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Java offers interesting opportunities for parallel computing. In par-
ticular, Java Remote Method Invocation provides an unusually flex-
ible kind of Remote Procedure Call. Unlike RPC, RMI supports
polymorphism, which requires the system to be able to download
remote classes into a running application. Sun’s RMI implementa-
tion achieves this kind of flexibility by passing around object type
information and processing it at run time, which causes a major run
time overhead. Using Sun’s JDK 1.1.4 on a Pentium Pro/Myrinet
cluster, for example, the latency for a null RMI (without parameters
or a return value) is 1228 µsec, which is about a factor of 40 higher
than that of a user-level RPC. In this paper, we study an alterna-
tive approach for implementing RMI, based on native compilation.
This approach allows for better optimization, eliminates the need
for processing of type information at run time, and makes a light
weight communication protocol possible. We have built a Java sys-
tem based on a native compiler, which supports both compile time
and run time generation of marshallers. We find that almost all
of the run time overhead of RMI can be pushed to compile time.
With this approach, the latency of a null RMI is reduced to 34 µsec,
while still supporting polymorphic RMIs (and allowing interoper-
ability with other JVMs).
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There is a growing interest in using Java for high-performance par-
allel applications. Java’s clean and type-safe object-oriented pro-
gramming model and its support for concurrency make it an attrac-
tive environment for writing reliable, large-scale parallel programs.
For shared memory machines, Java offers a familiar multithread-
ing paradigm. For distributed memory machines such as clusters of
workstations, Java provides Remote Method Invocation, which is
an object-oriented version of Remote Procedure Call (RPC). The
RMI model offers many advantages for parallel and distributed
programming, including a seamless integration with Java’s object
model, heterogeneity, and flexibility [30].

Unfortunately, many existing Java implementations have infe-
rior performance of both sequential code and communication prim-
itives, which is a serious disadvantage for high-performance com-
puting. Much effort is being invested in improving serial code per-

formance by replacing the original byte code interpretation scheme
with just-in-time compilers, native compilers, and specialized hard-
ware [17, 22, 25]. The communication overhead of Java RMI im-
plementations, however, remains a major weakness. RMI is orig-
inally designed for client/server programming in distributed (web
based) systems, where latencies on the order of several millisec-
onds are typical. On more tightly coupled parallel machines, such
latencies are unacceptable. On our Pentium Pro/Myrinet cluster, for
example, Sun’s JDK 1.1.4 implementation of RMI obtains a two-
way null-latency (the latency of an RMI without parameters or a
return value) of 1228 microseconds, compared to 30 microseconds
for a user level Remote Procedure Call protocol in C. (A null-RMI
in Sun’s latest JDK, version 1.2 beta, is even slower.)

Part of this large overhead is caused by inefficiencies in the
JDK. The JDK is built on a hierarchy of stream classes that copy
data and call virtual methods. Serialization of method arguments
is implemented by recursively inspecting object types until primi-
tive types are reached, and then invoking the primitive serializers a
byte at a time. All of this is performed at run time, for each remote
invocation. In addition, RMI is implemented on top of IP sock-
ets, which adds kernel overhead (and four context switches on the
critical path).

Besides inefficiencies in the JDK, a second and more funda-
mental reason for the slowness of RMI is the difference between
the RPC and RMI models. Java’s RMI scheme is designed for flex-
ibility and interoperability. Unlike RPC, it allows classes unknown
at compile time to be exchanged between a client and a server and
to be downloaded into a running program. In Java, an actual pa-
rameter object in an RMI can be a subclass of the method’s formal
parameter type. In polymorphic object-oriented languages, the dy-
namic type of the parameter-object (the subclass) should be used
by the method, not the static type of the formal parameter. When
the subclass is not yet known to the receiver, it has to be fetched
over the network from a remote process and be downloaded into
the receiver. This high level of flexibility is the key distinction be-
tween RMI and RPC [30]. RPC systems simply use the static type
of the formal parameter (thereby type-converting the actual param-
eter), and thus do not support polymorphism and break with the
object-oriented model.

