems, etc., throughout this chapter.
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Figure 5.1: Abstract system hierarchy with resource tracking and communication
primitives being the central low-level primitives for developing fault-tolerant and
malleable programming models and applications.

A first step in creating a malleable and fault-tolerant system is to obtain an
accurate and up-to-date view of the resources participating in a computation,
and what roles they have. We therefore require some form of signaling whenever
changes to the resource set occur. This information can then be used by the ap-
plication itself, or by the runtime system (RTS) of the application’s programming
model, to react to these changes. In this chapter we refer to such functionality as
resource tracking.

An important question is at what level in the software hierarchy resource track-
ing should be implemented. One option is to implement it in the application itself.
However, this requires each application to implement resource tracking separately.
Another option is to implement resource tracking in the RTS of the programming
model of the application. Unfortunately, this still requires implementing resource
tracking for each programming model separately. Also, an implementation of re-
source tracking designed for use on a grid will be very different from one designed
for a P2P environment. Therefore, the resource tracking functionality of each pro-
gramming model will have to be implemented for each target environment as well.
This situation is clearly not ideal.

Based on the observations above, we argue that resource tracking must be
an integral part of a system designed for dynamic environments, in addition to
the low level communication primitives already present in such systems [57, 60,
66]. Figure 5.1 shows the position of resource tracking in a software hierarchy.
There, a programming models’ RTS uses low-level resource tracking functionality
to implement the higher level fault-tolerance and malleability required. This way,
resource tracking (indirectly) allows applications to run reliably and efficiently on
dynamic systems such as grids and clouds.

In this chapter we propose a general solution for resource tracking: the Join-
Elect-Leave (JEL) model. JEL acts as an intermediate layer between programming
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models and the environment they run on. Since different environments have differ-
ent characteristics, using a single implementation is impractical, if not impossible.
Instead, several implementations of the JEL API are required, each optimized for
a particular environment.

We have implemented JEL efficiently on clusters, grids, P2P systems, and
clouds. These different JEL implementations can be used transparently by a range
of programming models, in effect providing unified resource tracking for parallel
and distributed applications across environments.

The contributions of this chapter are as follows.

• We show the need for unified resource tracking models in dynamic environ-
ments such as grids, P2P systems, and clouds, and explore the requirements
of these models.

• We define JEL: a unified model for tracking resources in dynamic environ-
ments. JEL is explicitly designed to be simple yet powerful, scalable, and
flexible. The flexibility of JEL allows it to support parallel as well as dis-
tributed programming models.

• We show how JEL suits the resource tracking requirements of several pro-
gramming models. We have implemented 7 different programming models
using JEL, ranging from traditional models such as MPI-1 (in the form of
MPJ [10]), to Satin [61], a high level divide-and-conquer grid programming
model that transparently supports malleability and fault-tolerance.

• We show that JEL is able to function on a range of environments by dis-
cussing multiple implementations of JEL. These include a centralized solu-
tion for relatively stable environments such as clusters and grids, and a fault-
tolerant P2P implementation. In part, these implementations are based on
well-known techniques of information dissemination in distributed systems.
Notably, JEL can be implemented efficiently in different environments, due
to the presence of multiple consistency models.

In previous work we presented the Ibis Portability Layer (IPL) [60], a com-
munication library specifically targeted at dynamic systems such as grids. We
augmented the IPL with our JEL resource tracking model, leading to a software
system which can efficiently run applications on clusters, grids, P2P systems, and
clouds.

Using a resource tracking model such as JEL is vital when running applications
on our Zorilla middleware, as an instant cloud is inherently dynamic. Therefore,
Zorilla explicitly supports JEL (see Chapter 2). The combination of Zorilla and
JEL also makes the resulting system highly suited for running malleable appli-
cations. The flood-scheduler used in Zorilla (see Chapter 4) explicitly supports
malleability, and add or remove resources after the application had been started.
For an example of such a scenario, where Zorilla is used in an adaptive application,
see [85].
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One implementation of our JEL resource tracking model is based on the ARRG
gossiping algorithm as discussed in Chapter 3 (see Section 5.4.2). Large-scale
experiments on a real-world distributed system with JEL are shown in Chapter 6.

This chapter is structured as follows. Section 5.1 discusses the requirements of
a general resource tracking model. Section 5.2 shows one possible model fulfilling
these requirements: our Join-Elect-Leave (JEL) model. Section 5.3 explains how
JEL is used in several programming models. In Section 5.4 we discuss a (partially)
centralized and a fully distributed implementation of JEL. Section 5.5 compares
the performance of our implementations, and shows the applicability of JEL in
real-world scenarios. As a worst case, we show that JEL is able to support even
short-lived applications on large numbers of machines. Section 5.6 discusses related
work. Finally, we conclude in Section 5.7.

5.1 Requirements of Resource Tracking models

In this section we explore the requirements of resource tracking in a dynamic sys-
tem. As said, resource tracking functionality can best be provided at a level be-
tween programming models and the computational environment (see Figure 5.1).
A programming models’ RTS uses this functionality to implement fault-tolerance
and malleability. This naturally leads to two sets of requirements for resource
tracking: requirements imposed by the programming model above, and require-
ments resulting from the environment below. We will discuss each in turn.

5.1.1 Programming Model Requirements

For any resource tracking model to be generally applicable, it needs to support
multiple programming models, including both parallel and distributed models.
Below is a list of requirements covering the needs of most, if not all, parallel and
distributed programming models.

List of participants: The most obvious requirement of a resource tracking model
is the capability to build up a list of all computational resources participat-
ing in a computation. When communicating and cooperating with other
participants of a computation, one must know who these other participants
are.

Reporting of changes: Simply building a list of participants at start-up is not
sufficient. Since resources may be added or removed during the runtime
of a computation, a method for updating the current list of participants is
also required. This can be done for instance by signaling the programming
models’ RTS whenever a change occurs.

Fault detection: Not all resources are removed gracefully. Machines may crash,
and processes may be terminated unannounced by a scheduling system. For
this reason, the resource tracking model also needs to include a failure de-
tection and reporting mechanism.
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Role Selection: It is often necessary to select a leader from a set of resources for
a specific task. For instance, a primary object may have to be selected in
primary-copy replication, or a master may have to be selected in a master-
worker application. Therefore, next to keeping track of which resources
are present in a computation, a method for determining the roles of these
resources is also required.

5.1.2 Environment Requirements

Next to supporting multiple programming models, a generally applicable resource
tracking model must also support multiple environments, including clusters, grids,
clouds, and P2P systems. We now determine the requirements resulting from the
environment in which a resource tracking model is used.

Small, Simple Interface: Different environments may have wildly different char-
acteristics. On cluster systems, the set of resources is usually constant. On
grids and clouds resource changes occur, albeit at a low rate. P2P systems,
however, are known for their high rate of change. Therefore, different (im-
plementations of) algorithms are needed for efficient resource tracking on
different environments. To facilitate the efficient re-targeting of a resource
tracking model, its interface must be as small and simple as possible.

Flexible Quality of Service: Even with a small and simple interface, it may not
be possible to implement all features of a resource tracking model efficiently
on all environments with the same quality of service. For instance, reliably
tracking each and every change to the set of resources in a small-scale cluster
system is almost trivial, while in a large-scale P2P environment this is hard
to implement efficiently, if possible at all. However, not all programming
models require the full functionality of a resource tracking model. There-
fore, a resource tracking model should include quality of service features.
If the resource tracking model allows for a programming model to specify
the required features and their quality of service, a suitable implementa-
tion could be selected at runtime. This flexibility would greatly increase the
applicability of a resource tracking model.

5.2 The Join-Elect-Leave Model

We will now describe our resource tracking model: Join-Elect-Leave (JEL). JEL
fulfills all stated requirements of a resource tracking model. As shown in Fig-
ure 5.1, JEL is located at the same layer of the software hierarchy as low-level
communication primitives. Applications use a programming model, ideally with
support for fault-tolerance and malleability. The programming model’s RTS uses
JEL for resource tracking, as well as a communication library. In this section we
refer to programming models as users of JEL.
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interface JEL {

void init(Consistency electionConsistency ,

Consistency joinLeaveConsistency );

void join(String poolName , Identifier identifier );

void leave ();

void maybeDead(Identifier identifier );

Identifier elect(String electionName );

Identifier getElectionResult(String electionName );

}

// interface for notifications , called by JEL

interface JELNotifications {

void joined(Identifier identifier );

void left(Identifier identifier );

void died(Identifier identifier );

}

Figure 5.2: JEL API (pseudocode, simplified).

Figure 5.2 shows the JEL API. Next to an initialization function, the API
consists of two parts, Joins and Leaves, and Elections. Together, these fulfill the
requirements of parallel and distributed programming models as stated in the
previous section.

In general, each machine used in a computation initializes JEL once, and is
tracked as a single entity. However, modern machines usually contain multiple pro-
cessors and/or multiple compute cores per processor. In some cases, it is therefore
useful to start multiple processes per machine for a single computation, which then
need to be individually tracked. In this chapter, we therefore use the abstract term
node to refer to a computational resource. Each node represents a single instance
in a computation, be it an entire machine, or one processor of that machine.

JEL has been designed to work together with any communication library. The
communication library is expected to create a unique identifier containing a contact
address for each node in the system. JEL uses this address to identify nodes in
the system, allowing a user to contact a node whenever JEL refers to it.

5.2.1 Joins and Leaves

In JEL, the concept of a pool is used to denote the collection of resources used in
a computation. To keep track of exactly which nodes are participating in a pool,
JEL supports join notifications. Users are being notified whenever a new node
joins a pool. When a node joins a pool, it also is notified of all nodes already
present in the pool via the same notifications, given using the JELNotifications
interface. This is typically done using callbacks, although a polling mechanism
can be used instead if callbacks are not supported by a programming language.

JEL also supports nodes leaving a computation, both gracefully and due to
failures. If a node notifies JEL that it is leaving the computation, users of the
remaining nodes in the pool receive a leave notification for this node. If a node
does not leave gracefully, but crashes or is killed, the notification will consist of a
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died message instead. Implementations of JEL try to detect failing nodes, but the
user can also report suspected failures to JEL using the maybeDead function.

