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Computational grids have an enormous potential to provide compute power. However, this power
remains largely unexploited today for most applications, except trivially parallel programs. De-
veloping parallel grid applications simply is too difficult. Grids introduce several problems not
encountered before, mainly due to the highly heterogeneous and dynamic computing and network-
ing environment. Furthermore, failures occur frequently, and resources may be claimed by higher
priority jobs at any time.

In this paper, we solve these problems for an important class of applications: divide-and-
conquer. We introduce a system called Satin that simplifies the development of parallel grid
applications by providing a rich high-level programming model that completely hides communi-
cation. All grid issues are transparently handled in the run time system, not by the programmer.
Satin’s programming model is based on Java, features spawn-sync primitives and shared objects,
and uses asynchronous exceptions and an abort mechanism to support speculative parallelism.

To allow an efficient implementation, Satin consistently exploits the idea that grids are hi-
erarchically structured. Dynamic load-balancing is done with a novel cluster-aware scheduling
algorithm that hides the long wide-area latencies by overlapping them with useful local work.
Satin’s shared object model lets the application define the consistency model it needs. If an
application needs only loose consistency, it does not have to pay high performance penalties for
wide-area communication and synchronization.

We demonstrate how grid problems such as resource changes and failures can be handled trans-
parently and efficiently. Finally, we show that adaptivity is important in grids. Satin can increase
performance considerably by adding and removing compute resources automatically, based on the
application’s requirements and the utilization of the machines and networks in the grid.

Using an extensive evaluation on real grids with up to 960 cores, we demonstrate that it is
possible to provide a simple high-level programming model for divide-and-conquer applications,
while achieving excellent performance on grids. At the same time, we show that the divide-and-
conquer model scales better on large systems than the master-worker approach, since it has no
single central bottleneck.
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1. INTRODUCTION

Grids offer the potential for unprecedented large-scale computing, but unfortunately
writing efficient parallel programs for grids is notoriously difficult. To begin with,
finding and allocating grid resources, transferring the program and its data, and
launching the application is complicated and only partially standardized. Even
if all these deployment problems are taken for granted, however, grids differ in
several more fundamental ways from traditional parallel machines. Grids are far
more heterogeneous, they have relatively slow wide-area interconnection networks,
their performance characteristics vary between resources and change over time, and
resource failures are more likely [Foster and Kesselman 2003]. Therefore, most grid
applications use only very simple forms of parallelism. Grids typically are used
for running independent jobs (high-throughput computing), for trivially parallel
master/worker programs or they are used as a shared batch queue that runs each
application on a single site at a time.

Based on several successful earlier projects with Grid algorithms [Plaat et al.
1999; Romein et al. 2002], programming systems [Kielmann et al. 1999; Maassen
et al. 2001], and hardware infrastructures [Cappello and Bal 2007; Verstoep et al.
2008], we have arrived at the conclusion that large-scale grid computing has a
much broader applicability. Many (although certainly not all) parallel applications
can exploit the hierarchical structure that grids typically have to do locality op-
timizations, making the application less sensitive to high latencies and variations
in resource performance. Most existing parallel programming models, however, are
a poor match to grids, and easily result in programs that are sensitive to these
problems and that are therefore complex to write.

In this paper, we describe a programming model that is specifically designed
for grids. The model addresses the fundamental problems with grids in such a
way that (1) it hides much of the complexity of a grid, (2) it can be implemented
efficiently on a grid, and (3) it can be used for a reasonably broad range of ap-
plications. Finding the right balance between these three goals is difficult. We
will advocate that an extended divide-and-conquer model provides such a balance.
Since divide-and-conquer is a hierarchical computational model, it maps well onto
a hierarchical grid. Also, the programming model is much easier to use than mes-
sage passing and other models. We will show that the divide-and-conquer model
can be extended with primitives for weakly-coherent shared data and speculative
parallelism, making it more generally usable. Also, we will show that the model
can be implemented efficiently on a heterogeneous and dynamic grid and that it
can adapt itself transparently to resource changes and failures.

We have implemented this model in a system called Satin, which has been used
for applications such as N-body simulations, SAT-solvers, VLSI-routing, grammar
induction, and many others, and has been run efficiently on heterogeneous grids
with up to 1000 processors. In recent experiments we were also able to successfully
execute applications on clouds (e.g., the Amazon Elastic Compute Cloud).

The result is a system that can be used for a reasonably broad range of parallel
applications, although we of course certainly do not claim that all applications are
suitable for this model. For most applications that do fit the model, we obtain
high speedups on real grids, despite the high (and varying) wide-area latencies.
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Moreover, programming Satin applications merely requires the code to be written
or restructured into a divide-and-conquer form. The programmer is not concerned
with locking, multithreading, communication mechanics, load balancing, fault tol-
erance, and adaptivity. Satin thus is vastly easier to use than message passing
languages.

In Section 2 we first give an overview of Satin, focussing on its rationale. In
Sections 3 and section 4, we discuss the design and implementation in more detail.
Section 5 presents several parallel applications and performance results. Section 6
discusses related work and Section 7 provides our conclusions.
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2. DESIGN OF SATIN

There are numerous reasons why grids are complicated to program [Foster and
Kesselman 2003]. We focus on programming models for parallel applications on
grids and only address problems related to this topic. Many other issues exist
related to deployment (e.g., resource allocation, security), network configuration
(firewalls), data-intensive applications (I/O, streaming), and so on, which are out-
side the scope of this paper. From a parallel programming perspective, grids have
the following fundamental differences with traditional supercomputers or clusters:

—Grids are strongly hierarchical and consist of resources (clusters or supercomput-
ers) with fast local interconnects but relatively slow wide-area links. In contrast
to the Local Area Networks (LANs), the Wide Area Networks (WANs) neces-
sarily have a high latency, due to the well-known speed-of-light argument, easily
causing three or more orders of magnitude difference between LAN and WAN la-
tencies. The WAN bandwidth may or may not be less than the LAN bandwidth,
depending on the technologies used [Verstoep et al. 2008].

—Grids are heterogeneous and use different types of CPUs, networks, operating
systems, etc.

—Grids are dynamic: the network and CPU performance vary over time due to
changes in loads. The number of resources available may increase or decrease
during the application. The sheer size and complexity of grids make crashes
more likely [Foster and Kesselman 2003].

The design of Satin is driven by these properties. Some design decisions are visible
directly in the programming model, while others are more subtle and can only be
understood by studying the implementation (see Table I). Here, we therefore give
the overall design, focusing on the rationale of Satin. More details are given in
Section 3 (programming model) and Section 4 (implementation).

The hierarchical structure of grids and the high WAN latencies are not only a
problem but also an opportunity, as hierarchical systems are excellent candidates
for locality optimizations. The programming model should therefore be designed
to take locality into account. As a first step in the design of Satin, we therefore
chose a divide-and-conquer (D&C) programming model. Divide-and-conquer itself
is a hierarchical computational model, as it recursively splits up computations into
subcomputations. This computational model thus maps well onto hierarchical grids.

Heterogeneity poses two problems. First, there is a major software engineering
problem in running an application at the same time on various types of operating
systems, CPUs, and networks. We address this problem using a Java-centric ap-
proach [Wollrath et al. 1997], relying on Java’s “write-once run everywhere” porta-
bility. All our software thus is written in Java, including not only the applications
but also the runtime systems and communication protocols. Our entire software
stack can thus run out of the box on any machine providing a standard Java Vir-
tual Machine (JVM). The challenge here is how to obtain high performance for
such a Java-centric approach. In a nutshell, we use bytecode rewriting techniques
to optimize programs in a completely portable way. We will discuss the details
extensively in later sections. The second aspect of heterogeneity is performance
related: how to deal with differences in CPU and network speeds. This problem is
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Aspect Programming model Sec. Implementation Sec.

Hierarchical, heterogeneous Java-centric D&C 3.1 RTS + bytecode rewriter 4.1
Data sharing Shared objects 3.2 Replication 4.2
Speculative parallelism Inlet/abort 3.3 Exception handling 4.3
Dynamic No CPU info 3.4 Malleability/fault tolerance 4.4

Self-adaptivity 4.5

Table I. Overview of the design and implementation of Satin.

a special (static) case of the third grid property, discussed next.
The dynamic nature of grids requires programs to deal with performance dif-

ferences, even over time. Again, divide-and-conquer is an excellent match here,
although the reasons are subtle. Briefly, divide-and-conquer parallelism results in
a large number of small subcomputations that can be scheduled dynamically over
a grid, giving more tasks to processors or clusters that (currently) are faster. It
is possible to do this scheduling efficiently even over slow WANs. Satin can even
add and delete processors (or entire clusters) dynamically, so Satin applications are
malleable [Kale et al. 2002], which is useful when reservation systems dynamically
withdraw or add resources. Satin applications also can survive resource crashes,
and thus also are fault-tolerant. Finally, Satin can use its malleability mechanism
to decide for itself that it is more efficient to delete certain resources (CPUs or
entire clusters) that are overloaded or have overloaded links; Satin can also actively
request new resources if it finds there currently is enough parallelism for it. So,
Satin is self-adaptive.

Unfortunately, pure divide-and-conquer parallelism has limited applicability and
is unsuitable for many applications. Foremost, it allows no data sharing between
tasks, except by passing input and result parameters between parent and child
tasks. We have therefore extended the model with a well-designed form of shared

objects that can be implemented efficiently on a grid. Again, the main obstacle
here is the high latency of grids, which makes efficient strongly-consistent shared
memory fundamentally impossible. Instead, we have developed a weak consistency
model under control of the programmer, enabling a broader range of applications.