The key problem is to obtain the efficiency of RPCs and the
flexibility of Java’s RMI. This paper discusses a new compiler-
based Java system, called Manta,1 which is designed from scratch
to implement polymorphic RMIs efficiently. On our Myrinet clus-
ter, for example, Manta obtains a null-latency of 34 µsec, a factor
of 36 improvement over the JDK 1.1.4. Table 1 shows two-way
null-RMI latencies and throughput of Manta, Sun’s JDK (a byte

1A fast, flexible, black-and-white, tropical fish, that can be found in the Indonesian
archipelago.



code interpreter), Sun’s JIT (a just-in-time byte code compiler), and
Panda (a conventional RPC in C), on two different processors and
two different networks. The table shows that Manta is substantially
faster than Sun’s RMI, and close to a Panda RPC. (The difference
between Panda 3.0 and 4.0 is explained in Section 3.)

Manta replaces Sun’s run time protocol processing as much as
possible by compile time analysis. We use a native compiler to
generate efficient serial code and specialized serialization routines
for serializable argument classes. The generated serializers allow
a simpler RMI protocol that avoids type inspection at run time al-
together. Since type information is known at compile time, it suf-
fices to carry a simple type-id in the protocol, instead of elaborate
type descriptions. In this way, almost all of the protocol overhead
has been pushed to compile time, off the critical path. The prob-
lems with this approach, however, are how to interface with other
Java Virtual Machines (which is required for interoperability) and
how to address dynamic class loading (required to support poly-
morphism). To interoperate with other (non-Manta) JVMs, Manta
supports the standard Sun RMI and serialization protocols in addi-
tion to its own fast protocols. Dynamic class loading is supported
by compiling methods and generating serializers at run time.

The Manta system combines high performance with the flex-
ibility and interoperability of RMI. In a metacomputing applica-
tion [10], for example, some clusters can run our Manta software
and communicate internally using the fast Manta RMI protocol.
Other machines may run other JVMs (containing, for example, a
graphical user interface program) and Manta communicates with
these machines using the standard Sun RMI protocol. The ma-
chines running Manta and the JVM can both invoke each other’s
methods. Manta implements almost all other functionality required
for Java RMI, including heterogeneity, multithreading, synchro-
nized methods, and distributed garbage collection.

The main contributions of this paper are as follows. First, the
paper shows that Java RMI can be implemented efficiently and can
obtain a performance close to that of RPC systems. On Myrinet,
a null-RMI takes 1228 µsec for Sun’s JDK, and 34 µsec for our
system, only 4 µsec more than a C-based RPC. Second, we show
that the efficiency improvement can be achieved without sacrificing
polymorphic RMIs and interoperability.

The rest of the paper is structured as follows. The design and
implementation of the Manta system are discussed in Section 2.
At the time of this writing, most of the system is up and running,
though some parts of the interface to Sun JDK RMIs are still being
finished; Section 2.4 reports on the implementation status. In Sec-
tion 3 we give a detailed performance analysis of our system. In
Section 4 we look at related work. Section 5 presents conclusions.
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This section will discuss the design of the Manta system (including
the unimplemented parts) and describe the current implementation
status of the system. We will focus on the Manta RMI implemen-
tation.
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Since Manta is designed for high-performance parallel computing,
it uses a native compiler rather than a JIT. The most important ad-
vantage of a native compiler is that it can do more aggressive op-
timizations and therefore generate better code. To support interop-
erability with other JVMs, however, Manta also has to be able to
process the byte code for the application, and contains a run-time
byte-code-to-native compiler.

The Manta system is illustrated in Figure 1. The box in the
middle describes the structure of a node running a Manta appli-
cation. Such a node contains the executable code for the applica-

tion and (de)serialization routines, both of which are generated by
Manta’s native compiler. A Manta node can communicate with an-
other Manta node (the box on the left) through a fast RMI protocol
(using Manta’s own serialization format); it can communicate with
another JVM (the box on the right) through a JDK-compliant proto-
col (using Sun’s serialization format). Determining which protocol
to use is done with an initial probe RMI, which is only recognized
by a Manta application, not by a JVM.

A Manta-to-Manta RMI is performed with Manta’s own fast
protocol, which is described in detail in the next subsection. This is
the common case for high performance parallel programming, for
which Manta is optimized. Manta’s serialization and deserializa-
tion protocols support heterogeneity.