5.2.2 Elections

It is often necessary to select a leader node from a set of resources for a specific
task. To select a single resource from a pool, JEL supports Elections. Each election
has a unique name. Nodes can nominate themselves by calling the elect function
with the name of the election as a parameter. The identifier of the winner will
be returned. Using the getElectionResult function, nodes can retrieve the result
without being a candidate.

Elections are not democratic. It is up to the JEL implementation to select a
winner from the candidates. For instance, an implementation may simply select
the first candidate as the winner. At the user level, all that is known is that
some candidate will be chosen. When a winner of an election leaves or dies, JEL
will automatically select a new winner from the remaining living candidates. This
ensures that the election mechanism will function correctly in a malleable pool.

5.2.3 Consistency models

Together, join/leaves and elections fulfill all resource tracking requirements of
fault-tolerant and malleable programming models as stated in Section 5.1.1. How-
ever, we also require our model to be applicable to a wide range of environments,
from clusters to P2P systems. To this end, JEL supports several consistency
models for the join/leave notifications and the elections. These can be selected
independently when JEL is initialized using the init function. Joins/leaves or elec-
tions can also be turned off completely, if either part is not used. For examples of
situations of when some parts of JEL remain unused, see Section 5.3.

Relaxing the consistency model allows JEL to be used on more dynamic sys-
tems such as P2P environments, where implementing strict consistency models
cannot be done efficiently, if at all. For example, Section 5.4.2 describes a fully
distributed implementation that is robust against failures, under a relaxed consis-
tency model.

JEL offers two consistency models for joins and leaves. The reliable consistency
model ensures that all notifications arrive in the same order on all nodes. Using
reliable joins and leaves, a user can build up a list of all nodes in the pool. As an
alternative, JEL also supports unreliable joins and leaves, where notifications are
delivered on a best effort basis, and may arrive out of order, or not at all.

Similarly, JEL supports multiple consistency models for elections. If uniform
elections are used, a single winner is guaranteed for each election, known at all
nodes. Using the non-uniform model, an election is only guaranteed to converge
to a single winner in unbounded time. The implementation of JEL will try to
reach consensus on the winner of an election as soon as possible, but in a large
system this may be time-consuming. Before a consensus is reached, different nodes
may perceive different winners for a single election. Intuitively, this non-uniform
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Figure 5.3: Position of JEL in the Ibis grid programming software stack.

Model Joins and Leave Elections

Master-Worker - Uniform
Divide-and-Conquer (elected master) Unreliable Uniform
Divide-and-Conquer (selected master) Unreliable Non-Uniform
Message Passing Reliable -

Table 5.1: Parts and consistency models of JEL used in the example programming
models.

election has a very weak consistency. However, it is still useful in a number of
situations (Section 5.3.2 shows an example).

5.3 Applicability of JEL

JEL has been specifically designed to cover the required functionality of a range of
programming models found in distributed systems. We have implemented JEL in
the Ibis Portability Layer (IPL) [60], the communication library of the Ibis project.
Figure 5.3 shows the position of JEL in the software stack of the Ibis project. All
programming models implemented in the Ibis project use JEL to track resources,
notably:

• Satin [61], a divide-and-conquer model

• Java RMI, an object oriented RPC model [83]

• GMI [53], a group method invocation model

• MPJ [10], a Java binding for MPI-1

• RepMI [53], a replicated object model

• Maestro [5], a fault-tolerant and self optimizing dataflow model

• Jorus [5], a user-transparent parallel model for multimedia computing
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As JEL is a generic model, it also supports other programming models. In
addition to the models listed, we have implemented a number of prototype pro-
gramming models, including data parallel, master-worker and Bulk Synchronous
Parallel (BSP) models. Although our current JEL implementations are imple-
mented using Java, the JEL model itself is not limited to this language. The fore-
most problem when porting JEL to other programming languages is the possible
absence of a callback mechanism. This problem can be solved by using downcalls
instead. In addition, parts of current JEL implementations could be reused, for
instance by combining the server of the centralized implementation with a client
written in another language.

We will now illustrate the expressiveness of JEL by discussing several models
in more detail. These programming models use different parts and consistency
models of JEL, see Table 5.1 for an overview.

5.3.1 Master-Worker

The first programming model we discuss is the master-worker [40] model, which
requires a single node to be assigned as the master. Since the master controls
the application, its identity must be made available to all other (worker) nodes.
Depending on the application, the number of suitable candidates for the role of
master may range from a single node to all participating nodes. For this selection,
the master-worker model uses uniform elections.

Since workers do not communicate, the only information a worker needs in a
master-worker model is the identity of the master node. So, in this model, joins
and leaves are not needed, and can simply be switched off.

5.3.2 Divide-and-Conquer

The second programming model we discuss is divide-and-conquer. As an exam-
ple of such a system we use Satin [61]. Satin is malleable, can handle failures,
and hides many intricacies of the grid from the application programmer. It also
completely hides which resources are used. Distribution and load balancing are
performed automatically by using random work stealing between nodes. Satin is
cluster-aware: it exploits the hierarchical nature of grids to optimize load bal-
ancing and data transfer. For instance, nodes prefer to steal work from nodes
inside their local cluster, as opposed to from remote sites. The Satin program-
ming model requires support from the resource tracking model for adding new
nodes, as well as removing running nodes (either gracefully or due to a crash).
Satin applies this information to re-execute subtasks if a processor crashes. Also,
it dynamically schedules subtasks on new machines that become available during
the computation, and it migrates subtasks if machines leave the computation.

Although Satin requires notifications whenever nodes join or leave the compu-
tation, these notifications do not need to be completely reliable, nor do they need
to be ordered in any way. Satin uses the joins and leaves to build up a list of nodes
in the pool. This list is then used to randomly select nodes to steal work from.
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As long as each node has a reasonably up-to-date view of who is participating in
the application, Satin will continue to work. When the information is out of date
or incomplete, the random sampling will be skewed slightly, but in practice the
negative impact on performance is small (see Section 5.5.4). Satin therefore uses
the unreliable consistency of the join and leave notifications.

An election is used to select a special coordinator per cluster. These coordina-
tors are used to optimize the distribution of fault tolerance related data in wide
area systems. When multiple coordinators are present, more data will be trans-
ferred, which may lead to lower performance. Satin will still function correctly,
however. Therefore, the election mechanism used to select the cluster coordinators
does not necessarily have to return a unique result, meaning that the non-uniform
elections of JEL can be used.

When an application is starting, Satin needs to select a master node that
starts the main function of the application. This node can be explicitly specified
by the user or application, or it can be automatically selected by Satin. The latter
requires the uniform election mechanism of JEL. If the master node is specified in
advance by the user, no election is needed for this functionality.

From the discussion above, we can conclude that the requirements of Satin
differ depending on the circumstances. If the user has specified a master node,
Satin requires unreliable join and leave notifications for the list of nodes, as well
as non-uniform elections for electing cluster coordinators. If, on the other hand, a
master node must be selected by Satin itself, uniform elections are an additional
requirement.

5.3.3 Message Passing (MPI-1)

The last programming model we discuss is the Message Passing model, in this
case represented by the commonly used MPI [57] system. MPI is widely used on
clusters and even for multi-site runs on grid systems. We implemented a Java
version of MPI-1, MPJ [10]. The MPI model assigns ranks to all nodes. Ranks are
integers uniquely identifying a node, assigned from 0 up to the number of nodes in
the pool. In addition, users can retrieve the total number of nodes in the system.

Joins and leaves with reliable consistency are guaranteed to arrive in the same
order on all nodes. This allows MPI to build up a totally ordered list of nodes, by
assigning rank 0 to the first node that joins the pool, rank 1 to the second, etc.
Like the master-worker model, MPI does not require all functionality of JEL, as
elections are not used.

MPI-1 has very limited support for changes of resources and failures. Appli-
cations using this model cannot handle changes to the resources such as nodes
leaving or crashing. Using an MPI implemented on top of JEL will not fix this
problem. However, some extensions to MPI are possible. For instance, MPI-2 sup-
ports new nodes joining the computation, Phoenix [77] adds supports for nodes
leaving gracefully, and FT-MPI [33] allows the user to handle faults, by specifying
the action to be taken when a node dies. All these extensions to MPI can be
implemented using JEL for the required resource tracking capabilities.



5.4. JEL Implementations 65

5.4 JEL Implementations

It is impractical, if not impossible, to use the same implementation of JEL on clus-
ters, grids, clouds, as well as P2P systems. As these different environments have
different characteristics, there are different trade-offs in implementation design.
We have explored several alternative designs, and discuss these in this section.

On cluster systems, resources used in a computation are mostly fixed, and do
not change much over time. Therefore, our JEL implementation targeted at sin-
gle cluster environments uses a relatively simple algorithm for tracking resources,
based on a central coordinator. This ensures high performance and scalability, and
the simple design leads to a more robust, less error prone implementation. This
central implementation provides reliable joins and leaves and uniform elections.
As this implementation uses a central coordinator for tracking resources, these
stronger consistency models can be implemented without much effort.

On more dynamic systems such as grids, clouds and desktop grids, the sim-
ple implementation design used on clusters is not sufficient. As the number of
machines in the system increases, so does the number of failures. Moreover, any
change to the set of resources needs to be disseminated to a larger set of machines,
possibly with high network latencies. Thus, these environments require a more
scalable implementation of JEL. We used a number of techniques to decrease the
effort required and amount of data transferred by the central coordinator, at the
cost of an increased complexity of the implementation. As the resource tracking
still uses a central coordinator, the stronger consistency models for joins, leaves
and elections of JEL are still available.

Lastly, we implemented JEL on P2P environments. By definition, it is not
possible to use centralized components in P2P systems. Therefore, our P2P imple-
mentation of JEL is fully distributed. Using Lamport clocks [49] and a distributed
election algorithm [42] it is possible to implement strong consistency models in a
fully distributed manner. However, these algorithms are prohibitively difficult to
implement. Therefore, our P2P implementation only provides unreliable joins and
leaves and non-uniform elections, making it extremely simple, robust and scalable.
We leave implementing a P2P version of JEL with strong consistency models as
future work.