Another shortcoming of pure divide-and-conquer parallelism is its lack of support
for expressing speculative parallelism, which is needed in many search applications.
We have therefore designed an inlet/abort mechanism for Satin that can prune
speculative computations. Again, this mechanism was designed to work efficiently
on high-latency grids, by using asynchronous events.

An overview of Satin is given in Table I. The programming model is discussed
in Section 3, including the basic divide-and-conquer primitives, shared objects, and
speculative parallelism. We also explain that transparent malleability, fault tol-
erance, and adaptivity can be made possible by hiding any machine information
from the programmer. The implementation of Satin is discussed in Section 4. We
first look at the basic implementation, including the runtime system (RTS) and
bytecode rewriter. Next, we discuss how shared objects and inlet/abort are imple-
mented. Subsequently, we explain how Satin transparently deals with malleability
and fault-tolerance and how Satin applications can be made self-adaptive.
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3. THE SATIN PROGRAMMING MODEL

In this section, we describe the Satin programming model in more detail. Satin
exploits Java’s “write once, run everywhere” property to deal with the heteroge-
neous nature of the grid. Satin integrates cleanly into Java without any language
extensions. The Satin model can express master-worker and divide-and-conquer
applications, and supports shared data and speculative parallelism. The model is
designed in such a way that load-balancing, adaptivity to changing conditions on
the grid, malleability and fault-tolerance can be implemented transparently. The
actual implementation of these features are the topic of Section 4.

3.1 Divide-and-Conquer on the Grid

Our vision is that grids are, and will be hierarchical in nature. A grid does not
consist of a collection of independent PCs, but of entire clusters. Often, several
clusters are combined into a virtual organization (e.g, DAS-3, Grid’5000 [Cappello
and Bal 2007], InTrigger [Kitsuregawa 2007]). Clusters and/or virtual organizations
are then connected to form a grid. In addition, PCs are also becoming more and
more hierarchical, as they often have multiple processors with multiple cores per
processor, resulting in even more levels of hierarchy.

Satin’s programming model was designed to exploit this hierarchical structure.
The divide-and-conquer programming model is inherently hierarchical, as work is
repeatedly split up into smaller subproblems. We believe that a divide-and-conquer
model can be implemented more efficiently on a grid than non-hierarchical program-
ming models, such as master/worker or GridRPC [Seymour et al. 2002]. Moreover,
divide-and-conquer has no single central point that limits scalability, which the
master/worker paradigm does have. This is important, because grids are typically
very large. It is possible to write master/worker applications in Satin and we re-
gard this paradigm as a subclass of divide-and-conquer that uses only one level of
division of work.

Satin’s programming model is an extension of the single-threaded Java model.
Satin programmers thus need not use Java’s multithreading and synchronization
constructs or Java’s Remote Method Invocation mechanism, but can use the much
simpler divide-and-conquer primitives described below.1

Parallel divide-and-conquer systems have at least two primitives: one to spawn
work, and one to wait until the spawned work is finished. Cilk [Blumofe et al.
1995] introduces new keywords into the C language to implement these primitives.
Satin exploits Java’s standard mechanisms of inheritance and marker interfaces
(e.g., java.io.Serializable) to extend Java with divide-and-conquer primitives. A
spawn operation is a special form of a method invocation. Methods that can be
spawned are defined by tagging them with a special marker interface. We will call
such methods Satin methods. The marker interfaces are recognized by the Satin
bytecode rewriter, which generates special code for them (as explained in Section 4).

An invocation of a Satin method is called a spawned method invocation. With a
spawn operation, conceptually a new thread is started to run the method; the imple-

1While the use of Java threads is not necessary with Satin, it is possible to combine Satin programs
with Java threads. This can be useful for user interfaces, for instance. Furthermore, it is possible
to use RMI [Waldo 1998], or any other communication mechanism in combination with Satin.
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mentation of Satin, however, eliminates thread creation altogether. The spawned
method will run concurrently with the method that executed the spawn. The sync

operation waits until all spawned calls in this method invocation are finished. The
return values of spawned method invocations are undefined until a sync is reached.
The assignment of the return values is done between the spawn and sync.

The programmer can create an interface which extends the marker interface called
satin.Spawnable, and define the signatures of methods that must be spawned. A
class that spawns work must extend the special class satin.SatinObject to inherit
the sync method. This mechanism closely resembles standard Java RMI [Waldo
1998].

We will illustrate the spawn and sync operations as well as most other Satin
primitives (discussed later) using a single realistic example. Barnes-Hut is a well-
known parallel N-body simulation that uses an oct-tree to store information about
the simulated bodies. During every iteration of the simulation, the algorithm re-
peatedly traverses the tree to compute the new positions, velocities, etc. of the
bodies. Barnes-Hut is known to be a challenging application, as it suffers both
from load-balancing and communication overhead.

The use of spawn and sync is illustrated on Lines 34–38 of Figure 1. The method
computeForces computes all forces of a subspace s on a collection of bodies. Initially,
the subspace is the entire space, as shown by the invocation on Line 48 of main.
A call of computeForces recursively invokes this method for each of the subspaces
(eight in 3D space), as shown on Line 36. Since the space is represented by a tree,
a subspace is accessed by traversing the tree (i.e., following the child nodes). The
method computeForces is tagged with a special marker interface satin.Spawnable

(Line 20) so this method will be spawned. After all spawns have been done, the
method calls sync, causing it to wait until all subtasks have been completed.

As explained in Section 4.1.1, the programmer can assume neither call-by-value
nor call-by-reference semantics for spawnable methods. The reason is that most
spawnable methods (typically 99%) are executed locally and are implemented using
call-by-reference; only methods that are actually executed remotely use call-by-
value: their parameters are copied using Java’s serialization mechanism, just as with
standard RMI. Copying the parameters of local invocations would be prohibitively
expensive.

3.2 Shared Objects

In a pure divide-and-conquer model, the only way of sharing data between tasks is
by passing parameters and returning results. Therefore, a task can share data with
its subtasks and the other way around, but the subtasks cannot share data with
each other. For several applications, this lack of shared data is too restrictive, which
limits the applicability of the divide-and-conquer model. Several applications can
be expressed in a hierarchical computational model, but do require data sharing.
Branch-and-bound algorithms, for example, typically search a tree space but need
a global variable for storing the best solution found so far (the “bound”). Game
tree search algorithms likewise need to share data like transposition tables. Also,
some divide-and-conquer applications need to pass large constant data structures
as parameters. With pure divide-and-conquer, these data structures would have
to be sent over the network each time a new task is created remotely, which is
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1 // Marker i n t e r f a c e t ha t de f i n e s updateBodies as a g l o b a l method .
2 interface Bod i e s In t e r f a c e extends s a t i n . GlobalMethods {
3 void updateBodies (BodyUpdates b , int i t e r ) ;
4 }
5

6 // A shared o b j e c t conta in ing the t r e e o f bod ie s .

7 class Bodies extends s a t i n . SharedObject implements Bod i e s In t e r f a c e {
8 BodyTreeNode root ;
9

10 public void updateBodies (BodyUpdates b , int i t e r ) { // Global method .
11 r oot . applyUpdates (b , i t e r ) ; // Update bodie s in our t r e e .
12 }
13

14 BodyTreeNode getRoot ( ) { // Local method .
15 return r oot ;
16 }
17 }
18

19 // Mark the computeForces method as a spawn operat ion .
20 interface BHSpawns extends s a t i n . Spawnable {
21 BodyUpdates computeForces ( Subtree s , int i t e r , Bodies bod i es ) ;
22 }
23

24 class BarnesHut extends s a t i n . Sat inObject implements BHSpawns {
25 public boolean guard computeForces ( Subtree s , int i t e r , Bodies bod i es ) {
26 return bod i es . i t e r + 1 == i t e r ;
27 }
28

29 // Spawnable method . The ” bodie s ” parameter i s a shared o b j e c t .
30 public BodyUpdates computeForces ( Subtree s , int i t e r , Bodies bod i es ) {
31 BodyUpdates [ ] r e s = new BodyUpdates [ s . nrChi ldren ] ;
32 i f ( s . hasNoChildren ) {
33 computeSequent ia l ly ( s , i t e r , bod i e s . getRoot ( ) ) ;
34 } else { // Divide the work and spawn t a s k s ( recurs ion s t ep ) .
35 for ( int i =0; i<s . nrChi ldren ; i++) {
36 r e s [ i ] = computeForces ( s . ch i l d [ i ] , i t e r , bod i e s ) ; // Spawn .
37 }
38 sync ( ) ; // Wait f o r the spawn operat ion to f i n i s h .
39

40 return mergeSubresul ts ( r e s ) ; // Merge r e s u l t s and return .
41 }
42 }
43

44 public stat ic void main ( Str ing [ ] a rgs ) {
45 BarnesHut bh = new BarnesHut ( ) ;
46 Bodies bod i es = new Bodies ( ) ; // Create shared o b j e c t .
47 for ( int i t e r = 0 ; i t e r < N; i t e r++) {
48 r e s u l t s = bh . computeForces ( root , i t e r , bod i e s ) ; // Spawn .
49 bh . sync ( ) ; // Wait f o r the spawn operat ion to f i n i s h .
50 bod i es . update ( r e s u l t s , i t e r ) ; // Shared method invocat ion .
51 }

52 }
53 }

Fig. 1. Pseudo-code for Barnes-Hut in Satin.
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highly inefficient. Satin therefore provides a form of data sharing, making the
programming model more powerful by allowing tasks to share data. The model has
been designed to allow an efficient implementation on a grid. In particular, Satin
uses a new user-controlled, relaxed consistency model called guard consistency that
allows efficient replication of shared data [Wrzesińska et al. 07 B].