A Manta-to-JVM RMI is performed with a slower protocol that
is compatible with Sun’s RMI standard. Manta uses generic rou-
tines to (de)serialize the objects to or from Sun’s format. These
routines use runtime type inspection (reflection), and are similar to
Sun’s protocol. The routines are written in C (as is all of Manta’s
run time system) and execute more efficiently than Sun’s protocol,
which is written mostly in Java.

A Manta application must be able to work with byte codes from
other nodes, to implement polymorphic RMIs with JVMs. When
a Manta application requests a byte code from a remote process,
Manta will invoke its byte code compiler to generate the meta-
classes, the serialization routines, and the object code for the meth-
ods (as if they were generated by the Manta source code compiler).

The dynamically generated object code is linked into the appli-
cation with the �������������! dynamic linking interface. If a remote
node requests byte code from a Manta application, the JVM byte
code loader retrieves the byte code for the requested class in the
usual way through a shared filesystem or through an http daemon.
RMI does not have separate support for retrieving byte codes (see
also http://sirius.ps.uci.edu/˜smichael/rmi.htm). Sun’s "�#�$�#�% com-
piler is used to generate the byte code at compile time.

Two Manta applications can also implement polymorphism by
exchanging the Java source code instead of the byte code. In this
case (not shown in Figure 1), the native Manta compiler is invoked
during runtime, resulting in better object code than with the byte
code compiler. Manta applications must still be able to compile
byte codes, however, since a class may originate from a non-Manta
JVM, in which case the source may not be available.

The structure of the Manta system is more complicated than
that of a JVM. Much of the complexity of implementing Manta ef-
ficiently is due to the need to interface a system based on a native-
code compiler with a byte code-based system. The fast communi-
cation path in our system, however, is straightforward: the Manta
RMI protocol just calls the compiler-generated serialization rou-
tines and uses a simple scheme to communicate with other Manta
nodes.
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RMI systems can be split into three major components: low-level
communication, the RMI protocol (stream management and method
dispatch), and serialization. Below, we discuss how Manta imple-
ments this functionality.
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Java RMI implementations are built on top of TCP/IP, which was
not designed for parallel processing. Manta uses the Panda com-
munication library [1], which has efficient implementations on a
variety of networks. On Myrinet, Panda uses the LFC communi-
cation system [4, 5]. To avoid the overhead of operating system
calls, LFC and Panda run in user space. On Fast Ethernet, Panda
is implemented on top of UDP. In this case, the network interface



System Version Processor Network Latency Throughput
(µs) (MByte/s)

Sun JDK 1.1.3 300 MHz Sparc Ultra 10 Fast Ethernet 1630 1.0
Sun JIT 1.1.6 1210 4.1
Sun JIT 1.2 beta 1311 3.0
Manta/Panda 3.0 338 7.4
Panda 3.0 328 8.7
Sun JDK 1.1.4 200 MHz Pentium Pro Fast Ethernet 1711 0.97
Manta/Panda 3.0 233 7.3
Panda 3.0 228 10.3
Sun JDK 1.1.4 200 MHz Pentium Pro Myrinet 1228 4.66
Manta/Panda 3.0 34 20.6
Manta/Panda 4.0 39 51.3
Panda 3.0 30 55.7
Panda 4.0 31 59.4

Table 1: Two-way Null-RMI Latency and Throughput
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is managed by the kernel, but the Panda RPC protocols run in user
space.

The Panda RPC interface is based on an upcall model: concep-
tually a new thread of control is created when a message arrives,
which will execute a handler for the message. The interface has
been designed to avoid thread switches in simple cases. Unlike ac-
tive message handlers [29], upcall handlers in Panda are allowed
to block in a critical section, but a handler is not allowed to wait
for another message to arrive. This restriction allows the imple-
mentation to handle all messages using a single thread and to avoid
context switches for handlers that execute without blocking [19].
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The run time system for the Manta RMI protocol is written in C. It
was designed to minimize serialization and dispatch overhead, such
as copying, buffer management, fragmentation, thread switching,
and indirect method calls. Figure 2 gives an overview of the layers
in our system and compares it with the layering of the JDK system.
The shaded layers denote compiled code, while the white layers are
interpreted (or JIT-compiled) Java. Manta avoids the stream lay-
ers of the JDK. Instead, RMIs are serialized directly into a Panda
buffer. Moreover, in the JDK these stream layers are written in Java
and their overhead thus depends on the quality of the interpreter or
JIT. In Manta, all layers are either implemented as compiled C code
or compiler generated native code. Also, Manta applications can
call RMI serializers directly, instead of through the (slow) Java Na-
tive Interface. Heterogeneity between little-endian and big-endian
machines is achieved by sending data in the native byte order of
the sender, and having the receiver do the conversion, if necessary.
Another important optimization in our RMI protocol is to avoid
generating a new thread at the receiving node. The Manta compiler
determines for each remote method whether it is guaranteed to ex-
ecute without blocking (whether it may execute a “wait()” opera-
tion). If the method will never block, it is executed without doing
a thread context switch. The compiler currently makes a conserva-
tive estimation and only guarantees the non-blocking property for
methods that do not call other methods.