As said, we have augmented our Ibis Portability Layer (IPL) [60] with JEL.
The IPL is a low level message-based communication library implemented in Java,
with support for streaming and efficient serialization of objects. All functionality
of JEL is exported in the IPL’s Registry. JEL is implemented in the IPL as a
separate thread of the Java process. Notifications are passed to the programming
models’ RTS or application using a callback mechanism.

5.4.1 Centralized JEL Implementation

Our centralized JEL implementation uses a single server to keep track of the state
of the pool. Using a centralized server makes it possible to implement stronger
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Figure 5.4: Example of an event stream.

consistency models. However, it also introduces a single point of failure, and a
potential performance bottleneck.

The server has three functions. First, it handles requests of nodes participat-
ing in the computation. For example, a node may signal that it has joined the
computation, is leaving, or is running for an election. By design, these requests
require very little communication or computation.

Second, the server tracks the current resources in the pool. It keeps a list of
all nodes and elections, and detects failed nodes. Our current implementation is
based on a leasing mechanism, where nodes are required to periodically contact
the server. If a node has had no contact with the server for a certain number of
seconds, it sends a so-called heartbeat to the server. If it fails to do so, the server
will try to connect to the node, to see if the node is still functional. If the server
cannot reach the node, this node is declared dead, and removed from the pool.

Third, the server disseminates all changes of the state of the pool to the nodes.
The nodes use these updates to generate join, leave, died, and election notifications
for the application. If there are many nodes, the dissemination may require a sig-
nificant amount of communication and lead to performance problems. To alleviate
these problems we use a simple yet effective technique. Any changes to the state
of the pool are mapped to events. These events have a unique sequence number,
and are totally ordered. An event represents a node joining, a node leaving, a node
dying, or an election result.

A series of state changes to a sequence of events can now be perceived as a
stream of events. Dissemination of this stream can be optimized using well-known
techniques such as broadcast trees or gossiping. Figure 5.4 shows an example of
a stream of events. In this case, two nodes join, one leaves, one is elected master,
and then dies. This stream of events thus results in an empty pool.

We have experimented with four different methods of disseminating the event
stream: a simple serial send, serial send with peer bootstrap, a broadcast tree,
and gossiping. The different mechanisms and their implementations are described
below.

5.4.1.1 Serial Send

In our first dissemination technique, the central server forwards all events occurring
in the pool to each node individually. Such a serial send approach is straightfor-
ward to implement, and is very robust. It may lead to performance problems
though, as a large amount of data may have to be sent by the server. To optimize
network usage, the server sends to multiple nodes concurrently.
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In this implementation, a large part of the communication performed by the
server consists of sending a list of all nodes to a new, joining node (the so-called
bootstrap data). If many nodes join a computation at the same time, this may
cause the server to become overloaded.

5.4.1.2 Peer Bootstrap

As an optimization of the serial send technique, we implemented peer bootstrapping,
where joining nodes use other nodes (their peers) to obtain the necessary bootstrap
data. When a node joins, the server sends it a small list of randomly chosen nodes
in the pool. The joining node then tries to obtain the bootstrap data from the
nodes in this list. If, for some reason, none of the nodes in the list can be reached,
the joining node uses the server as a backup source of bootstrap data. This
approach guarantees that the bootstrap process will succeed eventually.

5.4.1.3 Broadcast tree

A more efficient way of disseminating the stream of events from the server to all
nodes is a broadcast tree. Broadcast trees limit the load on the server by using
the nodes themselves to forward data. Broadcast trees also have disadvantages,
as the tree itself is a distributed data structure that needs to be managed. This
requires significant effort, and makes broadcast trees less robust than serial send.

Our broadcast implementation uses a binomial tree structure with the server
as the root of the tree, which is also commonly used in MPI implementations [48].
To minimize the overhead of managing the tree, we use the data stream being
broadcast to manage the tree. Since this stream includes totally ordered notifi-
cations of all joining and leaving nodes, we can use it to construct the broadcast
tree at each node.

To increase the robustness of our broadcast implementation, we implemented
fallback information dissemination. Periodically, the server directly connects to
each node in the pool, and sends it any events it did not receive yet. This fallback
mechanism guarantees the functioning of the system, regardless of the number,
and type, of failures occurring. Also, it causes very little overhead if there are no
failures.

5.4.1.4 Gossiping

A fourth alternative for disseminating the events of a pool to all its nodes is the
use of gossiping techniques. Gossiping works on the basis of periodic information
exchanges (gossips) between peers (nodes). Gossiping is robust, easy to imple-
ment and has low resource requirements. See Chapter 3 for more information on
gossiping techniques.

In the gossiping dissemination, all nodes record the event stream. Periodically,
a node contacts one of its peers. The event stream of those two nodes are then
merged by sending any missing events from one peer to the other. To reduce
memory usage old events are eventually purged from the system.



68 Chapter 5. JEL: Unified Resource Tracking

Although the nodes exchange events amongst themselves, the pool is still man-
aged by the central server. The server still acts as a contact point for nodes that
want to join, leave, or run for an election. Also the server creates all events,
determines the ordering of events, detects failing nodes, etc.

To seed the pool of nodes with data, the server periodically contacts a random
node, and sends it any new events. The nodes will then distribute these new events
amongst themselves using gossiping. When the nodes gossip at a fixed interval,
the events travel through the system at an exponential rate. The dissemination
process thus requires a time that is logarithmically proportional to the pool size.

To speed up the dissemination of the events to all nodes, we implemented an
adaptive gossiping interval at the server. Instead of waiting a fixed time between
sending events to nodes, we calculate the interval based on the size of the pool
by dividing the standard interval by the base 2 logarithm of the pool size. Thus,
events are seeded at a speed proportionally to the pool size. The dissemination
speed of events becomes approximately constant, at the expense of an increase in
communication load on the server.

Since gossip targets are selected randomly, there is no guarantee that all nodes
will receive all events. To ensure reliability, we use the same fallback dissemination
technique we used in the broadcast tree implementation. Periodically, the server
contacts all nodes and sends them any events they do not have.

5.4.2 Distributed JEL Implementation

Although the performance problems of the centralized implementation are largely
solved by using broadcast trees and gossiping techniques, the server component
is still a central point of failure, and not suitable for usage in P2P systems. As
an alternative, we created a fully distributed implementation of JEL using P2P
techniques. It has no central components, so failures of individual nodes do not
lead to a failure of the entire system.

Our implementation is based on our ARRG gossiping algorithm (see Chap-
ter 3). ARRG is resilient against failures, and can handle network connectivity
problems such as firewalls and NATs. Each node in the system has a unique iden-
tifier in the form of a UUID [50], which is generated locally at startup. ARRG
needs the address of an existing node at startup to bootstrap, so this must be
provided. This address is used as an initial contact point in the pool. ARRG
provides a so-called peer sampling service [46], guaranteeing a random sampling
of the entire pool even if failures and network problems occur.

On top of ARRG, we use another gossiping algorithm to exchange data on
nodes and elections. Periodically, a node connects to a random node (provided
by ARRG) and exchanges information on other nodes and elections. It sends a
random subset of the nodes and elections it knows and includes information on
itself. It then receives a number of members and elections from the peer node, and
merges these with its own state. Over time, nodes build up a list of nodes and
elections in the pool.
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If a node wants to leave the computation, it sends out this information to a
number of nodes in the system. Eventually, this information will reach all nodes.
Since a crashed node cannot send a notification to the other nodes indicating it
has died, a distributed failure detection mechanism is needed.

The failure detection mechanism uses a witness system. A timeout is kept in
every entry on a node, indicating the last time this node has successfully been
contacted. Whenever the timeout expires, a node is suspected of having died.
Nodes with expired entries in their node list try to contact these suspects. If this
fails, they add themselves as a witness to this node’s demise. The witness list is
part of the gossiped information. If a sufficient number of nodes declare that a
node has died, it is pronounced dead.

Besides joins and leaves, the distributed implementation also supports elec-
tions. Because of the difficulties of implementing distributed election algorithms [42],
and the lack of guarantees even when using the more advanced algorithms, we only
support the non-uniform election consistency model. In this model, an election
converges to a single winner. Before that time, nodes may not agree on the winner
of that election.

Election results are gossiped. When a node needs the result of a unknown
election, it simply declares itself as the winner. If a conflict arises when merging
two different election results, one of the two winners is selected deterministically
(the node with the numerically lowest UUID wins). Over time, only a single winner
remains in the system.

As a consequence of the aforementioned design, the distributed implementa-
tion of JEL is fault tolerant in many aspects. First, the extensive use of gossiping
techniques inherently leads to fault tolerance. The ARRG protocol adds further
tolerance against failures, for example by using a fallback cache containing previ-
ously successful contacts [24]. Most importantly, the distributed implementation
lacks any centralized components, providing fully distributed implementations of
all required functionality instead.

5.5 Evaluation

To evaluate the performance and scalability of our JEL implementations, we per-
formed several experiments. These include low-level and application-level tests on
multiple environments. In particular, we want to assess how much performance
is sacrificed to gain the robustness of a fully distributed implementation, as we
expect this implementation to have the lowest performance. Exact quantification
of performance differences between implementations, however, is hard — if not
impossible. As shown below, performance results are highly dependent on the
characteristics of the underlying hardware. Furthermore, the impact on applica-
tion performance, in turn, is dependent on the programming model used. For
example, MPI can not proceed until all nodes have joined, while Satin starts as
soon as a resource is available. All experiments were performed multiple times.
Numbers shown are taken from a single representative experiment. Experiments
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Figure 5.5: 1000 nodes Join test (DAS-2).

described in this chapter are all small- to medium-scale. For large-scale experi-
ments, see Chapter 6.