Shared data in Satin are encapsulated in shared objects. Much as in the Orca
language, Satin uses an update-based replication protocol, because that has been
shown to be efficient for object-based languages [Bal et al. 1998]. The Satin runtime
system will thus automatically replicate shared objects on processors that can access
the object, so local operations can use the replica, without requiring communication.
Global operations will be applied to all copies. Unlike Orca, Satin uses a relaxed
consistency model. The details of object sharing are explained next.

Shared objects are passed by reference to the spawned tasks. As an example,
consider again the Barnes Hut example of Figure 1. The Satin program stores the
positions, velocities, etc. of the bodies in a shared object that is created on Line 46
and passed as a parameter in the invocation of computeForces on Line 48. The class
Bodies is defined on Lines 6–17 and extends the special class satin.SharedObject to
indicate its objects will be shared.

Satin requires the programmer to distinguish between global methods that will
be applied to all replicas of a shared object and local methods that will only be
applied to the local copy. The special interface satin.GlobalMethods is used to mark
global methods, as shown in Lines 2–4. The method updateBodies appears in this
marker interface, so it is a global method. On the other hand, the method getRoot

(Lines 14–16) does not appear in the marker interface, so it is a local method. In
this way, the programmer can control when replicas are updated.

Satin provides a relaxed consistency model for shared objects called guard consis-

tency. The programmer can define the application consistency requirements using
guard functions, which are associated with divide-and-conquer tasks. Conceptually,
a guard function is executed before each divide-and-conquer task. A guard checks
the state of the shared objects accessed by the task and has to return true if the
objects are in a correct state, or false otherwise. The name of the guard function
is “guard <spawnable function>”. A guard has exactly the same parameter list as
the spawned task. Therefore, it can access the shared objects used by this task,
and the task parameters that depend on the state of the parent that has spawned
the task. Satin iteratively evaluates the guards. As long as a guard evaluates to
false, Satin has to make the local replica more consistent. This is done by waiting
for pushed updates to arrive, or by fetching a more recent replica. With a guard,
the programmer can thus ensure that the state seen by a task is consistent with
the state seen by its parent.

In the Barnes Hut example of Figure 1, the method computeForces uses a simple
guard function (called guard computeForces) to make sure it received the updates
belonging to the previous iteration of the algorithm (see Lines 25–27).

Satin allows replicas to become inconsistent as long as guards are satisfied: the
updates are propagated to remote replicas on a best-effort basis. Satin does not
guarantee that all updates will be applied on all replicas, and updates could be
duplicated or be applied in different order on different replicas. This makes a

ACM Transactions on Programming Languages and Systems, Vol. x, No. x, x 20x.



10 · R.V. van Nieuwpoort, G. Wrzesińska, C.J.H. Jacobs and H.E. Bal

scalable and efficient implementation on a grid possible (using techniques such as
unreliable multicast or gossiping). Also, processors dynamically joining and leaving
the computation are supported. When a guard is not satisfied, Satin invalidates
the local replica of a shared object and fetches a consistent replica from another
processor.

The guard consistency model allows combinations of function shipping and data
shipping. In fact, as we will explain in Section 4.2, our implementation combines
these two approaches to achieve good performance on wide-area systems. We use
function shipping to push updates to replicas, since this typically requires less data.
Satin uses deep copies for the parameters to shared method calls. Thus, if the
first node of a linked list is passed as a parameter, the entire list is automatically
serialized and shipped to all replicas. For newly joined machines, and when a
guard fails and a non-reliable multicast is used, the Satin runtime system also pulls
updates in, using data shipping. In this case, the entire shared object including all
objects that are referenced are transferred.

3.3 Speculative Parallelism and Exception Handling

Many parallel applications need a mechanism to abort useless computations. For
example, many heuristic tree search algorithms speculatively execute work. When,
during the computation, it becomes clear that the speculative work can never give
a better solution than the results found so far, the speculative work should be
aborted. Spawn and sync primitives in combination with shared objects are not
sufficient to efficiently express algorithms with speculative parallelism, since the
sync primitive waits until all spawned tasks have completed.

Satin therefore provides a new mechanism called inlets that can be used to execute
code (e.g., an abort) as soon as some task has finished. An inlet must run in the
context of the spawner, because it should be able to access its local variables. We
therefore use Java’s exception mechanism to implement inlets. Inlets are needed
to express speculative parallelism, because the abort operation is only useful if it
can be executed as soon as the result of speculative work becomes available. Abort
operations are thus typically executed from an inlet.

Figure 2 shows an example of the use of inlets and aborts in Satin. In the
example, a number of depthFirstSearch tasks are spawned speculatively (Line 25);
as soon as one of the tasks generates a result that is better than the current pivot
value, the other tasks are aborted (Line 29). The abort method is inherited from
satin.SatinObject. The result of depthFirstSearch is returned via an exception of
the type Result. This makes it possible to use the catch block around the spawn of
depthFirstSearch (Lines 26–32) as an inlet. The Result class extends the satin.Inlet

class provided by Satin.
Because the control flow in the inlet is not restricted (it might leave the catch

block), we chose to conceptually spawn a new thread for each inlet. This thread
is different from normal Satin threads (and normal Java threads), as it shares its
local variables and parameters with the spawner thread (e.g., score on Lines 27–29).
Satin guarantees that no two inlets of the same spawner will run at the same time,
and that an inlet does not run concurrently with its spawner. This way, no locks
are needed to protect access to local variables.

Our approach circumvents many of the well-known problems [Marlow et al. 2001;
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1 class Resul t extends s a t i n . I n l e t {
2 int s co r e ;
3

4 Resul t ( int s co r e ) {
5 this . s c o r e = s co r e ;
6 }

7 }
8

9 interface DepthFi r s tSear ch Int e r f ac e extends s a t i n . Spawnable {
10 void depthFi r s tSear ch (Node node , int pivot , int depth )
11 throws Resul t ;
12 }
13

14 public void depthFi r s tSear ch (Node node , int pivot , int depth )
15 throws Resul t {
16 i f ( depth == 0) { // Stop i f t he depth i s 0 .
17 throw new Resul t ( node . eva luate ( ) ) ;
18 }
19

20 Node [ ] ch i l d r en = node . generateChi ldr en ( ) ;
21 int s co r e = node . s co r e ;
22

23 // Sp e c u l a t i v e l y search ch i l d r en in p a r a l l e l .
24 for ( int i = 0 ; i<ch i l d r en . l ength ; i++) {
25 try {
26 depthFi r s tSear ch ( ch i l d r en [ i ] , 1−pivot , depth −1); // Spawn .
27 } catch ( Resul t r e s u l t ) { // The i n l e t .
28 i f ( r e s u l t . s c o r e > s co r e ) {
29 s co r e = r e s u l t . s c o r e ;
30 i f ( s co r e >= pivot ) abort ( ) ; // Abort u s e l e s s work .
31 }
32 return ; // Ex i t t he i n l e t , do not f a l l through .
33 }
34 }
35 sync ( ) ;
36

37 throw new Resul t ( s co r e ) ;
38 }

Fig. 2. Depth first search: an example of an inlet and abort in Satin.

Butenhof 1997] that arise when asynchronous exceptions are used. Systems that
support asynchronous exceptions have to interrupt the spawner, and must support
critical regions [Marlow et al. 2001; Butenhof 1997] to avoid the interruption of
a thread at an inconvenient time. In Satin, inlets run in a new thread, and the
spawner of the work does not have to be interrupted. By guaranteeing that inlets
do not run concurrently with the spawner, critical sections are not needed. Still,
our mechanism is as expressive, because the new thread can read and write the
local variables and parameters of the spawner.

The inlet/abort model matches well with grid environments. The model is asyn-
chronous and point-to-point, and it follows the hierarchical structure of the spawned
task tree. Also, the abort mechanism is a best effort operation. Satin will do its
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best to abort as much work as possible, but it might not abort all work that has
become useless. Furthermore, it means that a sequentially compiled Satin program,
where the abort has no effect, also has correct semantics. Moreover, the abort op-
eration is asynchronous: the application continues while Satin tries to retract the
aborted work. The abort mechanism itself also follows the hierarchical task struc-
ture, aborting parents and child tasks recursively, like they were spawned. This
again matches well with the hierarchical structure of the grid. For a more detailed
description of Satin’s support for speculative parallelism, see [Nieuwpoort 2003].

3.4 Malleability, Fault Tolerance, and Self-Adaptivity

The Satin programming model was designed with transparent fault tolerance and
malleability in mind. The most important insight is that, to be transparent, the
model cannot provide a concept of machines. Machines cannot be used as a unique
identifier, because machines can crash or leave. Also, it is possible to run multiple
Satin instances on a single machine, for instance on SMPs or multi-core machines.
Therefore, exporting the underlying machine infrastructure to the programmer
means that the programmer also has to deal with faults, or at least is aware of
them. Likewise, Satin does not use any form of ranks, as present in MPI, since they
also become invalid after changes.

Instead, Satin takes care of the work distribution itself, also when machines
join, leave or crash. Satin just allows a programmer to spawn work, but makes
it impossible to specify where the work has to be spawned to. The programmer
cannot influence the load balancing of the parallel computation. This makes it
impossible to implement the small class of algorithms that depend on locations, such
as Transposition Driven Scheduling (TDS) [Romein et al. 2002]. However, because
there is no concept of location, fault-tolerance, malleability, and self-adaptivity can
be implemented completely transparently for the programmer. This is an enormous
benefit, because dealing with faults is extremely difficult and error prone in general.
Satin is able to hide all this complexity in the runtime system (see Section 4.4).