The Manta RMI protocol cooperates with the garbage collector
to keep track of references across machine boundaries. Manta uses

a local garbage collector based on a mark-and-sweep algorithm.
Each machine runs this local collector, using a dedicated thread
that is activated by the run time system or the user. The distributed
garbage collector is implemented on top of the local collectors, us-
ing a reference counting mechanism for remote objects (distributed
cycles remain undetected).
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The serialization of method arguments is an important source of
overhead of existing RMI implementations. Serialization takes Java
objects and converts (serializes) them into an array of bytes. The
JDK serialization protocol is written in Java and uses reflection to
determine the type of each object during run time. With Manta, all
serialization code is generated by the compiler, avoiding the over-
head of dynamic inspection. Serialization code for most RMI calls
is generated at compile time. Only serialization code for polymor-
phic RMI calls that are not locally available is generated, by the
Manta compiler, at run time. The overhead of this run time code
generation is incurred only once, the first time the new class is used
as a polymorphic argument to some method invocation. For sub-
sequent uses, the fast serializer object code is then available for
reuse. The overhead of run time serializer generation is on the or-
der of seconds at worst, depending mostly on whether the Manta
compiler is resident, or whether it has to be paged in over NFS.

To accomplish fast serialization with correct Java semantics,
the compiler generates special (un)marshall methods. For every
method in the method table, a method pointer is maintained here
to dispatch to the right (un)marshaller for that method. A similar
optimization is used for serialization: every object has two pointers
in its method table to the serializer and deserializer for that ob-
ject. When a particular object is to be serialized the method pointer
is extracted from the object’s method table and invoked. On de-
serialization the same procedure is applied. The serialization and
deserialization code is generated by the compiler and has complete
information about fields and their types. When a class to be serial-
ized/deserialized is marked “final”, the cost of the virtual function
call to the right serializer/deserializer is optimized away, since the
correct function pointer can be determined at compile time.

The Manta serialization protocol performs optimizations for
simple objects. An array whose elements are of a primitive type is
serialized by doing a direct memory-copy into the message buffer,
which saves traversing the array. Serialization produces a deep
copy. In order to detect duplicate objects, the marshalling code
uses a hash table containing objects that have already been serial-
ized. If the method does not contain any parameters that are ob-
jects, however, the hash table is not created, which again makes
simple methods faster. Also, the hash table itself is not transferred
over the network; instead, the table is rebuilt on-the-fly by the re-
ceiver. Compiler generation of serialization is one of the major
improvements of Manta over the JDK.
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Figures 3, 4, and 5 illustrate the generated marshalling code. Gen-
eration of meta classes and marshallers is described in more detail
in [28]. Consider the “RemoteMonkey” class in Figure 3. The
“foo()” method can be called from another machine, therefore the
compiler generates marshalling and unmarshalling code for it.

The generated marshaller for the “foo()” method is shown in
Figure 4 in pseudo code. Because “foo()” has a String as param-
eter, which is an object in Java, a hash-table is created to detect
duplicates. A special create thread flag is set in the header data
structure. This is done because “foo” contains a method call (“Sys-
tem.out.println()”) and might therefore potentially do a “wait()”, or
block on a similar synchronization statement. When a remote ex-
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Figure 3: A simple remote class.

ception is thrown, the hash table is reused to detect duplicates in
the exception object. The programmer may define his own excep-
tions in Java, so it is not guaranteed that the thrown exception does
not contain a cycle. The writeObject call will serialize the string
object to the buffer at the current position. The flushFunction does
the actual writing out to the network buffer. It is also used, together
with the fillFunction, for fragmentation.
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Figure 4: The generated marshaller for the “foo” method.