5.5.1 Low level benchmark: Join test

The first experiment is a low-level stress test using a large number of nodes. We
ran the experiment on two different clusters. The purpose of the experiment is to
determine the performance of our JEL implementations under different network
conditions. In the experiment, all nodes join a single pool and, after a predeter-
mined time, leave again. As a performance metric, we use the average perceived
pool size. To determine this metric, we keep track of the pool size at all nodes.
Ideally, this number is equal to the actual pool size. However, if a node has not
received all notifications, the perceived pool size will be smaller. We then calcu-
late the average perceived pool size over all nodes in the system. The average
is expected to increase over time, eventually becoming equal to the actual pool
size. This indicates that all nodes have received all notifications. The shorter the
stabilization time, the better.

This experiment was done on our DAS-2 [19] and DAS-3 [20] clusters. The
DAS-2 cluster consists of 72 dual processor Pentium III machines, with 2Gb
Myrinet interconnect. The DAS-3 cluster consists of 85 dual-CPU dual-core
Opteron machines, with 10Gb Myrinet.

Since neither the DAS-2 nor DAS-3 have a sufficiently large number of machines
to stress test our implementation, we started multiple nodes per machine. As
neither our JEL implementations or the benchmark are CPU bound, the sharing
of CPU resources does not influence our measurements. The nodes do share the
network bandwidth though. However, all implementations of JEL are affected
equally, so the relative results of all tested implementations remain valid. The
server of the centralized implementation of JEL is started on the front-end machine
of the cluster.
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Figure 5.6: 2000 nodes Join test (DAS-3).

5.5.1.1 DAS-2

Figure 5.5 shows the performance of JEL on the DAS-2 system. We started 10
nodes per processor core on 50 dual processor machines, for a total of 1000 nodes.
Due to the sharing of network resources, all nodes, as well as the frontend running
the server, have an effective bandwidth of about 100Mbit/s.

For convenience, we only show the first 100 seconds of the experiment, when
all nodes are joining. The graph shows that the serial send dissemination suffers
from a lack of network bandwidth, and is the lowest performing implementation.

The peer bootstrap and broadcast tree techniques perform equally well on
this system. This is not surprising, as the broadcast tree and peer bootstrap
techniques utilize all nodes to increase throughput. As the graph shows, adaptive
gossip dissemination is faster than the normal central gossip version, as it adapts
its speed to the pool size.

While not shown in the graph, the fully distributed implementation is also
converging to the size of the pool, albeit slower than most versions of the central-
ized implementation. The slow speed is caused by an overload of the bootstrap
service, which receives 1000 gossip requests within a few milliseconds when all the
nodes start. This is an artifact of this artificial test that causes all the nodes to
start simultaneously. In a P2P environment this is unlikely to occur. Multiple
instances of the bootstrap service would solve this problem. Still, the performance
of the distributed implementation is acceptable, especially considering the high
robustness of this implementation.

5.5.1.2 DAS-3

Next, we examine the performance of the same benchmark on the newer DAS-3
system (see Figure 5.6). As a faster network is available on this machine, conges-
tion of the network is less likely. Since the DAS-3 cluster has more processor cores,
we increased the number of nodes to 2000, resulting in 250Mbit/s of bandwidth per
node. The frontend of our DAS-3 cluster has 10Gbit/s of bandwidth. Performance
on the DAS-3 increases significantly compared to the DAS-2, mostly because of
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Implementation Dissemination
Server Node Average
(MB) (MB)

Central

Serial Send 1521.47 0.76
Peer Bootstrap 677.23 0.45
Broadcast Tree 5.57 1.32

Gossip 9.83 0.49
Adaptive Gossip 40.36 0.57

Distributed Gossip n.a. 25.37

Table 5.2: Total data transferred in Join test with 2000 nodes on the DAS-3.

the faster network. The serial send and gossip techniques no longer suffer from
network congestion at the server or bootstrap service. As a result, performance
increases dramatically for both. Also, the graph shows that the performance of the
broadcast tree is now significantly better than any other dissemination technique.

Performance of the central implementation with gossiping is influenced by the
larger size of the pool. It takes considerably longer to disseminate the information
to all nodes. As before, the adaptive gossiping manages to adapt, and reaches the
total pool size significantly faster.

From our low level benchmark on both the DAS-2 and DAS-3 we conclude that
it is possible to implement JEL such that it is able to scale to a large number of
nodes. Also, a number of different implementation designs are possible for JEL,
all leading to reasonable performance.

5.5.2 Network bandwidth usage

To investigate the cost of using JEL, we recorded the total data transferred by
both the server and the clients in the previous experiment. Table 5.2 shows the
total traffic generated by the experiment on DAS-3, after all the nodes have joined
and left the pool.

Using the serial send version, the server transferred over 1500 MB in the
10 minute experiment. Using peer bootstrap already halves the traffic needed
at the server. However, the broadcast tree dissemination uses less than 5 MB of
server traffic to accomplish the same result. It does this by using the nodes of
the system, leading to a slightly higher traffic at the nodes (1.32 MB instead of
0.76 MB).

From this experiment we conclude that the dissemination techniques signifi-
cantly increase the scalability of our implementation. Also, the broadcast tree im-
plementation is very suited for low bandwidth environments. For the distributed
implementation, the average traffic per node is 25 MB, an acceptable cost for
having a fully distributed implementation.
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Figure 5.7: Join/Leave test run on 4 clusters across the DAS-3 grid. Half of the
nodes only start after 200 seconds, and leave after 400 seconds.

5.5.3 Low level benchmark in a dynamic environment

We now test the performance of JEL in a dynamic environment, namely the DAS-3
grid. Besides the cluster at the VU used in the previous tests, the DAS-3 system
consists of 4 more clusters across the Netherlands. For this test we started our
Join benchmark on two clusters (800 nodes), and add two clusters later, for a total
of 1600 nodes. Finally, two clusters also leave, either gracefully, or by crashing.

Results of the test when the nodes leave gracefully are shown in Figure 5.7. We
tested both the central implementation of JEL and the distributed implementation.
For the central implementation we have selected the serial send dissemination
technique, which performs average on DAS-3 (see Figure 5.6). On the scale of the
graph of Figure 5.7 results obtained for the other techniques are indistinguishable.

Figure 5.7 shows that both implementations are able to track the entire pool.
As said, the pool size starts at 800 nodes, and increases to 1600 nodes 200 seconds
into the experiment. The dip in the graph at 200 seconds is an artifact of the
metric used: At the moment 800 extra nodes are started, these nodes have a
perceived pool size of 0. Thus, the average over all nodes in the pool halves.
As in the previous test, the central implementation is faster than the distributed
implementation. After 400 seconds, two of the four clusters (800 of the 1600 nodes)
leave the pool. The graph shows that JEL correctly handles nodes leaving, with
both implementations processing the leaves shortly.

As said, we also tested with the nodes crashing by forcibly terminating the
node’s process. The results can be seen in Figure 5.8. When nodes crash instead
of leaving, it takes longer for JEL to detect these nodes have died. This delay is
due to the timeout mechanism in both implementations. A node is only declared
dead if it cannot be reached for a certain time (a configuration property of the
implementations, in this instance set to 120 seconds). Thus, nodes are declared
dead with a delay after crashing. The central implementation of JEL has a slightly
longer delay, as it tries to contact the faulty nodes one more time after the timeout
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Figure 5.8: Join/Fail test run on 4 clusters across the DAS-3 grid. Half of the
nodes only start after 200 seconds, and crash after 400 seconds.

Implementation Dissemination
Run time Join Time

Small Large

Central

Serial Send 71.7 408.0 18.2
Peer Bootstrap 70.5 406.1 17.2
Broadcast Tree 66.4 402.9 10.6

Gossip 67.7 426.6 14.6
Adaptive Gossip 67.5 426.4 11.1

Distributed Gossip 82.3 462.4 14.1

Table 5.3: Gene sequencing application on 256 cores of the DAS-3. Listed are
total runtime (in seconds) of the application for two problem sizes and time (in
seconds) until all nodes have joined fully (average perceived pool size is equal to
the actual pool size). Runtime includes the join time.

expires. From this benchmark we conclude that JEL is able to function well in
dynamic systems, with both leaving and failing nodes.

5.5.4 Satin Gene Sequencing Application

To test the performance of our JEL implementations in a real world setting, we
used 256 cores of our DAS-3 cluster to run a gene sequencing application imple-
mented in Satin [61]. Pairwise sequence alignment is a bioinformatics applica-
tion where DNA sequences are compared with each other to identify similarities
and differences. We run a large number of instances of the well-known Smith-
Waterman [72] algorithm in parallel using Satin’s divide-and-conquer program-
ming style. The resulting application achieves excellent performance (93 %effi-
ciency on 256 processors).

Table 5.3 lists the performance of the application for various JEL implemen-
tations, and two different problem sizes. We specifically chose to include a small
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problem on a large number of cores to show that our JEL implementations are
also suitable for short-running applications where the overhead of resource track-
ing is relatively large. In this very small problem, the application only ran for
little over a minute. The table shows similar performance for all versions of JEL.
Moreover, the relative difference is even smaller in the large problem size. An
exception are the implementations based on gossiping techniques. The periodic
gossiping causes a small but constant amount of network traffic. Unfortunately,
the load balancing mechanism of Satin is very sensitive to this increase in network
load. Though the distributed implementation lacks the guaranteed delivery of no-
tifications present in the central implementation, Satin is able to perform the gene
sequencing calculations with only minor delay. This is an important result, given
Satin’s transparent support for malleability and fault-tolerance, as explained in
Section 5.3.2.

To give an impression of the overhead caused by JEL, we also list the join
time, the amount of time from the start of the application it takes for the average
perceived pool size to reach the actual pool size, i.e. the time JEL needs to
notify all nodes of all joins. The join time of an application is independent of the
runtime of the application, and mainly influenced by the number of nodes, JEL
implementation, and resources used. Therefore, we only list the join time once,
for both problem sizes. The performance of the various JEL implementations is in
line with the low-level benchmark results, with the broadcast tree implementation
being the fastest. Our gene sequencing experiment shows that our model and
implementations are able to handle even these short running applications.