3.5 Integrating Native or Legacy Code

Although our entire software stack is written in Java, applications can integrate
legacy code (e.g., C++, Fortran, etc.), using the Java Native Interface (JNI) to call
native library functions. This approach does reduce portability, since the native
code has to be compiled for each platform. Alternatively, a separate executable
program can be executed from Java. We have used both approaches with our Ibis
communication platform that we used to implement Satin (see Section 4.1).

In 2008, we participated in the 1st IEEE International Scalable Computing Chal-
lenge, with a multimedia application that performs object recognition. The applica-
tion itself is written in Java, using Ibis for communication, while the image analysis
code is written in C++. The Java code uses the JNI to call the C++ library. Using
this hybrid application, we won the first prize in the contest [Seinstra et al. 2008].

We also participated in the Data Challenge, held in conjunction with the Clus-
ter2008 conference. Here, we used a C application that searches an astronomy
image for super novae. The main application is written in Java, using Ibis for com-
munication. We simply execute the separate legacy application from Java to do the
analysis. Again, we won the first prize in this challenge [Maassen et al. 2008].
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4. THE SATIN IMPLEMENTATION

We first describe the basic implementation of Satin. Next, we discuss the imple-
mentation of shared objects and the inlet/abort mechanism. Finally, we explain
how we deal with the dynamic aspects of grids, including malleability and fault
tolerance and adaptivity.

4.1 Basic Implementation of Satin

Figure 3 gives an overview of how Satin programs are compiled and deployed.
Because Satin uses no language extensions but only marker interfaces, a Satin
program can be compiled with any Java compiler (e.g., javac). The output is a
collection of class files which contain bytecode that can be executed sequentially on
any JVM. This is useful for testing and benchmarking purposes. To run the code
in parallel, an additional compilation step is done on the generated bytecode. The
Satin compiler, satinc, rewrites the sequential bytecode, inserting code to implement
the spawn and sync operations. The rewritten bytecode can be deployed on the grid
with any grid middleware system, such as Globus [Foster 2006] or our Java Grid
Application Toolkit [Nieuwpoort et al. 2007]. For communication, Satin uses the
Ibis communication layer. Below, we will first explain the code generation and the
Satin runtime system, including the load balancing mechanism. Next, we discuss
the Ibis communication layer.

4.1.1 Spawn and Sync. When a program executes a spawned method invoca-
tion, Satin redirects the method call to a stub. This stub creates an invocation

record, which describes the method to be invoked, the parameters that are passed
to the method, and a handle to where the method’s return value has to be stored.

Fig. 3. Compiling and running Satin programs.
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The invocation records are method specific, and are generated by the Satin bytecode
rewriter. This way, no runtime type inspection is required. Given an invocation
record, the original call can be executed by pushing the values of the parameters
(which were stored in the record) onto the stack, and by calling the Java method,
whether it concerns a local or a stolen (obtained from a remote processor) job. The
runtime system also puts a unique stamp on each job, which is later used to identify
it. The stamp of the parent is stored in the invocation record as well. The latter is
used to implement fault tolerance and the abort primitive.

The large majority of jobs that are spawned will not be transfered, but will just
run on the machine that spawned the work. For example, in almost all applications
we have studied so far, at most 1 out of 150 jobs is transfered to a remote machine.
Therefore, it is important to reduce the overhead that the Satin runtime system
generates for such jobs as much as possible. The key problem here is that the
decision whether to copy the parameters must be made at the moment the work
is either executed or stolen, not when the work is generated. Therefore, Satin’s
runtime system implements serialization on demand. For primitive types, the value
of the parameter is copied into the invocation record. For reference types (objects,
arrays, interfaces), only a reference is stored in the record. The parameters are
serialized (i.e., converted to bytes) only when the work is actually stolen. In the
local case, no serialization is used, which is of critical importance for the overall
performance. Moreover, the Satin implementation avoids thread creation altogether
which has a large positive impact on performance. The large overhead for creating
threads or building task descriptors (copying parameters) was also recognized in
the lazy task creation work by Mohr et al. [Mohr et al. 1990] and by Cilk [Blumofe
et al. 1995].

Methods that spawn work are rewritten by the Satin bytecode rewriter to keep
a list of invocation records that represents the outstanding work that was spawned
but is not yet finished. When an invocation record is created, it is added to this
outstandingSpawnsList. Next, the generated code calls the Satin runtime system
to put the invocation record in the work queue. Satin maintains one work queue
per JVM. The Satin runtime system implements a load balancing algorithm that
transfers jobs between the work queues, as discussed below.

The sync operation is rewritten to a call to the Satin runtime system which
executes work from the work queue until the outstandingSpawnsList of the method
that executed the sync becomes empty. After the sync operation, code is inserted
that traverses the outstandingSpawnsList and assigns the results of the spawned
methods out of the invocation records to their destinations.

4.1.2 Load Balancing. In spawn operations, the invocation records are stored
at the head of a double-ended job queue. During the sync operation, Satin starts
to execute work, also from the head of the queue. When a node runs out of work,
it will start stealing work from other nodes. Idle nodes will poll remote queues
for jobs, at the tail of the queue. The tail of the queue contains the jobs that are
spawned first. These are jobs that are more likely to be large-grain, because they
are higher up the divide-and-conquer tree. In this way, large-grain jobs are stolen,
reducing communication overhead [Frigo et al. 1998].

Random Stealing (RS) attempts to steal a job from a randomly selected peer
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when a processor finds its own work queue empty, repeating steal attempts until it
succeeds [Blumofe and Leiserson 1994]. This approach minimizes communication
overhead at the expense of idle time. No communication is performed until a node
becomes idle, but then it has to wait for a new job to arrive. For homogeneous
(single cluster) systems, RS is known to achieve optimal load balancing. It is proven
to be optimal in space, time and communication [Blumofe and Leiserson 1994]. On
wide-area systems, however, this is not the case. With C clusters, on average
(C − 1)/C × 100% of all steal requests (e.g., already 75% on 4 clusters) will go to
nodes in remote clusters, causing significant wide-area communication overheads.

Satin uses a novel load balancing algorithm, called Cluster-aware Random Steal-

ing (CRS), where each node can directly steal jobs from nodes in remote clusters,
but at most one job at a time. Whenever a node becomes idle, it first attempts
to steal from a node in a remote cluster. This wide-area steal request is sent
asynchronously: instead of waiting for the result, the thief simply sets a flag and
performs additional, synchronous steal requests to randomly selected nodes within
its own cluster, until it finds a new job. As long as the flag is set, only local stealing
will be performed. When a reply for a wide-area steal arrives, CRS simply resets
the flag and, if the request was successful, puts the new job into the work queue.
CRS combines the advantages of RS inside a cluster with a very limited amount of
asynchronous wide-area communication.

We also implemented other load-balancing algorithms in Satin, such as a grid-
aware load-based mechanism, and a grid-aware hierarchical algorithm, that mini-
mizes inter-cluster communication. Like RS and CRS, these algorithms are initiated
by the (idle) receiver. We also evaluated randomized pushing, a sender-initiated
scheme. In [Nieuwpoort et al. 2001], we explain CRS in more detail, and com-
pare its performance with RS, work pushing, grid-aware load-based and grid-aware
hierarchical alternatives. We demonstrated that hierarchical algorithms, often pro-
posed in the literature for load balancing in wide-area systems, perform even worse
than random stealing, even though they do reduce the wide-area communication
to an absolute minimum. The reason for this is that their load balancing is too
fine grained, and that they force all nodes of a cluster to wait while work is trans-
fered across the wide-area network. The other alternatives, random pushing and
load-based stealing, only work well after careful, application-specific tuning.

4.1.3 Grid-enabled Communication: Ibis. Satin needs efficient communication
with the flexibility to run on dynamically changing sets of heterogeneous processors
and networks. Ibis [Nieuwpoort et al. 05 B] is a platform that tries to meet these
requirements. Like Satin, Ibis is written in Java. Ibis provides efficient commu-
nication in combination with any JVM. It is a flexible system that can provide
communication support for any grid application, from the broadcasting of video
to massively parallel computations. It provides a unified framework for reliable
and unreliable communication, unicasting and multicasting of data. Because Ibis is
Java-based, it has the advantages that come with Java, such as portability, support
for heterogeneity and security. Ibis has been designed to combine high performance
and flexibility. It can combine standard techniques that work “everywhere” (e.g.,
using TCP) with highly-optimized solutions for special cases, like a local high speed
Myrinet or gigabit Ethernet network without changing the user code.
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To obtain acceptable communication performance, Ibis implements several opti-
mizations. Most importantly, the overhead of serialization and reflection is avoided
by compile-time generation of special methods (in bytecode) for each object type.
These methods can be used to convert objects to bytes (and vice versa), and to
create new objects on the receiving side, without using expensive reflection mecha-
nisms. This way, the overhead of serialization is reduced dramatically. Satin makes
extensive use of serialization. After rewriting the application bytecode, the Satin
bytecode rewriter (see Figure 3) invokes the Ibis compiler on the rewritten bytecode
to generate the serialization code.