Pseudo code for the generated unmarshaller is shown in Fig-
ure 5. The header is already unpacked when this unmarshaller is
called. Because the create thread flag in the header was set, this
unmarshaller will run in a new thread started by the runtime sys-
tem. The marshaller itself does not know about this. Note that the
this parameter is already unpacked and is a valid reference for the
machine the unmarshaller will run on.
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Figure 5: The generated unmarshaller for the “foo” method.
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Our work on an efficient Java RMI started out as an attempt to
make a fast version of JavaParty [24]. JavaParty does not use a
registry, and uses a syntax that differs slightly from Sun RMI. It
uses the keyword k���l���m�� for classes that can be called remotely.
For example, the RemoteMonkey class declaration from Figure 3
would be written as �%n%o ��p,%qk���l���m�� %,��#�rRrts���l���m���u ���Rv��Rwyx .
The Manta system is now being extended to also support the stan-
dard Sun RMI syntax. Further extensions needed to interoperate
with Sun JVMs are support for the Sun RMI registry, support for
the Sun RMI wire protocol, and the ability to work with byte code
files. Some of these extensions are already working, although the
efficient Myrinet implementation of polymorphic remote method
calls currently only works for the JavaParty syntax.

The Manta compiler and fast RMI protocol are operational and
have been used to run several applications. The compiler currently
generates code for the Pentium and Sparc architectures. The Manta
run time system supports several networks (including UDP/IP net-
works and Myrinet). On Myrinet, the user-level communication
system we use (LFC) offers no protection, so the Myrinet network
can be used by a single process only. (This problem can be solved
with other Myrinet protocols that do offer protection [4].) The Fast
Ethernet implementation uses a kernel-space UDP/IP protocol and
does not have this problem.

In addition, we are finishing the implementation of the dynamic
byte code compiler, which includes the ability to generate serial-



ization routines from byte codes. We have implemented dynamic
source code compilation, which can be used for polymorphic RMIs
between two Manta nodes (see Section 2.2). The linking of dynam-
ically generated object code works on Linux and Solaris. On BSD
3.0 (one of the operating systems used for our Myrinet cluster) it
does not work because of a bug in BSD 3.0’s implementation of
����������� �! . Interoperability with Sun RMI, including polymorphic
RMI, poses the largest engineering challenges. At the time of this
writing, we have run a small mixed Sun/Manta RMI application,
and we have run a small application compiled by the Manta byte
code compiler. Currently, interfacing with Sun JVMs, and the abil-
ity to use the Sun RMI syntax over the fast Myrinet protocol, are
being finished.
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In this section, the performance of Manta is compared against the
Sun JDK 1.1.4. Experiments are run on a homogeneous cluster of
Pentium Pro processors. Each node contains a 200 MHz Pentium
Pro and 128 MByte of EDO-RAM. All boards are connected by
two different networks: 1.2 Gbit/sec Myrinet [6] and Fast Ethernet
(100 Mbit/sec Ethernet). The system runs the BSD/OS (Version
3.0) operating system from BSDI and RedHat Linux version 2.0.36.
Timing differences between BSD and Linux are small to negligible.
Except where otherwise noted, the numbers reported are from runs
on BSD. Both Manta and Sun’s JDK run over Myrinet and Fast
Ethernet. We have created a small user-level layer that implements
socket functionality in order to run JDK RMI over Myrinet, on top
of Illinois Fast Messages (FM) [23]. FM’s round-trip latency is 4 µs
higher than that of LFC.
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For the first benchmark, we have made a breakdown of the time
that Manta spends in remote method invocations, using zero to
three (empty) objects as parameters, and no return value. The mea-
surements were done by inserting timing calls, using the Pentium
Pro performance counters. These counters have a granularity of 5
nanoseconds. The results for Manta over Myrinet (using Panda 3.0)
are shown in Table 2.