5.6 Related Work

Other projects have investigated supporting malleability and fault tolerance in var-
ious environments, and resource tracking in these systems. However, most of these
projects focus on a single programming model, and a single target environment.

One area of active research for supporting applications on more dynamic en-
vironments is the MPI standard. As said, the MPI-1 standard does not have
support for nodes joining or leaving the computations. To alleviate this problem
the follow-up MPI-2 [57] standard also supports changes to the nodes in a system.
A process may spawn new instances of itself, or connect to a different running set
of MPI-2 processes. A very basic naming service is also available.

Although it is possible to add new processes to an MPI application, the resource
tracking capabilities of MPI-2 are very limited by design and a MPI implementa-
tion is not required to handle node failures. Also, notifications of changes such as
machines joining, leaving or crashing are not available. Thus, resource tracking of
MPI-2 is very limited, unlike our generic JEL model.

One MPI derivative that does offer explicit support for fault-tolerance is FT-
MPI [33]. FT-MPI extends the MPI standard with functionality to recover the
MPI library and run-time environment after a node fails. In FT-MPI, an applica-
tion can specify if failed nodes must be simply removed (leaving gaps in the ranks
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used), replaced with new nodes, or if the groups and communicators of MPI must
be shrunk so that no gap remains. Recovering the application must still be done
by the application itself.

FT-MPI relies on the underlying system to detect failures and notify it of
these failures. The reference implementation of FT-MPI uses HARNESS [7], a
distributed virtual machine with explicit support for adding and removing hosts
from the virtual machine, as well as failure detection. HARNESS shares much of
the same goals as JEL, and is able to overcome many of the same problems JEL
tries to solve. However, HARNESS focuses on a smaller set of applications and
environments than JEL. HARNESS does not explicitly support distributed appli-
cations, as JEL does. Also, HARNESS does not offer the flexibility to select the
concurrency model required by the application, hindering the possibility for more
loosely coupled implementations of the model, such as the P2P implementation of
JEL.

Other projects have investigated supporting dynamic systems. One example
is Phoenix [77], where an MPI-like message passing model is used. This model
is extended with support for virtual nodes, which are dynamically mapped to
physical nodes, the actual machines in the system. GridSolve [87] is a system
for using resources in a grid based on a client-agent-server architecture. The
“View Synchrony” [3] shared data model also supports nodes joining, leaving and
failing. Again, all these programming models focus on resource tracking for a
single model, not the generic resource tracking functionality offered by JEL. All
models mentioned can be implemented using the functionality of JEL.

Although all our current JEL implementations use gossiping and broadcast
trees as a means for information dissemination, other techniques exist. One exam-
ple is the publish-subscribe model [30]. Despite the fact that information dissem-
ination is an important part of JEL, our model offers much more functionality to
provide a full solution for the resource tracking problem. Most importantly, further
functionality includes the active creation and gathering of information regarding
(local) changes in the resource set.

All current implementations of JEL are build from the ground up, with little
external dependencies. However, JEL implementations could in principal interface
with external systems, for instance Grid Information Services (GIS [17]). These
systems can be used both for acquiring (monitoring) data, as well as disseminating
the resulting information. One key difference between JEL and current monitoring
systems is the fact that JEL tracks resources of applications, not systems. An
application crashing usually does not cause the entire system to cease functioning.
Sole reliance of system monitoring data will therefore not detect application-level
errors.

5.7 Conclusions

With the transition from static cluster systems to dynamic environments such
as grids, clusters, clouds, and P2P systems, fault-tolerance and malleability are
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now essential features for applications running in these environments. This is
especially so for an application running on an instant cloud as created by Zorilla
(see Chapter 2), as these are inherently dynamic systems. A first step in creating
a fault-tolerant and malleable system is resource tracking : the capability to track
exactly which resources are part of a computation, and what roles they have.
Resource tracking is an essential feature in any dynamic environment, and should
be implemented on the same level of the software hierarchy as communication
primitives.

In this chapter we presented JEL: a unified model for tracking resources. JEL
is explicitly designed to be scalable and flexible. Although the JEL model is sim-
ple, it supports both traditional programming models such as MPI, and flexible
grid oriented models like Satin. JEL allows programming models such as Satin to
implement both malleability and fault-tolerance. With JEL as a common layer for
resource tracking, the development of programming models is simplified consider-
ably. In the Ibis project, we developed a number of programming models using
JEL, and we continue to add models regularly.

JEL can be used on environments ranging from clusters to highly dynamic P2P
environments. We described several implementations of JEL, including a central-
ized implementation that can be combined with decentralized dissemination tech-
niques, resulting in high performance, yet with low resource usage at the central
server. Furthermore, we described several dissemination techniques that can be
used with JEL. These include a broadcast tree and gossiping based techniques. In
addition, we showed that JEL can be implemented in a fully distributed manner,
using the ARRG gossiping algorithm discussed in Chapter 3 as a basis. This dis-
tributed implementation efficiently supports flexible programming models such as
Satin, and increases fault-tolerance compared to a centralized implementation.

JEL is especially useful in combination with the flood-scheduling present in
Zorilla (see Chapter 4), as this scheduler explicitly supports malleability, and may
thus add or remove resources after the application had been started. For an
example of such a scenario, see [85].

There is no single resource tracking model implementation that serves all pur-
poses perfectly. Depending on the circumstances and requirements of the pro-
gramming model and application a different implementation is appropriate. In a
reliable cluster environment, a centralized implementation performs best. If ap-
plications are run on low bandwidth networks, the broadcast tree dissemination
technique has the benefit of using very little bandwidth. In a hostile environment,
such as desktop grids or P2P systems, a fully distributed implementation is robust
against failures. JEL explicitly supports different algorithms and implementations,
making it applicable in a large number of environments.

We evaluated JEL in several real-world scenarios. The scenarios include start-
ing 2000 instances of an application, and wide area tests with new machines join-
ing, and resources failing. Further experiments are discussed in detail in the next
chapter.



78 Chapter 5. JEL: Unified Resource Tracking



79

Chapter 6

Large Scale Experiments∗

In this chapter we will perform experiments that show the feasibility of real-world
distributed systems for high-performance computing. Also, our experiments will
demonstrate the algorithms and techniques described in this thesis in a larger,
more dynamic, system.

All experiments in this chapter are performed using IbisDeploy. IbisDeploy
is an easy-to-use library for running applications on distributed resources, and
includes an intuitive GUI (see Figure 6.1). IbisDeploy is designed specifically
for deploying applications written in Java that use the IPL [60] to communicate.
IbisDeploy automatically uploads program codes, libraries, and input files, and
downloads output files when the application is done. It also deploys a Smart-
Sockets [54] overlay network which is capable of overcoming many connectivity
problems present in real-world distributed systems such as Firewalls and NATs.

By default, IbisDeploy uses the JavaGAT to implement the required function-
ality, and users manage resources manually, by specifying exactly which resources
to use for every job. Optionally, IbisDeploy can use Zorilla to deploy and run
applications instead. This has the benefit of using functionality present in Zorilla
such as discovery of resources and co-allocation provided by the flood-scheduling
mechanism, and automatic recovery of failures by allocating replacement resources.

Figure 6.2 shows an overview of the software developed for this thesis, as well
as selected other software that is part of the Ibis project. On the left, Ibis-Deploy
is shown using Zorilla (see Chapter 2) to deploy applications. Zorilla, in turn,
uses the flood-scheduler described in Chapter 4 to schedule resources. The flood-
scheduler uses an overlay based on the ARRG gossiping algorithm described in
Chapter 3 to discover resources. As described in Chapter 2, Zorilla used the
JavaGAT to deploy applications, and supports many different middlewares. In
addition to deploying applications, Zorilla also offers support for the JEL resource
tracking model, by creating and managing the necessary support processes.

∗This chapter contains portions of papers published in Concurrency and Computation: Prac-
tice and Experience [27] and IEEE Computer [6], as well as our paper submitted for publica-
tion [28].
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Figure 6.1: The IbisDeploy GUI allows loading of applications and resources (top
middle), and keeping track of running processes (bottom half). Top left shows a
world map of the locations of available resources; top right shows the SmartSockets
network consisting of hubs and compute nodes.

Figure 6.2: Simplified Ibis Software Stack. In this configuration, Ibis-Deploy is
using Zorilla to run applications. Alternatively (and not shown), Ibis-Deploy can
also use the JavaGAT directly.
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Figure 6.3: Multimedia content analysis application. (1) An object is held in front
of a camera (for instance, part of a robot dog). (2) The system processes video
frames on available resources. (3) The system compares the computed feature
vectors to a database of previously learned objects. (4) The most similar object is
returned. A video of this application is available at http://www.cs.vu.nl/ibis/
demos.html.

The right side of Figure 6.2 shows a typical application deployed with Ibis-
Deploy. Applications are written in some programming model, which in turn
uses the IPL. The IPL then uses JEL to track resources, and SmartSockets to
Communicate.

For our experiments, we use the Distributed ASCI Supercomputer 3 (DAS-
3) [20], a five cluster distributed system located in The Netherlands. We also
use the InTrigger [45] grid system in Japan, clusters in the USA and Australia, an
Amazon EC2 [29] cloud system (USA, East Region), as well as a desktop grid and a
single stand-alone machine (both Amsterdam, The Netherlands). Together, these
machines comprise a real-world distributed system, as described in Chapter 1.