4.2 Shared Objects

As explained in Section 3.2, shared objects are implemented using object replica-
tion. Replicas of shared objects are created in the following way. If a processor
receives a task with a shared object as a parameter, and it does not have a replica
yet, it copies the object from the machine it received the task from. A processor
can thus join the computation at any moment and receive up-to-date replicas of all
shared objects it needs.

Updates to shared objects are forwarded to remote replicas asynchronously. We
do not try to prevent updates from getting lost or being duplicated. We do use
reliable communication, but since processors can join or leave the computation at
any moment, a processor can miss an update or receive it twice. The updates may
also arrive in different orders at different machines.

Satin provides a message combining facility for shared object updates. If message
combining is enabled, updates are not forwarded immediately, but delayed for a
short period of time, or until a substantial amount of data is gathered. All updates
accumulated during this period are forwarded at the end of it in one big transfer.
Satin’s message combining thus is transparent for the programmer. In addition,
the programmer can use application-level message combining.

Guard consistency is enforced by conceptually evaluating a guard function for
each task containing a guard. The implementation, however, makes an important
optimization by only evaluating guards for remote tasks which were obtained from
other machines. When a parent and a child task are executed on the same machine,
if a shared object was in a consistent state when the parent was executed, it will
also be consistent when the child is executed. If a guard evaluates to false, the
system first waits a certain amount of time for late updates to arrive. If the guard
still evaluates to false, the runtime system contacts the processor from which the
task was received and requests the replicas of the shared objects used by this task.
The machine from which a task was received is the machine on which the parent
of this task was executed. So, this machine certainly contains replicas of shared
objects that are consistent for this task. Due to the hierarchical structure of the
task tree in divide-and-conquer programs, the replicas are also transfered over the
network in a hierarchical way. There thus needs to be no central point (often called
“home node” in this context). The lack of a central point makes sure that the
shared objects scale well in a grid environment [Wrzesińska et al. 07 B].
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4.3 Speculative Parallelism: Inlets and Aborts

As explained in Section 3.3, Satin provides two mechanisms to support specula-
tive parallelism: inlets and aborts. Inlets are triggered if a spawned job throws an
exception. When running in parallel, exceptions thrown by a remote job are inter-
cepted and sent back to the CPU that spawned the method. The inlet is executed
there. Thus, the communication pattern follows the normal hierarchical structure
of the spawn tree.

When an abort operation is executed, all spawn operations performed by the
current method have to be aborted, including all their child jobs. The jobs that
have to be aborted can be in four different states: they can be already finished, they
can be on the stack, in the local work queue, or they may have been stolen by a
remote machine. If a job is already finished, the abort is a no-op. When a job is on
the stack, the Satin runtime system sets a flag for that job, indicating that it should
be aborted. The code that is generated by the Satin bytecode rewriter checks this
flag, and stops the job if it has been set. If a job is in the local work queue, it
can be aborted by simple removing it from the queue. The difficult case is killing
a job that was stolen. In that case, an asynchronous abort message containing
an identifier for the job to be killed is sent to the thief, which in turn uses the
mechanism described above to abort the job and all its children.

A nice property of our implementation is that all network messages that are sent
to do an abort are asynchronous. This means that the machine that executed the
abort can immediately continue working. This is especially advantageous in a wide-
area setting with high latencies. The cost of an abort operation is virtually indepen-
dent of network latency. Furthermore, all messages sent by the abort mechanism
are point-to-point, and follow the hierarchical divide-and-conquer model. Because
this maps well on the hierarchical structure of the grid, the implementation is effi-
cient. For more information on Satin’s support for speculative parallelism we refer
to [Nieuwpoort 2003].

4.4 Malleability and Fault Tolerance

Satin supports both malleability and fault tolerance. The difference between them
is that with malleability, processors leave gracefully, so it is possible to take ac-
tions (e.g., save results) before a processor leaves. Also, malleability implies that
processors can be added dynamically.

The basic idea to implement malleability and fault tolerance is to recompute work
done by a leaving or crashing processor, which is possible since jobs do not have any
side effects. The main problem with recomputing divide-and-conquer tasks is the
possibility of orphans : if work is stolen from a machine that subsequently leaves or
crashes, the stolen job becomes an orphan, because it is no longer clear what should
be done with the result. Also, this approach fails if all processors temporarily leave,
which typically happens if a program is suspended. Finally, recomputing all results
of a processor that leaves voluntarily is inefficient, since the process could have saved
its results before leaving. To solve all these problems, Satin uses a combination of
two techniques: orphan work saving and checkpointing.

Orphan jobs are saved in the following way: when a processor discovers that a
job it was working on is an orphan, it stores its result locally and broadcasts a
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(jobID, processorID)-tuple to all other processors. If a processor P wants to leave
gracefully, it first transfers its finished jobs to another randomly selected processor.
Next, the new owner broadcasts a (jobID, processorID)-tuple for each job. Before
a processor recomputes a job after a machine has crashed or left, it first checks its
local tuples to see if the job has already been computed elsewhere, thus avoiding
redundant computations. When processors leave unexpectedly (crash), the work
they have done is recomputed, but the results of orphans caused by this crash
are reused. The tuple messages are small since they do not contain the job itself.
Moreover, they can be broadcast asynchronously and can be subject to message
combining, resulting in an efficient, low-overhead implementation.

The novelty of our approach is the restructuring of the computation tree to reuse
as many already computed partial results as possible. When processors are leaving
gracefully, our mechanism can save nearly all the work done by the leaving proces-
sors. Therefore, we use our technique for efficient migration of the computation: to
migrate the computation from one cluster to another, we first add the new cluster
to the computation and then (gracefully) remove the old one. More details are
provided in [Wrzesińska et al. 2005].

Orphan result saving uses only the state inside the main memory of the surviv-
ing (not leaving) processors to recover from faults. This mechanism is sufficient
to guarantee the successful completion of an application, as long as at least one
processor remains alive. (Even if the root processor crashes, the runtime system
elects a new one.) To be able to also survive a total loss of all processors, Satin pe-
riodically checkpoints the orphan-result data structures [Wrzesińska et al. 07 C]. It
uses a light-weight mechanism and avoids synchronization between the processors.
The checkpoint files are implemented using the Java GAT [Nieuwpoort et al. 2007],
which automatically selects an appropriate lower-level protocol (FTP, GridFTP,
etc.) and optimizes any adjustable parameters. This checkpointing extension also
allows Satin applications to be suspended and resumed later, possibly at another
set of resources.

4.5 Adaptivity

Malleability is needed when external entities like grid schedulers change the re-
sources on which an application runs. Satin can also use its malleability mechanism
to decide for itself to change the resources. In this way, Satin is able to adapt au-
tomatically to changing resource conditions such as overloaded CPUs or networks.
Some grid systems try to adapt based on performance prediction models, but con-
structing such models is difficult. Satin therefore is self-adaptive and does not use
predictions.

During the application run, a separate coordinator process periodically collects
information about the communication times and idle times of the processors. The
coordinator uses these statistics to automatically estimate the resource require-
ments of the application. Next, it adjusts the resource set the application is run-
ning on by adding or removing compute nodes or even entire clusters, using the
malleability mechanisms described above.

The efficiency of the application is estimated by the following formula, adapted
from the definition in [Eager et al. 1989], which we call weighted average efficiency:
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wa efficiency =
1

n
∗

n∑

i=1

speedi ∗ (1 − overheadi )

where n is the number of processors and overheadi is the fraction of time the ith

processor spends being idle or communicating. Each processor periodically com-
putes this overhead over the previous period. The useful work done by a processor
(1 − overheadi) is weighted by multiplying it by the speed of this processor rela-
tive to the fastest processor. The speed of a processor is estimated by running a
benchmark, for example the actual application with a smaller input problem. This
benchmark is executed periodically, because the speed of a processor might change
if it becomes overloaded by another application (for time-shared machines).

The coordinator tries to keep the weighted average efficiency between Emin and
Emax. When it exceeds Emax, the coordinator requests new processors from the
scheduler. The higher the weighted average efficiency, the more processors are
requested. The coordinator starts removing processors when the weighted average
efficiency drops below Emin. The lower the efficiency, the more nodes are removed.
The thresholds we use are Emax = 50%, because we know that adding processors
when the efficiency is lower does not make sense, and Emin = 30%. An efficiency
of 30% or lower might indicate performance problems such as low bandwidth or
overloaded processors. In that case, removing bad processors will be beneficial for
the application. Such a low efficiency might also indicate that we simply have too
many processors. In that case, removing some processors may not be beneficial
but it will not harm the application. The coordinator always tries to remove the
“worst” processors, taking their overheads and speeds into account. Additionally,
the coordinator computes inter-cluster overhead and removes entire clusters if their
overhead exceeds a certain threshold, since bandwidth on the link between this
cluster and the Internet backbone may be insufficient for the application. Our
experiences with self-adaptation in Satin are described in detail in [Wrzesińska
et al. 07 A].
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cores per total speed
cluster location machine machines cores (GHz) network

VU Univ. Amsterdam 4 64 256 2.4 Myrinet 10G
Leiden Univ. Leiden 2 24 48 2.6 Myrinet 10G
Univ. of A’dam Amsterdam 4 32 128 2.2 Myrinet 10G
TU Delft Delft 2 48 96 2.4 Ethernet 1G
MultimediaN Amsterdam 2 24 48 2.4 Myrinet 10G

Table II. Characteristics of the DAS-3 clusters.

5. EXPERIMENTAL RESULTS

In this section, we will analyze the performance that Satin achieves. We present
measurements on the DAS-3 system, which consists of five different clusters in the
Netherlands. The clusters are largely homogeneous, but there are differences in the
number of cores per machine, the clock frequency, and the network. The details of
the clusters are shown in Table II. All machines have 4 GB of memory. We use the
Sun JVM version 1.6.0, an off-the-shelf JIT.