The simplest case is an empty method without any parameters,
the null-RMI. On Myrinet, a null-RMI takes about 34 µs. Only 4
microseconds are added to the latency of the Panda RPC, which is
30 µs. When passing primitive data types as a parameter to a remote
call, the latency grows with less than a microsecond per parameter,
regardless of the type of the parameter (this is not shown in the
table). When one or more objects are passed as parameters in a
remote invocation, the latency increases with several microseconds.
The reason is that a table must be created by the run time system
to detect possible cycles and duplicates in the objects. Separate
measurements show that almost all time that is taken by adding an
object parameter is spent at the remote side of the call, deserializing
the call request (not shown). The serialization of the request on the
calling side, however, is affected less by the object parameters.

To compare the overhead of the JDK and Manta, we have per-
formed the same breakdown of these two systems on Pentium Pros
connected by Fast Ethernet. We use Fast Ethernet rather than Myri-
net for the comparison between the JDK and Manta, so we can run
the JDK “out-of-the-box” (without making any changes to it). The
results are given in Table 3. On the JDK and the JIT, the communi-
cation times still include a small amount of Java overhead. Pipelin-
ing effects in the communication layers complicate measurements,
which is why the timings in the columns in the table do not add up
exactly to the measured overall run time. The timings on Fast Eth-
ernet are less consistent than on Myrinet, which may be the cause
of small discrepancies in the table.

A null-RMI for Manta over Fast Ethernet takes 233 microsec-
onds, while a JDK RMI takes 1711 microseconds; Manta thus is
7.3 times faster. The table shows how expensive Sun’s serialization
and RMI protocol (stream and dispatch overhead) are, compared to
Manta. With 3 object-parameters, for example, the total difference
is a factor 60 (2036 µs versus 34 µs).

Part of the overhead of the JDK 1.1.4 is caused by the usage
of an interpreter. To determine the impact of a JIT compiler we
have also run tests with the Sun JIT 1.1.6 just-in-time byte code
compiler. We were unable to run Sun’s JIT on BSD/OS or Linux;
we used UltraSparcs-10 (running Solaris) for these tests instead.
(Other JITs, such as Kaffe, do not yet support RMI.) The results
are shown in Table 4. As can be seen, the performance gap between
the JIT and Manta is lower than between the JDK and Manta, but
the gap is still large. Part of the difference in the communication
times is due to Manta using Panda, which runs on UDP, whereas
Sun RMI uses TCP. Also, the difference between Manta and the
JIT in serialization and RMI-protocol overhead is still large. With
3 object-parameters, for example, the difference is a factor 25 (1170
µs versus 46 µs).

Finally, we also measured the time to create a new thread for an
incoming invocation request, which Manta uses for methods that
potentially block. On the Pentium Pro, starting a new thread for
an invocation costs 16 µs with the Manta run time system, so a
remote call that is executed by a new thread costs at least 50 µs (on
Myrinet). Our optimization for simple (nonblocking) methods thus
is useful.
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The second benchmark we use is a Java program that measures
the throughput for a remote method invocation with an array of a
primitive type as argument, and no return type. The reply message
is empty, so the one-way throughput is measured. In Manta, all
arrays of primitive types are serialized with a memory copy, so
the actual type does not matter. The resulting measurements were
shown in Table 1 in Section 1.

The table also shows the measured throughput of the Panda
RPC protocol, with the same message size as the remote method
invocation. Two versions of Panda are shown. The basic version,
with which almost all measurements in this paper are performed,
is Panda 3.0. On Myrinet we have also performed measurements
with Panda 4.0, which supports a scatter/gather interface. This scat-
ter/gather interface makes it possible to remove some copying of
user data from the critical path, resulting in an improved through-
put. Unfortunately, dereferencing the scatter/gather vector involves
extra processing, which increases the latency somewhat. Panda 3.0
achieves a throughput of 55.7 MByte/s on Myrinet, which is much
higher than the throughput for Manta (20.6 MByte/s). The differ-
ence is due to two extra memory copies that Manta RMI needs for
serialization (at the sending side) and deserialization (at the receiv-
ing side). Since memory-copies are expensive on a Pentium Pro
[8], they decrease throughput significantly. For larger array sizes,
the memory-to-memory copies have a larger impact on the perfor-
mance. On Panda 4.0 the extra copying is avoided, and we achieve
a throughput of 51.3 MByte/s, compared to 59.4 MByte/s of the
raw Panda 4.0.