The rest of this chapter is organized as follows. In Section 6.1 we deploy a mul-
timedia content analysis application on a large scale system, including both Zorilla
and non-Zorilla resources. In Section 6.2 we deploy a high performance applica-
tion (implementing a Go solver) on a world-wide scale, showing the viability of a
real-world distributed system for compute intensive applications. In Section 6.3
we create an instant cloud from a large collection of heterogeneous resources using
Zorilla. Finally, in Section 6.4 we give some indication of the actual real-world
usability of our software and techniques, by describing a number of competitions
we participated in.

http://www.cs.vu.nl/ibis/demos.html
http://www.cs.vu.nl/ibis/demos.html


82 Chapter 6. Large Scale Experiments

6.1 Multimedia Content Analysis

As a first experiment we deploy a multimedia content analysis (MCA) application
on our world-wide system. This application performs real-time recognition of
every-day objects (see Figure 6.3). Images produced by a camera are processed by
an advanced algorithm developed in the MultimediaN project [70]. This algorithm
extracts feature vectors from the video data, which describe local properties like
color and shape. To recognize an object, its feature vectors are compared to ones
that have been stored earlier and annotated with a name. The name of the feature
vector closest to the one currently seen is returned as a result. As this a compute
intensive problem with (soft) real-time constrains, the analysis is performed on a
large distributed system. In this case, the application is a data-parallel application,
using a single thread per compute node. However, this application serves only as
an example, and usage of upcoming techniques such as multi-core and many-core
architectures such as GPUs could be integrated as well. This would allow for more
compute-intensive MCA kernels.

A single video frame is processed by the data-parallel application (a multi-
media server) running on a single site. Calculations over consecutive frames are
distributed over different sites in a task-parallel manner. Because of this design,
communication is mostly done within sites, and wide-area traffic is limited to input
video frames.

The content analysis application is interactive, with a client application (See
Figure 6.4) used to show the recognition result, as well as to teach the sys-
tem new objects. The application also shows a list of available servers, and al-
lows a user to explicitly control which servers are used. In line with this high
level of control, selection of resources is done explicitly by the user in IbisDe-
ploy. This experiment is supported by a video presentation, which is available at
http://www.cs.vu.nl/ibis/demos.html. As shown in the video, we use IbisDeploy
to start a client on a local machine, and to deploy four data-parallel multimedia
servers, each on a different DAS-3 cluster (using 64 machines in total).

The use of a single multimedia server results in a processing rate of approx-
imately 1.2 frames per second. The simultaneous use of 2 and 4 clusters leads
to linear speedups at the client side with 2.5 and 5 frames/sec respectively. By
adding additional clusters, the Amazon EC2 cloud, the local desktop grid, and the
local stand-alone machine, we obtain a world-wide set of machines.

As said, resource selection is done explicitly by the user, and IbisDeploy uses
the JavaGAT to run the application on each resource. Although Zorilla is not
used on all resources in this experiment to create one, large, instant cloud, it is
used on some of these resources. For instance, the desktop grid that is part of our
world-wide system relies solely on Zorilla to manage resources, and the Amazon
EC2 resources run Zorilla to distribute jobs and files.

To illustrate our fault-tolerance mechanisms, the video also shows an experi-
ment where an entire multimedia server crashes. The JEL resource tracking system
notices this crash, and signals the application. The client then removes the crashed
server from the list of available servers. The application continues to run, as the
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Figure 6.4: Screenshot of the Multimedia Content Analysis application. The top
half of the window consists of the video stream (left), and interface for teaching
new objects and recognizing object(center) and a list of available servers (right).
The bottom half consists of a performance graph showing processed frames per
second (left), and output log (right).
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Location Country Type Nodes Cores Efficiency

VU University, A’dam

NL

32 128 97.3%
University of A’dam Grid 16 64 96.5%
Delft University (DAS-3) 32 64 94.0%
Leiden University 16 32 96.7%

Nat. Inst. of Inf., Chiba
JP

Grid 8 16 84.0%
University of Tsukuba (InTrigger) 8 64 81.1%

VU University, A’dam NL Desktop Grid 16 17 98.0%

Amazon EC2 USA Cloud 16 16 93.2%

Total 176 401 94.4%

Table 6.1: Sites used in the Divide-and-conquer GO experiment. Efficiency is cal-
culated as the difference between total runtime of the application process, and time
spent computing. Overhead includes joining and leaving, as well as application
communication for load balancing, returning results, etc.

client simply keeps on forwarding video frames to all remaining servers. Lastly,
the video shows the multimedia servers being accessed from a smartphone.

Our object recognition experiment shows that real-world distributed systems
are a viable platform for running high-performance applications. The use of vir-
tualization (in this case the Java virtual machine), the SmartSockets library, and
our JEL resource tracking model, allows our application to efficiently use resources
of a world-wide dynamic system. Also, this experiment shows Zorilla is useful for
running parallel applications on bare resources which do not have any middleware
installed.

6.2 Divide-and-conquer GO

Next, we use our world-wide set of resources to run a non-interactive application
which uses the wide-area network more intensively. The application is an imple-
mentation of First Capture Go, a variant of the Go board game where a win is
completed by capturing a single stone. Our application determines the optimal
move for a given player, given any board position. It uses a simple brute-force
algorithm for determining the solution, trying all possible moves recursively using
a divide-and-conquer algorithm. Since the entire space needs to be searched to
calculate the optimal answer, our application does not suffer from search over-
head. Our Go application is implemented in Java, with many of the techniques
used inspired by the Satin programming model [61]. It is implemented using the
IPL communication library [60], which in turn uses JEL to track the resources
available, and the SmartSockets library [54] to communicate between resources.
Our application is highly malleable and fault-tolerant, automatically uses any new
resources added, and continues computations even if resources are removed or fail.

Table 6.1 shows an overview of the sites used. We used a total of 176 machines,
with a total of 401 cores. Figure 6.5 shows the communication structure of the ex-
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Figure 6.5: Communication structure of the world wide divide-and-conquer exper-
iment. Nodes in this graph represent processes, edges represent connections. The
experiment contains both nodes performing the computation, as well as a number
of support processes which allow communication to pass through firewalls, monitor
the communication, and produce this image. Each color represents a different lo-
cation. Note that direct communication channels between individual nodes (even
between separate clusters) are not shown, to maintain legibility of the graph.
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periment. The graph shown is produced by the visualization of the SmartSockets
library. In the graph, each site is represented by a different color. Next to the
compute nodes themselves (called Instances in the graph), and the central server,
a number of support processes is used. These support processes allow commu-
nication to pass through firewalls, monitor the communication, and produce the
visualization shown. The support processes run on the frontend machines of the
sites used.

Our world wide system finishes the capture Go application in 35 minutes.
We measured the efficiency of the machine as the ration between the total time
spent computing and the total runtime of the application. Overhead includes
joining and leaving, as well as time spent communicating with other nodes to load
balance the application, return results, etc. Efficiency of the nodes ranges from
79.8% to 99.1%. The low efficiency on some nodes is due to the severely limited
connectivity of these nodes: the nodes of the InTrigger grid in Japan can only
communicate with the outside world through an SSH tunnel, with a bandwidth of
only 1Mbit/s and a latency of over 250ms to the DAS-3. Even with some nodes
having a somewhat diminished efficiency, the average efficiency over all nodes in
the world-wide experiment is excellent, at 94.4%.

Our experiment confirms that our system, including JEL, is suitable for running
applications on a large scale and on a wide range of systems, including desktop
grids and clouds concurrently, even when a significant amount of wide-area traffic
is required.

6.3 Instant Cloud

Next, we use Zorilla to turn our entire collection of resources into one large instant-
cloud and perform experiments. For this reason, we set IbisDeploy to use Zorilla,
and let it discover and manage all resources. A Zorilla node is started on the
headnode of each site used in the experiment. This node is then responsible for
managing the resources available at that site. To show that Zorilla is capable of
accessing resources using multiple middlewares, we use different ways of accessing
the resources, including Globus, SGE and SSH. On the EC2 cloud, the desktop
grid, and the stand-alone machine Zorilla is started on each machine individually.
After startup, all Zorilla nodes form one large distributed system. Within this
distributed system, our ARRG gossiping algorithm is used to create a locality-
aware overlay network. The flood-scheduler of Zorilla uses this overlay network to
allocate resources (see Figure 6.2).

We deployed the Go application on the entire instant cloud by submitting it
to the Zorilla node on the local desktop machine. See Table 6.2 for an overview of
all nodes used, and Figure 6.6 for the SmartSockets overlay network visualization.
Zorilla deployed the application on 83 nodes, with over 200 cores. The applica-
tions achieved 87% efficiency overall, ranging from 72% on the poorly connected
EVL cluster in Chicago, to over 90% on machines in the DAS system. This ex-
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Location Country Type Middleware Nodes Cores

VU University, A’dam

NL

SGE 16 64
University of A’dam Grid Globus 16 64
Leiden University (DAS-3) prun 8 16
MultimediaN, A’dam prun 16 32

EVL, Chicago USA Cluster SSH 16 16

VU University, A’dam NL Desktop Grid - 2 4

Amazon EC2 USA Cloud - 8 8

VU University, A’dam NL Desktop - 1 1

Total 83 205

Table 6.2: Sites used in the Instant Cloud experiment. All sites run Zorilla on the
frontend. In some cases, Zorilla interfaces with existing middleware at the site to
allocate resources. Middleware used includes Sun Grid Engine (SGE), Globus, and
the custom prun scheduling interface available on the DAS-3. In the last three
sites in the list, the resources themselves also run Zorilla nodes, and no other
middleware is necessary.

Figure 6.6: Resources used in the Zorilla experiment. This visualization shows
all nodes, and the SmartSockets overlay network between them. A node marked
Z represents a Zorilla node, running on either a frontend or a resource. A node
marked I represents an instance of the Go application. As in Figure 6.5, only the
SmartSockets overlay is shown, and links between individual nodes are removed
from the graph for legibility.
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Figure 6.7: Fail test, where a job requiring 40 nodes was submitted. Zorilla
automatically compensates when nodes fail by acquiring new resources.

periment shows that Zorilla is able to efficiently combine resources of a multitude
of computing platforms, with different middlewares.

We also tested the ability of Zorilla to detect and respond to failures. Using
the same distributed system as used in the previous experiment, we deployed the
Go application on 40 nodes. As the flood-scheduler of Zorilla is locality-aware, it
acquires mostly local resources (the stand alone machine, desktop grid, and local
cluster), as well as some resources from other sites in The Netherlands. To simulate
a resource failing, we manually killed all jobs running on our local cluster, totaling
11 nodes. As shown in Figure 6.7, the number of nodes used in the computation
drops from 40 to 29. As we requested Zorilla to run the application on 40 nodes, it
starts searching for additional resources. After a while, these resources are found
and added to the computation. Since most close-by resources are already in use,
some of the Amazon EC2 cloud resources are acquired. Subsequently, the number
of resources used increases to 40 again.