We use the Ibis implementation on top of TCP for the measurements in this sec-
tion. This means that the results shown below were measured using a 100% Java
implementation of Ibis, e.g. there is no native code in our communication software
stack. This is especially interesting, because the results give a clear indication of the
performance level that can be achieved in Java with a “run everywhere” implemen-
tation, without using any native code. The code thus works on any platform and on
any stock JVM that implements the JVM specification [Lindholm and Yellin 1999],
without recompilation. The SmartSockets library we use automatically selects the
fastest available network for each connection [Maassen and Bal 2007]. Depending
on the DAS-3 cluster, this is either 10 Gigabit Myrinet or 1 Gigabit Ethernet.

We will start by analyzing the performance of Satin’s spawn and sync primitives
using micro benchmarks. Next, we evaluate the performance of real Satin applica-
tions, first on a singe cluster and then on the wide-area DAS-3 system. We evaluate
the performance of Satin’s fault-tolerance mechanism. Furthermore, we show that
Satin’s adaptivity features improve performance in realistic grid scenarios. For
practical reasons, these experiments are done on the DAS-2 system2, a completely
homogeneous system containing 200 Dual Pentium-III nodes. We also present an
experiment on 960 cores of the Grid 5000 system in France, winning the first prize
in the Grids@work Plugtest contest, for the largest number of machines deployed
in a single parallel application. Finally, we show the results of a European-scale
run where we use an extremely heterogeneous environment.

5.1 Micro Benchmarks

Table III shows the performance of the Satin spawn and sync primitives and the
inlet mechanism (on the VU cluster). The numbers are the average of one million
calls, and show that a single spawn operation, followed by a sync costs 314 ns on
our hardware. Adding extra parameters costs only 1 nanosecond extra, regardless
of the type. Although the cost is about 39 times higher than a normal method

2See http://www.cs.vu.nl/das2.
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benchmark time (nanoseconds)

normal method invocation, no parameter, no return 8
normal method invocation, 1 parameter + return value 8

normal spawn/sync, no parameter, no return 314
normal spawn/sync, 1 parameter + return value 315

inlet spawn/sync, no parameter, no return 378
inlet spawn/sync, 1 parameter + return value 384

Table III. Low-level benchmarks.

invocation, the absolute time is very small. A spawn operation that throws an
exception containing one field, followed by the execution of an empty inlet costs
384 ns, independent of the type of the parameter to the spawn and the result type
stored in the inlet. This is only marginally more that a regular spawn operation.
We can conclude from these numbers that Satin’s basic operations can indeed be
implemented efficiently in pure Java, even on off-the-shelf JITs. In the following
section we will investigate whether Satin is also efficient at the application level.

5.2 Applications

To evaluate Satin’s performance we implemented several real-world applications
with Satin. When possible, we wrote both divide-and-conquer and master-worker
versions, allowing comparisons of performance and scalability of both programming
models. Also, we use different versions of the applications, with and without shared
objects and aborts, demonstrating the usefulness and performance of Satin’s divide-
and-conquer extensions. In all cases, speedups and efficiencies are computed relative
to sequential versions of the application that do not use Satin. It is important to
note that the applications were not initially designed for grid computing, and also
were not originally developed by us. We describe the applications below.

5.2.1 Barnes-Hut N-Body Simulation. Barnes-Hut is an O(N log N) N-body
simulation. It can be applied to various domains, including astrophysics, fluid
dynamics, electrostatics and computer graphics. We wrote a Satin program based
on the code by Blackston and Suel [Blackston and Suel 1997]. We have used the
Barnes-Hut code as example in Section 3, see Figure 1. We implemented two dif-
ferent divide-and-conquer versions: one that distributes all data as parameters to
spawned invocations, and a version that uses Satin’s shared objects to replicate the
simulated bodies on all machines.

5.2.2 Gene Sequence Alignment. Pairwise sequence alignment is a bioinformat-
ics application where DNA sequences are compared with each other to identify
similarities and differences. We have parallelized an existing gene sequence align-
ment application that uses the well-known Smith-Waterman [Smith and Wather-
man 1981] algorithm using Satin’s divide-and-conquer programming style. The ap-
plication uses the NeoBio standard library that was developed elsewhere [de Car-
valho Jr. and Crochemore ]. For comparison reasons, we also implemented a
master-worker version.

5.2.3 Grammar induction. The grammar induction application learns a Deter-
ministic Finite State Automaton (DFA) from labeled sentences, i.e. sentences that
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must be accepted or rejected by the target DFA. It starts out by building a (tree-
shaped) DFA that exactly accepts the sentences in the learning sample, and nothing
else. Then, it uses heuristics to generalize, by merging states and making the re-
sulting DFA deterministic again by applying further merges, under the condition
that the resulting DFA still rejects the sentences from the sample that should be re-
jected. The algorithm used to determine the merge candidates is blue-fringe [Lang
et al. 1998], while Evidence Driven State Merging (EDSM) [Lang et al. 1998] is used
to do the merging. The application uses an iterative deepening search strategy up
to a maximum depth. We implemented both a divide-and-conquer version and a
master-worker version. Both use a shared object to store the learning sample. For
more details on the Satin implementation of this application we refer to [Adriaans
and Jacobs 2006].

5.2.4 Othello. Othello [Iwata and Kasai 1994], also known as Reversi, is a strat-
egy board game on an 8x8 board. We use the evaluation function of the powerful
Marvin implementation by Voges3. Our implementation uses the MTD(f) algo-
rithm [Plaat et al. 1996] to do a forward search through the possible game states.
MTD(f) and other parallel search algorithms use a large amount of speculative
parallelism. A transposition table [Slate and Atkin 1977] is used to avoid search-
ing identical positions multiple times. The parallel version speculatively searches
multiple states in parallel, and replicates (a part of) the transposition table to
avoid search overhead. For performance reasons, application-level message combin-
ing is used to aggregate multiple transposition table updates into a singe network
message, in addition to Satin’s built in transparent message combining. Since the
updates are very small and extremely frequent, this avoids an excessive number of
calls to the satin runtime system, and reduces communication. To achieve good
performance, search overhead (the result of speculatively searching subtrees) should
be minimized. If some processor finds a promising solution, it should be forwarded
to the others, allowing them to prune work. Therefore, the transposition table is
replicated using Satin’s shared objects mechanism. We used a transposition table
with 16.8 million entries, occupying about 368 MBytes memory. Othello can further
optimize the speculative parallelism by using Satin’s inlet and abort mechanisms.
If a spawned child job generates a cutoff (i.e., it represents a good solution), other
child jobs are aborted, reducing search overhead. For comparison reasons we use
two versions, with and without aborts.

5.3 Single cluster measurements

In this section, we evaluate the applications on a single cluster (at the VU in Am-
sterdam) of the DAS-3 system. This way, we use a controlled environment, elimi-
nating the complexity of the grid, resulting in reproducible results. Speedup graphs
are shown in Figure 4, while we show important application and communication
statistics in Table IV.

Barnes-Hut is a challenging application that needs high communication through-
puts. Satin’s shared objects model is able to effectively reduce the application’s
communication needs: the pure divide-and-conquer version sends more than 84

3See http://www.voges.info/marvin for more information.
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Fig. 4. Speedups of Satin applications.

jobs total 256 core
application spawns syncs stolen messages data efficiency

Barnes-Hut SO 118,420 14,816 16,425 3,514,010 428.0 MB 73.5 %
Barnes-Hut DC 118,420 14,816 14,787 2,740,089 84.1 GB 60.0 %

Gene Seq. DC 1,049,087 524,800 5,462 653,554 2.4 GB 91.3 %
Gene Seq. MW 8,978 1 8,978 30,676 667.4 MB 72.0 %

Grammar DC 224,026 96,008 21,209 5,947,901 128.5 MB 87.1 %
Grammar MW 128,025 7 128,021 386,032 79.6 MB 7.6 %

Othello+aborts 3,313,234 418,833 1,022,000 70,390,763 2.1 GB 21.8 %
Othello 6,973,693 849,450 4,144,009 394,054,014 10.5 GB 5.9 %

Table IV. Application statistics.

Gigabytes of data, while the divide-and-conquer version with shared objects sends
only 428 Megabytes. This also improves scalability, increasing the parallel efficiency
from 60 to 73.5 percent on 256 cores.

Gene sequencing and grammar induction are examples that demonstrate that
the divide-and-conquer model scales better than the master-worker model. This
is especially true for grammar induction, where a significant amount of work is
needed to generate a new job. With the divide-and-conquer model, generating new
jobs is done in parallel on all nodes, while with the master-worker model only the
master generates new work. For gene sequencing, the amount of communication in
the master-worker version is a bottleneck: all workers need to retrieve jobs from
a central point, the master. With the divide-and-conquer model, there is no such
central point. In this case, the divide-and-conquer version sends more data and
more messages, but the communication is distributed over all machines.