For the Sun JIT throughput is significantly less, and even more
so for the JDK. On UltraSparcs-10 with Fast Ethernet, Manta ob-
tains a throughput of 7.4 MByte/s, the JIT obtains 4.1 MByte/s, and
the JDK obtains only 1 MByte/s.
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Sun’s RMI protocol contains type information overhead; Manta’s
RMI protocol is substantially leaner. We have measured the com-



empty 1 object 2 objects 3 objects
Serialization - 7 13 19
RMI Overhead 4 5 5 5
Panda 30 32 33 33
Total 34 44 51 57

Table 2: Breakdown of Manta RMI on Pentium Pro and Myrinet; times are in µs

Manta Sun JDK
empty 1 object 2 objects 3 objects empty 1 object 2 objects 3 objects

Serialization - 11 17 24 - 667 879 1088
RMI Overhead 5 10 9 10 907 947 942 948
Communication 227 232 235 243 799 795 797 862
Overall 233 254 262 278 1711 2409 2619 2899

Table 3: Breakdown of Manta and Sun JDK 1.1.4 on Pentium Pro and Fast Ethernet; times are in µs

munication traffic of the two protocols. The result is shown in Ta-
ble 5. The table shows the number of bytes for a null RMI, for an
RMI with a single integer argument, with a 100 element array of in-
teger argument, and one with a single object containing an integer
and a double as argument. The table also shows the communica-
tion times in microseconds, on a 200 MHz Pentium Pro over Fast
Ethernet, including the serialization and RMI protocol processing
overhead, for Manta and the Sun JDK 1.1.4.

The JDK protocol sends only moderately more data than the
Manta protocol, yet the JDK spends a considerable amount of time
in processing and communicating the data. Most of this time is
spent in analyzing type information and managing streams. Manta
shows that this run time overhead can be reduced significantly.
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In addition to the low-level latency and throughput benchmarks,
we have also used three parallel applications to measure the perfor-
mance of our system. The applications are Successive Overrelax-
ation (a numerical grid computation), Traveling Salesperson Prob-
lem (a combinatorial optimization program), and Iterative Deepen-
ing A* (a search program). For TSP we used a 15 city problem, for
SOR a 2048 � 512 matrix, for IDA* we solved a random instance
of a sliding tile puzzle (with solution length 56). The applications
are described in more detail in [20]. We have implemented the pro-
grams with Sun RMI 1.1.4 (on Fast Ethernet) and Manta/Panda 3.0
RMI (on Fast Ethernet and Myrinet). Figure 6 shows run times,
in seconds, for the serial program, and for runs of the parallel pro-
gram, on 1 and 16 processors. Note the different scale for the 16
processor run. The programs are run on the Pentium Pros on BSD.

Performance differences between Sun and Manta can be at-
tributed to differences in serial execution speed (interpreter versus
compiler) and to differences in the RMI run time system, which is
why we show the speed of the serial code in addition to single pro-
cessor performance of the parallel code. Furthermore, we have run
the serial codes with the Kaffe just-in-time compiler, to give some
idea of how Manta compares to a JIT.2

The measurements show that Manta is substantially faster than
the Sun 1.1.4 JDK. Both for the serial and the parallel run times

2The parallel codes cannot be run since Kaffe does not yet support RMI. We tried
Kaffe version 0.92 and 1.0b3, on Linux and BSD. SOR and IDA* worked with Kaffe
1.0b3 on Linux, TSP worked with Kaffe 0.92 on BSD. We were unable to get other
combinations to work. Kaffe’s long run time for IDA* is due to its slow garbage
collector.