Using JEL, the application is notified of the resources failing, as well as the
new resources being available. The application responds by re-computing all lost
results, and automatically starts using the new resources when they become avail-
able. In contrast to the previous experiment, the application does not use the
poorly connected EVL resources. This significantly increases the efficiency of the
application from 87% to 95%. This experiment shows that Zorilla is able to au-
tomatically acquire new resources in the face of failures, and optimizes resource
acquirement for parallel and distributed applications. In addition, we have showed
an example of the ARRG-based flood scheduler discovering resources in a locality-
aware fashion, and show that JEL is able to support applications on a dynamic
(faulty) system.
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6.4 Competitions

The software produced by the Ibis project (which includes Zorilla, JEL, and other
algorithms and techniques described in this thesis as its core components) also has
been put to the test in a number of international competitions [5].

The first competition we participated in was SCALE 2008, or the First IEEE
International Scalable Computing Challenge, held in conjunction with CCGrid
2008 (Lyon, France). Our submission consisted of the multimedia application
described in Section 6.1, which is able to recognize objects in images taken from
a video stream. These images are sent to a real-world distributed system for
processing, and the resulting image descriptions are used to search for objects in a
database. In our application, JEL is used to keep track of precisely which resources
are available for processing images. Also, Zorilla (including both ARRG and the
flood-scheduler) is used to manage and deploy the application on a number of
resources used in the experiment.

The second competition was DACH 2008, or the First International Data Anal-
ysis Challenge for Finding Supernovae, held in conjunction with Cluster/Grid 2008
(Tsukuba, Japan) Here, the goal was to find ’supernova candidates’ in a large dis-
tributed database of telescope images. We used JEL in our submission to keep
track of all the available resources.

The DACH challenge consisted of two categories: a Basic Category where the
objective was to search the entire database as fast as possible, and a Fault-Tolerant
category, where next to speed, fault tolerance was also measured by purposely
killing over 30% of the nodes in the computation. Especially in the Fault-Tolerant
category, JEL was vital for the successful completion of the application.

The third and last competition was the Semantic Web Challenge 2008, held
in conjunction with the Semantic Web Conference (ISWC 2008), Karlsruhe, Ger-
many. Here, we participated in the Billion Triples Track. In this challenge, the
primary goal was to demonstrate scalability of Semantic Web architectures and
applications. The participants were given a collection of one billion triples (sin-
gle facts) and had to demonstrate added value from the implicit semantics in the
data. This could involve browsing and visualization of the data, could include
inferencing to add implicit information to the dataset, etc. Our submission con-
sisted of MaRVIN [64]: a self-organizing distributed reasoner that can handle these
large amounts of data. Marvin is build using the IPL, which in turn uses JEL for
resource tracking.

Using our software, we have won first prize in both SCALE 2008 and DACH
2008, and third price at the Semantic Web Challenge, in a field of international
competitors. Moreover, we won both the Basic and the Fault-Tolerant categories at
DACH 2008. These prizes [5] show that our software and techniques are very effec-
tive in many real-world scenarios, including dynamic systems with failing nodes.
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Chapter 7

Summary and Conclusions

In this thesis, we have investigated how to run distributed supercomputing ap-
plications on very heterogeneous, dynamic, systems. We used the term real-world
distributed system for the type of systems users have access to and need to (though
not necessarily want to) use to run their high-performance applications. We explic-
itly take into account distributed supercomputing applications, in which resources
from multiple sites cooperate in a single high-performance distributed computa-
tion.

In our research, we focus on how to get an existing distributed supercomputing
application to run on available resources. Besides resource discovery, scheduling,
and managing resources, we also investigate tracking exactly which resources are
available in a computation. Throughout this thesis we use Zorilla, our prototype
P2P middleware, as a research platform.

In Chapter 2, we investigated middleware for real-world distributed systems.
The emergence of these systems has made running high-performance and large-
scale applications a challenge for end-users. Real-world distributed systems are
heterogeneous, faulty, and constantly changing. We suggest a possible solution
for these problems: instant cloud middleware. We established the requirements of
such a middleware, consisting mainly of the capability to overcome all limitations
of real-world distributed systems. Requirements include fault-tolerance, platform
independence, and support for parallel applications.

We introduced Zorilla, a prototype P2P middleware designed for creating an
instant cloud out of any available resources used concurrently, including stand-
alone machines, clusters, grids, and clouds. Zorilla explicitly supports running
distributed supercomputing applications on the resulting system. Zorilla uses a
combination of Virtualization and P2P techniques to implement all functional-
ity, resulting in a simple, effective, and robust system. For instance, the flood-
scheduling system in Zorilla makes use of the fact that resources are virtualized,
allowing for a simple yet effective resource discovery mechanism based on P2P
techniques.
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In Chapter 3, we studied the design and implementation of gossiping algorithms
in real-world situations. We addressed the problems with gossiping algorithms in
real systems, including connectivity problems, network and node failures, and non-
atomicity. We introduced ARRG, a new simple and robust gossiping algorithm.
The ARRG gossiping algorithm is able to handle all problems we identified by
systematically using the simplest, most robust solution available for all required
functionality. The Fallback Cache technique used in ARRG can also be applied to
any existing gossiping protocol, making it robust against problems such as NATs
and firewalls.

We introduced a new metric for the evaluation of gossiping algorithms: Per-
ceived Network Size. It is able to clearly characterize the performance of an algo-
rithm, without requiring information from all nodes in the network. We evaluated
ARRG, in several real-world scenarios. We showed that ARRG performs well in
general, and better than existing algorithms in situations with limited connectiv-
ity. In a pathological scenario with a high loss rate and 80% of the nodes behind
a NAT system, ARRG still performs well, while traditional techniques fail.

In Chapter 4, we have studied the scheduling of supercomputing applications in
P2P environments. We introduced flood scheduling : a scheduling algorithm based
on flooding messages over a P2P network. Flood scheduling is fully decentralized,
supports co-allocation and has good fault-tolerance properties. Flood scheduling
depends on the locality-awareness of the P2P network used.

Using Zorilla, we were able to deploy and run a parallel divide-and-conquer
application on 671 processors simultaneously, solving the N-Queens 22 problem in
35 minutes. We used six clusters of the Grid5000 [9] system, located at sites across
France. This large scale experiment on a real grid showed that flood scheduling is
able to effectively allocate resources to jobs in a locality-aware way across entire
grids.

In Chapter 5, we have studied resource tracking mechanisms. With the transi-
tion from static cluster systems to dynamic environments such as grids, clusters,
clouds, and P2P systems, fault-tolerance and malleability are now essential fea-
tures for applications running in these environments. This is especially so for an
application running on an instant cloud as created by Zorilla, as these are in-
herently dynamic systems. A first step in creating a fault-tolerant and malleable
system is resource tracking : the capability to track exactly which resources are
part of a computation, and what roles they have. Resource tracking is an essential
feature in any dynamic environment, and should be implemented on the same level
of the software hierarchy as communication primitives.

We introduced JEL: a unified model for tracking resources. JEL is explicitly
designed to be scalable and flexible. Although the JEL model is simple, it sup-
ports both traditional programming models such as MPI, and flexible grid oriented
models like Satin. JEL allows programming models such as Satin to implement
both malleability and fault-tolerance. With JEL as a common layer for resource
tracking, the development of programming models is simplified considerably.

JEL can be used on environments ranging from clusters to highly dynamic
P2P environments. We described several implementations of JEL, including a
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centralized implementation that can be combined with decentralized dissemina-
tion techniques, resulting in high performance, yet with low resource usage at the
central server. In addition, we showed that JEL can be implemented in a fully
distributed manner, using the ARRG gossiping algorithm as a basis. This dis-
tributed implementation efficiently supports flexible programming models such as
Satin, and increases fault-tolerance compared to a centralized implementation.

We evaluated JEL in several real-world scenarios. The scenarios include start-
ing 2000 instances of an application, and wide area tests with new machines joining,
and resources failing.

In Chapter 6, we performed several experiments that showed the feasibility
of real-world distributed systems for high-performance computing. We covered
all the software and techniques developed for this thesis, and demonstrated these
in large-scale dynamic systems. Using Zorilla, we ran a world-wide experiment,
showing how Zorilla can tie together a large number of resources into one coherent
system. Moreover, we have shown that these resources can be used efficiently,
even when faults occur. Zorilla allows users to transparently use large numbers
of resources, even on very heterogeneous distributed systems comprised of grids,
clusters, clouds, desktop grids, and other systems. We also show the real-world
applicability of our research, by describing a number of awards won in international
competitions with our software.

Zorilla, and the techniques it incorporates described in this thesis, greatly
enhance the applicability of real-world distributed systems for everyday users.
Instead of limiting usage of these systems to a single site at a time, it is now possible
to routinely use large numbers of resources, possibly distributed across the globe.
Moreover, the work described in this thesis, combined with the complementary
research done in the Ibis project, allows users to do this transparently, and with
little effort. Instead of constantly managing files, jobs, and resources, users can
now focus on the actual computations performed with their application.

Although we have shown Zorilla to be highly useful, it is far from complete.
We plan to add more functionality to Zorilla to increase the number of use-cases
it supports. Extensions include improved security, to enable Zorilla to support
applications which use sensitive information such as medical data. Also, recent
years have shown a dramatic increase in the amount of data used in computations,
leading to a need for more advanced data storage and managing capabilities.