Othello starts from the initial game position, and uses a search depth of 21. On a
single core, Othello visits 2.9 billion different positions. The parallel runs can visit
more nodes, because of the speculative nature of the search. Figure 4 shows the
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Fig. 5. Speedups of Satin applications on up to 576 compute cores on up to 5 clusters.

speedups of Othello both using Satin’s abort mechanism, and without aborts. The
efficiency with aborts on 256 cores is about 21.8%. This may seem disappointing,
but game-tree search in general is hard to parallelize efficiently, due to search over-
head. Other researchers report similar speedups [Kishimoto and Schaeffer 2002].
When no abort mechanism is used, Othello achieves an efficiency of less than six
percent. The statistics in Table IV show that Satin’s abort mechanism successfully
aborts speculatively spawned work. The version without aborts suffers from search
overhead, spawning about two times more parallel jobs, sending five times more
messages and data. The version with aborts performs 310,482 abort operations,
causing Satin to send 178,080 abort messages, cancelling 1,136,942 speculatively
spawned jobs.

The measurements presented in this section demonstrate that the divide-and-
conquer paradigm is not only more general than the master-worker paradigm, but
can also outperform it, even on a single cluster. Furthermore, we demonstrated
that the use of a shared objects model can increase both the expressiveness and the
performance of parallel divide-and-conquer applications. Finally, for applications
using speculative parallelism, Satin’s abort mechanism can reduce search overhead
considerably.

5.4 Wide-area Measurements

In the previous section, we demonstrated that Satin and the divide-and-conquer
model work effectively on a cluster. Now, we will evaluate the performance of
Satin on a grid. We use the wide-area DAS-3 system, since this is a relatively
homogeneous grid designed for controlled computer science experiments. This way,
we can present reproducible results, while avoiding influences from outside. We
use the best performing versions of the applications of the previous section. In all
cases, this is the divide-and-conquer version using shared objects. Figure 5 shows
the run times. We start with a single cluster and incrementally add an additional
cluster, until we use all five clusters of our system simultaneously. On the x-axis,
we show the total number of cores used. See Table II for more details on the cluster
configurations. Note that the x-axis does not use a linear scale, because the clusters
do not have identical sizes. It is clear that the applications scale well to multiple
clusters. Adding additional clusters improves performance significantly in all cases.

Table V shows application statistics, while Table VI shows communication statis-
tics, using five clusters with 576 cores in total in both cases. The results show that
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application spawns syncs efficiency

Barnes-Hut 118,420 14,816 74 %

Gene Seq. 6,117,236 3,062,437 82 %

Grammar 224,026 96,008 72 %

Table V. Application statistics on 5 clusters with 576 cores.

local wide-area

jobs jobs
application stolen messages data stolen messages data

Barnes-Hut 25,270 17,511,522 588 MB 11,858 227,901 140 MB

Gene Seq. 8,489 22,792,842 1.2 GB 5,515 313,706 624 MB

Grammar 30,020 135,095,129 2.3 GB 17,236 798,586 36 MB

Table VI. Application statistics on 5 clusters with 576 cores.

the applications achieve excellent performance, with between 72 and 82 percent
efficiency. To compute the efficiencies, we ran the sequential application on all
clusters, and used these run times to normalize the run time of the parallel version
(see [Nieuwpoort et al. 05 A] for details). We have to do this since the proces-
sors speeds differ slightly. The applications use fine-grained parallelism, spawning
between one hundred thousand and six million parallel jobs. Furthermore, the
applications communicate intensively, sending millions of messages.

Table VI shows that Satin’s grid-aware CRS scheduling algorithm performs well.
For all applications, the number of jobs that is transfered within a cluster is much
larger than between clusters. The same is true for the number of messages and the
amount of data sent. With the standard RS algorithm, the reverse is true. If a
victim is selected at random, it is likely to be remote. For example, in a system
with five clusters of equal size, 80% of all nodes would be in another cluster. We
refer to [Nieuwpoort et al. 2001] for more details and a comparison between CRS
and RS and other algorithms.

The high efficiencies also demonstrate that Satin copes well with the differences
in CPU and network speeds. Finally, the results show that the divide-and-conquer
model in general, and more specifically Satin, can scale to large numbers of machines
and clusters, while providing a powerful and easy to use programming model that
features shared objects and an abort mechanism. The master-worker model, in
contrast, already has scalability problems on a single large cluster.

5.5 Fault tolerance and migration measurements

In [Wrzesińska et al. 2005], we demonstrated that the overhead of the basic fault-
tolerance mechanism is negligible if no crashes occur. Furthermore, Satin’s check-
pointing mechanism has a small overhead, depending on the parameter size of the
spawned methods in the application. Since Satin uses concurrent checkpointing,
the impact of writing the checkpoint file is minimized. In this section, we will
show that Satin’s fault tolerance mechanism is effectively able to handle crashes,
while saving orphaned jobs. First, we compare the performance of our basic fault-
tolerance algorithm (with orphan saving but no checkpointing) with the traditional
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Fig. 6. Performance of fault tolerance, crashing 1 cluster.

‘naive’ algorithm that recomputes lost work. Next, we compare the performance of
the checkpointing extension with the performance of the basic algorithm. We will
look at different checkpointing intervals. Finally, we will evaluate the performance
of our algorithm when the nodes are leaving gracefully, after a prior notification.

In these experiments, we run the three applications on 32 nodes in 2 clusters. We
remove one of the clusters in the middle of the computation, that is, after half of
the time the computation would take on 2 clusters without processors leaving. This
case is the most demanding, because the largest number of orphan jobs is created
in this case. Typically, the number of orphans does not depend on the moment
when processors leave, except for the initial and final phase in the computation.
To allow a fair comparison between various checkpointing intervals, we made sure
that the crash occurs exactly in the middle of a checkpointing interval. Finally,
we distinguish two cases: the scenario where the cluster that contains the master
crashes, and the scenario where the other cluster crashes.

Figure 6 shows the normalized run times of the applications, including the check-
pointing overhead if applicable. On average, our basic fault-tolerance algorithm
outperforms the traditional, ‘naive’ approach (that recomputes lost work) by 9%.
Checkpointing improves the performance by an additional 26%. The performance
improvement is largest with small checkpointing intervals, which demonstrates that
Satin’s concurrent checkpointing mechanism introduces only a small overhead. If
nodes are leaving gracefully, the orphan saving algorithm provides up to 69% per-
formance improvement over the ‘naive’ algorithm. The Barnes-Hut application is
an interesting case, since it is an iterative application. If the cluster with the mas-
ter crashes or leaves gracefully, the application has to be restarted, recomputing all
iterations. Checkpointing allows more work to be reused than the other methods,
since work from previous iterations was also saved.

Table VII lists the number of jobs stored in orphan tables, and the percentage
of jobs that is reused. With the basic fault-tolerance algorithm, almost all jobs are
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graceful ckpt 1 min ckpt 2 min ckpt 5 min basic

Gene Seq., master lives

jobs in orphan tables 253 1542 845 392 138
% jobs reused 99.6% 23.6% 35.0% 70.7% 97.8%

broadcast messages 29 42 19 23 26

Gene Seq., master dies

jobs in orphan tables 526 1723 1127 608 302
% jobs reused 100% 29.3% 42.6% 82.1% 100%

broadcast messages 118 101 106 88 69

Grammar, master lives

jobs in orphan tables 61 1019 585 168 0
% jobs reused 100% 5.5% 0.0% 0.0% 0.0%

broadcast messages 14 2 2 2 0

Grammar, master dies

jobs in orphan tables 165 1057 699 261 79
% jobs reused 100% 15.1% 34.2% 63.2% 100%

broadcast messages 54 47 49 40 34

Barnes, master lives

jobs in orphan tables 270 1216 971 442 66
% jobs reused 88.5% 22.0% 36.9% 20.4% 100%

broadcast messages 10 11 13 11 8

Barnes, master dies

jobs in orphan tables 601 1683 1069 670 297
% jobs reused 99.3% 68.0% 85.5% 100% 98.0%

broadcast messages 31 25 28 34 31

Table VII. Orphan saving statistics

Fig. 7. Performance of migration, crashing 1 cluster.

reused, while with checkpointing, only 15% to 86% of the jobs is reused. This is
caused by the fact that some jobs in the checkpoint file are redundant; their parent
or other ancestor was checkpointed as well. In such cases, only the ancestor is used.
Checkpoint compression can reduce the number of redundant jobs. Table VII also
lists the number of broadcast messages sent in order to keep orphan tables up to
date. Because message combining is used, this number is small and independent of
the number of jobs in the orphan tables.

We also evaluate the overhead of malleability-based migration using the appli-
cations on 32 nodes in 2 clusters, both with and without checkpointing. In the
middle of the computation, we gracefully removed one of the clusters and replaced
it with another cluster with the same number of processors (16). For compari-
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Fig. 8. Performance of adaptivity in different scenarios.

son, we include a run without migration. The normalized run times are shown
in Figure 7. The difference in the run times shows the overhead of migration.
With our approach, the overhead is less than 9%, except in one special case, with
the Barnes-Hut application, and when the master dies. Since Barnes-Hut is an
iterative application, all iterations are recomputed after the master is killed. We
reuse all stored jobs in the orphan job table, but this still results in some overhead.
Checkpointing-based migration is slightly more efficient in all cases. There are two
sources of overhead in the normal case. First, the results from the leaving proces-
sors need to be sent over the network. Depending on the application, the amount
of data to be sent can be significant. Second, part of the jobs need to be recom-
puted after migration, as only jobs that are finished at the moment the migration
is requested are saved and transferred to other processors. The overhead is small,
however, which shows that our mechanism can be used for efficient migration.

5.6 Adaptivity measurements

In this section, we evaluate Satin’s adaptivity mechanism using several scenarios
that are typical for grid environments. We perform the measurements with the
Barnes-Hut application described above, using real hardware, i.e., we are not using
a simulator. The scenarios allow us to demonstrate that Satin’s adaptation sup-
port can automatically avoid serious performance bottlenecks such as overloaded
processors or network links. For each scenario, we compare the performance with
adaptation support to a non-adaptive run (See Figure 8). In the non-adaptive run,
the coordinator does not collect statistics or perform benchmarking (for measuring
processor speeds).