the difference is large, about an order of magnitude. These par-
ticular applications/problem sizes generate a communication pat-
tern that is relatively coarse grain. Manta’s performance advantage
is therefore mostly due to higher speed of the serial code of the
Manta compiler. For finer grain communication, the advantage of
Manta’s faster RMI implementation will become more prevalent.
Even so, the relative difference in performance between Sun JDK
and Manta is larger on 16 processors than on 1 processor, indicating
that Manta’s faster RMI subsystem does make a difference.
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Many projects for parallel programming in Java exist (see, for ex-
ample, the JavaGrande web page at http://www.javagrande.org/).
Titanium [32] is a Java based language for high-performance par-
allel scientific computing. It extends Java with features like im-
mutable classes, fast multidimensional array access and an explic-
itly parallel SPMD model of communication. The Titanium com-
piler translates Titanium into C. It is built on the Split-C/Active
Messages back-end. The JavaParty system [24] is designed to ease
parallel cluster programming in Java. In particular, its goal is to
run multi-threaded programs with as little change as possible on
a workstation cluster. JavaParty is implemented on top of Java
RMI, and thus suffers from the same performance problem as RMI.
Java/DSM [33] implements a JVM on top of TreadMarks [16], a
distributed shared memory system. No explicit communication is
necessary, all communication is handled by the underlying DSM.
No performance data for Java/DSM were available to us. Breg et
al [7] study RMI performance and interoperability. Krishnaswamy
et al [18] improve RMI performance somewhat by using caching
and UDP instead of TCP. Sampemane et al [27] describe how RMI
can be run over Myrinet using the socketFactory facility. Gokhale
et al [11] discuss high-performance computing issues for CORBA.
Hirano et al [12] provide performance figures of RMI and RMI-like
systems on Fast Ethernet.

Our system differs by being designed from scratch to provide
high performance, both at the compiler and run time system level.
For the non-polymorphic RMI part, Manta’s compiler-generated
serialization is similar to Orca’s serialization [2]. The buffering and
dispatch scheme is similar to the single-threaded upcall model [19].
Small, non-blocking, procedures are run in the interrupt handler, to
avoid expensive thread switches. Optimistic Active Messages is a
related technique based on rollback at run time [31]. Instead of
kernel-level TCP/IP, Manta can use Panda on top of LFC, a highly



Manta Sun JIT
empty 1 object 2 objects 3 objects empty 1 object 2 objects 3 objects

Serialization - 16 23 34 - 304 404 432
RMI Overhead 9 10 9 12 708 733 767 738
Communication 327 333 330 330 500 473 496 511
Overall 337 359 364 377 1210 1513 1670 1685

Table 4: Breakdown of Manta and Sun JIT 1.1.6 on Sparc Ultra 10 and Fast Ethernet; times are in µs

Manta Sun JDK
empty 1 integer int [100] 1 object empty 1 integer int [100] 1 object

Bytes 28 32 456 56 64 68 488 97
Microsecond 233 234 313 254 1711 1750 3322 2725

Table 5: Manta Protocol versus Sun JDK 1.1.4 Protocol on Pentium Pro and Fast Ethernet
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efficient user-level communication substrate [5]. Lessons learned
from the implementation of other languages for cluster computing
were found to be quite useful. These implementations are built
around user level communication primitives, such as Active Mes-
sages [29]. Examples are Concert [15], CRL [13], Orca [1, 2],
Split-C [9], and Jade [26]. Other projects on fast communication in
extensible systems are SPIN [3], Exo-kernel [14], and Scout [21] .
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We have built a new compiler-based Java system (Manta) that was
designed from scratch to support efficient Remote Method Invo-
cations on parallel computer systems. Performance measurements
show that Manta’s RMI implementation is substantially faster than
the Sun JDK and JIT. For example, on Fast Ethernet, the null la-
tency is improved from 1711 µs (for the JDK) to 233 µs, on Myrinet
from 1228 µs to 34 µs, in both cases only a few microseconds
slower than a C-based RPC. The gain in efficiency is due to three
factors: the use of compile time type information to generate spe-
cialized serializers; a more streamlined and efficient RMI protocol;
and the usage of faster communication protocols.

RMI is originally designed for flexible distributed (client/server)
computing, and allows subclasses to be downloaded into a running
program. Sun’s implementation handles serialization, dispatch and
buffer management at run time. It is designed for flexibility, not
speed. Our system uses compile time information to make the run
time protocol as lean as possible, so that processing it will be fast.
Flexibility is achieved by recompiling classes and generating serial-
izers as and when they are needed. Our implementation is designed
for speed, yet preserves the polymorphism of RMI.

We find that with the right combination of user level messaging,
compile time type information, and run time compilation, Java’s
RMI can be made almost as fast as a C-based RPC implementa-
tion while retaining the flexibility of RMI, making Java a viable
alternative for high performance parallel programming.
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