Looking ahead, we predict that real-world distributed systems will be used
more and more by average users. The current trend of increasing parallelism in
even a single machine will also change the parallel computing landscape consider-
ably. Multi-core and many-core architectures like GPUs will need to be incorpo-
rated in current and future systems to keep up with growing user demands. On
the other hand, the breakthrough of parallelism on every desktop also provides
an opportunity, as more programmers will be familiar with parallel concepts. We
also predict a renewed interest for parallel programming models, hiding as much
of the (growing) complexity as possible.
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Samenvatting

In dit proefschrift, getiteld gedistribueerde supercomputer applicaties in de echte
wereld, hebben we onderzocht hoe gedistribueerde supercomputer applicaties ge-
draaid kunnen worden op zeer heterogene, dynamische systemen. We gebruikten
de term real-world gedistribueerd systeem voor het type van systemen waar gebrui-
kers toegang toe hebben en dat deze gebruikers (vaak tegen wil en dank) moeten
gebruiken om applicaties te draaien die zeer veel rekenkracht vragen, zogenaamde
high-performance-applicaties. We hebben expliciet rekening gehouden met gedis-
tribueerde supercomputer-toepassingen, waarin computers op meerdere locaties
samenwerken in één gedistribueerde berekening.

In ons onderzoek richtten we ons op het draaien van bestaande gedistribueerde
supercomputer applicaties op alle beschikbare machines. Naast het ontdekken
van beschikbare machines, scheduling en het managen van gebruikte computers,
onderzochten we ook het bijhouden van welke computers precies beschikbaar zijn
in een berekening. Het onderzoek in dit proefschrift maakt gebruik van Zorilla,
ons prototype Peer-to-Peer(P2P) middleware systeem, als onderzoeksplatform.

In Hoofdstuk 2 hebben we middleware voor real-world gedistribueerde sys-
temen onderzocht. De opkomst van deze systemen heeft het draaien van high-
performance toepassingen op grote schaal problematisch gemaakt voor eindge-
bruikers. Real-world gedistribueerde systemen zijn heterogeen, gaan vaak stuk en
veranderen voortdurend. Wij suggereren een mogelijke oplossing voor deze pro-
blemen: instant cloud middleware. We stellen de vereisten voor een dergelijke
middleware vast. Deze bestaan voornamelijk uit het overwinnen van alle beper-
kingen van real-world gedistribueerde systemen, zoals het tolereren van defecten,
platformonafhankelijkheid en ondersteuning voor parallelle applicaties.

We introduceerden Zorilla, een prototype P2P middleware ontworpen voor het
creëren van instant cloud uit alle mogelijke beschikbare systemen, met inbegrip
van PC’s, clusters, grids en clouds. Zorilla heeft expliciet ondersteuning voor
het draaien van gedistribueerde supercomputer-toepassingen. Zorilla gebruikt een
combinatie van virtualisatie en P2P-technieken om alle functionaliteit te imple-
menteren, wat resulteert in een eenvoudig, efficiënt en robuust systeem. Het
flood-scheduling systeem in Zorilla maakt bijvoorbeeld gebruik van het feit dat
de machines gevirtualiseerd zijn, waardoor een simpel maar effectief algoritme,
gebaseerd op P2P technieken gebruikt kan worden om nieuwe machines te ontdek-
ken.
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In Hoofdstuk 3 hebben we het ontwerp en de implementatie van gossiping(roddel)
algoritmen in realistische situaties bestudeerd. We hebben de problemen aange-
pakt die optreden bij het gebruik van gossiping algoritmen in realistische situaties,
zoals connectiviteitsproblemen en netwerk- en computerstoringen. We introduceer-
den ARRG, een eenvoudig en robuust gossiping algoritme. Het ARRG gossiping
algoritme lost alle problemen die we gëıdentificeerd hebben op, door systematisch
gebruik van de eenvoudigste, meest robuuste oplossing beschikbaar. De Fallback
Cache techniek die gebruikt wordt in ARRG kan ook worden toegepast op alle
bestaande gossiping algoritmen, waardoor deze robuuster worden voor problemen
zoals NAT-systemen en firewalls.

We evalueerden ARRG in verschillende realistische scenario’s. We toonden
aan dat ARRG over het algemeen goed presteert en beter presteert dan bestaande
algoritmen in situaties met beperkte connectiviteit. In een pathologisch scenario
met veel storingen en 80% van de machines achter een NAT-systeem, presteerde
ARRG nog steeds goed, terwijl de traditionele gossiping-technieken falen.

In Hoofdstuk 4 hebben we de scheduling van supercomputing-toepassingen in
P2P omgevingen onderzocht. We introduceerden flood scheduling : een scheduling
algoritme gebaseerd op een vloedgolf van berichten over een netwerk. Flood sche-
duling is volledig gedecentraliseerd, ondersteunt co-allocatie en is foutbestendig.

Met behulp van Zorilla waren we in staat een parallelle verdeel-en-heers toe-
passing op 671 processoren tegelijkertijd te draaien. Deze applicatie loste het
22-Koninginnen probleem op in 35 minuten. We gebruikten zes clusters van het
Grid5000 systeem op verschillende locaties in Frankrijk. Dit experiment toont aan
dat flood scheduling in staat is om effectief machines te alloceren in een grootscha-
lig systeem.

In Hoofdstuk 5 hebben we zogenaamde resource tracking-mechanismen on-
derzocht. Met de overgang van statische clustersystemen naar meer dynamische
omgevingen zoals grids, clusters, clouds en P2P systemen, zijn foutbestendigheid
en flexibiliteit nu van essentieel belang voor applicaties die draaien in deze om-
gevingen. Dit is extra van toepassing op een applicatie die draait op een instant
cloud zoals gecreëerd door Zorilla, aangezien dit inherent dynamische systemen
zijn. Een eerste stap in het creëren van een storingsongevoelig en flexibel systeem
is resource tracking: de mogelijkheid om precies bij te houden welke machines deel
uitmaken van een berekening en welke rol ze hebben. Resource tracking is een
essentieel onderdeel van elke dynamische omgeving.

We introduceerden JEL: een resource tracking model voor het bijhouden van
beschikbare machines in een gedistribueerde applicatie. JEL is expliciet ontworpen
om zowel schaalbaar als flexibel te zijn. Hoewel het JEL model erg eenvoudig is,
ondersteunt het zowel traditionele programmeermodellen zoals MPI, als flexibele
grid programmeermodellen zoals Satin. JEL stelt programmeermodellen zoals Sa-
tin in staat zowel flexibel als foutbestendig te zijn. Met JEL als een gemeenschap-
pelijke laag voor resource tracking is het ontwikkelen van programmeermodellen
aanzienlijk vereenvoudigd.

JEL kan gebruikt worden op omgevingen variërend van clusters tot zeer dyna-
mische P2P-omgevingen. We beschreven verschillende implementaties van JEL.
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Een daarvan is een gecentraliseerde implementatie die kan worden gecombineerd
met decentrale verspreidingstechnieken, wat resulteert in hoge prestaties en een
lage belasting van de centrale server. Bovendien toonden we aan dat JEL kan
worden gëımplementeerd op een volledig gedistribueerde wijze met gebruik van
het ARRG gossiping algoritme als basis. Deze gedistribueerde implementatie on-
dersteunt efficiënt flexibele programmeermodellen zoals Satin en heeft een betere
foutbestendigheid dan de gecentraliseerde versie.

We evalueerden JEL in verschillende realistische scenario’s, waaronder het star-
ten van een applicatie op 2000 machines en situaties waarin er constant verande-
ringen zijn aan de beschikbare machines. Ook testten wij JEL in een scenario
waar er storingen optreden.

In Hoofdstuk 6 hebben we een aantal experimenten uitgevoerd die de haal-
baarheid testen van het gebruik van real-world gedistribueerde systemen voor
high-performance toepassingen. We testten alle software en technieken ontwikkeld
voor dit proefschrift en toonden aan dat deze goed functioneren in grootschalige
dynamische systemen. Met behulp van Zorilla deden we een wereldwijd experi-
ment waarmee we aantoonden dat Zorilla een groot aantal machines tot één groot
systeem kan smeden. Bovendien hebben we aangetoond dat deze machines efficint
gebruikt kunnen worden, zelfs wanneer er storingen optreden. Zorilla stelt gebrui-
kers in staat om grote aantallen machines op een makkelijk manier te gebruiken,
zelfs in zeer heterogene gedistribueerde systemen bestaande uit grids, clusters,
clouds, desktop grids, en andere systemen.

We hebben ook de toepasbaarheid van ons onderzoek aangetoond met de be-
schrijving van een aantal prijzen gewonnen in internationale wedstrijden met onze
software. De technieken beschreven in dit proefschrift vergroten de toepasbaarheid
van real-world gedistribueerde systemen voor de dagelijkse gebruikers zeer. Het
is nu mogelijk om routinematig een groot aantal machines tegelijk te gebruiken,
eventueel verdeeld over de hele wereld. Het werk beschreven in dit proefschrift,
gecombineerd met het complementair onderzoek gedaan in het Ibis-project, stelt
gebruikers in staat om dit tevens op een gemakkelijke wijze te doen.

Hoewel we hebben laten zien dat Zorilla zeer nuttig is, is het verre van compleet.
We zijn van plan om meer functionaliteit toe te voegen aan Zorilla, zoals verbeterde
beveiliging. De afgelopen jaren hebben we een dramatische toename gezien van de
hoeveelheid data die gebruikt wordt in berekeningen. Hierdoor is het noodzakelijk
geworden meer geavanceerde data-opslag en -beheer toe te voegen aan Zorilla.

In de toekomst zullen real-world gedistribueerde systemen meer en meer ge-
bruikt worden door eindgebruikers. De huidige trend van toenemende parallellisme
in een enkele machine zal ook het programmeerlandschap danig veranderen. Multi-
core machines en GPU’s zullen moeten worden opgenomen in de huidige en toe-
komstige systemen om te voldoen aan de eisen van eindgebruikers. De doorbraak
van parallellisme op elke PC biedt ook een kans, omdat er meer programmeurs zul-
len zijn met kennis van parallelle concepten. Wij voorspellen ook een hernieuwde
belangstelling voor parallelle programmeermodellen, met name modellen die zoveel
mogelijk verbergen van de (toenemende) complexiteit.
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