Scenario 0: adaptivity overhead. Barnes-Hut is started on 36 nodes in 3 equally
large clusters. For the adaptive version, we measure the performance with collecting
statistics and benchmarking turned on, but without allowing Satin to change the
number of nodes, thus measuring the adaptivity overhead. In this experiment it
is around 15%. Almost all overhead comes from benchmarking; it can be reduced
by decreasing the benchmarking frequency. We used a relatively high frequency
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due to the relatively short application run time, since this is more challenging, and
using longer running applications would not allow us to finish the experimentation
in a reasonable time. However, For longer running applications, the adaptation
overhead can be kept much lower. For example, with the Barnes-Hut application,
if the monitoring period is extended to 10 minutes, the overhead drops to 6%.

Scenario 1: expanding to more nodes. We start on less nodes (8 nodes in 1
cluster) than the application can efficiently use. When adaptation is turned on, the
application gradually expanded to 36-40 nodes located in 4 clusters. This reduced
the run time by 50%.

Scenario 2: overloaded processors. Barnes-Hut was started on 36 nodes in 3
clusters. After 200 seconds, we introduced a heavy, artificial load on all processors
in one of the clusters. The adaptive version observed a very low weighted average
efficiency and reacted by removing the overloaded nodes. The efficiency rose to
around 65%, which triggered Satin to add new nodes, reaching 38 in total. The
total run time was reduced by 14%.

Scenario 3: overloaded network link. We start the application on 36 nodes in 3
clusters. We simulated that the uplink to one of the clusters was overloaded and
we reduced the bandwidth on this uplink to approximately 100 KB/s. To simulate
low bandwidth we use the traffic-shaping techniques described in [Chiu et al. 2000].
The adaptive version observed a weighted average efficiency of 25% and a high
WAN communication overhead in one of the clusters. Therefore it removed the
badly connected cluster after the first monitoring period. As a result, the weighted
average efficiency rose to around 65% and new nodes were gradually added until
their number reached 38. The total runtime was reduced by 60%.

Scenario 4: overloaded processors and an overloaded network link. We ran Barnes-
Hut on 36 nodes in 3 clusters. Again, we simulated an overloaded uplink to one of
the clusters. Additionally, we simulated processors with heterogeneous speeds by
inserting a relatively light artificial load on the processors in one of the remaining
clusters. The adaptive version removed the badly connected cluster after the first
monitoring period. This already improved performance considerably. Next, Satin
removed several of the nodes that suffered from the background load. Over the
whole run, Satin’s adaptation reduced the total runtime by 30%.

Scenario 5: crashing nodes. Again, we start Barnes-Hut on 36 nodes in 3 clusters.
After 500 seconds, we crashed 2 out of 3 clusters. After the crash, the weighted
average efficiency rose to around 70%, which triggered adding new nodes in the
adaptive version. The number of nodes gradually went back to 36, which reduced
the total runtime by 13%.

The results show that Satin’s adaptation strategy deals with problems that are
typical for grids: expand to a larger number of nodes or shrink to a smaller number
of nodes if the application was started on an inappropriate number of processors,
remove inadequate nodes and replace them with better ones, replace crashed pro-
cessors, avoid slow networks, etc. The application adapts fully automatically to
changing conditions. We demonstrated that our approach can yield significant per-
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site architecture speed (MHz) operating system CPUs

Amsterdam, Netherlands Intel P3 1000 32-bit Linux 8
Amsterdam, Netherlands Sun SPARC 750 64-bit Solaris 2
Lecce, Italy Compaq Alpha 667 64-bit Tru64 Unix 4
Cardiff, UK Intel P3 1000 32-bit Linux 2
Brno, Czech Republic Intel Xeon 2400 32-bit Linux 8
Berlin, Germany SGI MIPS 500 32-bit Irix 16

Table VIII. Machines used in a European-scale experiment.

formance improvements (up to 60% in our experiments), while the overhead is small
when no adaptation is needed. For a more detailed evaluation of Satin’s adaptation
performance we refer to [Wrzesińska et al. 07 A].

5.7 Large-scale Grid experiments

We further evaluated Satin’s scalability and performance on a real grid system by
participating in the Grids@work event in October 2005 in Sophia Antipolis, France.
A part of the event was the 2nd Grid Plugtest, which consisted of an N-Queens
contest. The aim was to find the number of solutions to the N-Queens problem. We
wrote a parallel N-Queens solver with Satin. We compared our N-Queens program
with the fastest known C version by Takahashi. We found that our parallel version
on a single machine was only 0.5% slower than the C version. The portability we
gained by writing the program in Java and the parallelization with Satin thus had
almost no measurable impact on performance.

During the contest we ran N-Queens on Grid’5000, a heterogeneous wide-area
grid system distributed over France4. We used five clusters with 960 nodes in total,
with the clusters being up to 1000 kilometers apart. We ran N-Queens with N=22
in 1516 seconds (25 minutes). The Satin application spawned 4.7 million jobs in
25 minutes, and the Satin runtime system sent about 800,000 messages to balance
the load in the parallel computation. We measured the overhead of deploying and
starting the jobs, as well as the communication cost in the Satin runtime system.
In total, these overheads add up to 15% of the total run time. Therefore, 85% of
the total run time is spent in the application itself. During the contest, we found
and solved several scalability problems in Ibis and Satin. For instance, we setup
connections for Satin’s load-balancing algorithm on-demand, and limit the total
number of connections we keep. In addition, we removed all central bottlenecks
from both the Ibis and Satin implementations. There now is no single central point
in Satin. Using Satin, we won the prize for the largest number of parallel nodes
deployed during the contest. For more details on the scalability issues and this
experiment we refer to [Nieuwpoort et al. 2006].

In [Nieuwpoort et al. 05 A] we present measurements of a Satin parallel raytracer
application on an even more distributed and heterogeneous European scale grid,
see Table VIII. In this case, the differences in CPU speeds are more than a factor
of four, latencies differ by a factor of 200, and bandwidths even by a factor of
1200. Still, Satin achieves an efficiency of 80%. Finally, in recent experiments we
successfully ran applications on the Amazon Elastic Compute Cloud.

4See http://www.grid5000.fr for more information.
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fault-
Ease tolerance
of malleable

System Performance Use Applicability migration Adaptivity Portability

Cilk + + +/- - - -
Javelin 3 - + - - - +
Atlas - + - + - +
MW - + - + +/- -
Grid SuperSc. - + +/- - - -
HPJava + - +/- - - -
MPI + - + +/- - -
MPJ + - + +/- - +
ProActive + +/- + +/- - +
GridRPC + - + - +/- -

RMI + - + - +/- +
Satin + + +/- + + +

Table IX. Characteristics of Satin and related systems.

6. RELATED WORK

We discussed Satin, a Java-based divide-and-conquer system that provides shared
objects, asynchronous exceptions and an abort mechanism. Satin is designed for
heterogeneous and dynamic wide-area systems, without shared memory. Satin tar-
gets fine-grained distributed supercomputing applications. Satin does not explicitly
target task farming or SETI@home-like trivially parallel applications, but it is easy
to also write such applications in Satin. Finally, Satin aims to provide a high-level
powerful programming model. Satin is implemented in 100% pure Java, so the only
requirement to run Satin is a JVM. This facilitates the deployment of Satin on
the grid. In this section, we compare Satin’s features with related work. Table IX
shows a summary of features provided by the systems we discuss in this section. For
fault-tolerance, malleability, migration and adaptivity, a “+/-” indicates that a fea-
ture is present but not transparent, and has to be implemented by the application
programmer.

6.1 Divide and Conquer Models

Many divide-and-conquer systems have been designed in the past, most are based
on the C language. Most systems target shared memory systems or small-scale dis-
tributed systems (e.g., clusters). Cilk [Blumofe et al. 1995] only supports shared-
memory machines, CilkNOW [Blumofe and Lisiecki 1997] and DCPAR [Freisleben
and Kielmann 1995] run on local-area, distributed-memory systems, but do not
support shared data. SilkRoad [Peng et al. 2000] is a version of Cilk for distributed
memory systems that uses a software DSM to provide shared memory to the pro-
grammer, targeting at small-scale, local-area systems.

The Java classes presented by Lea et al. ([Lea 2000]) can also be used for divide-
and-conquer algorithms on shared-memory systems.

JCilk [Danaher et al. 2005] is a Java-based multithreaded programming language
that provides asynchronous exceptions, similar to the mechanism provided by Satin.

Javelin 3 [Neary and Cappello 2002] provides a set of Java classes for branch-
and-bound computations, such as the traveling salesperson problem. Like Satin,
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Javelin 3 is designed for wide-area systems. However, Javelin 3 uses a tree-based
hierarchical scheduling algorithm. We found that such algorithms are inefficient for
fine-grained applications and that CRS performs better [Nieuwpoort et al. 2001].
Moreover, none of the systems mentioned above provide fault-tolerance, malleabil-
ity, adaptivity or distributed speculative parallelism.

Atlas [Baldeschwieler et al. 1996] is a wide-area divide-and-conquer system that
has been designed with heterogeneity and fault tolerance in mind. Its fault-tolerance
mechanism is also based on redoing the work. The problem of orphan jobs is
not addressed in Atlas. Moreover, Atlas uses a hierarchical scheduling algorithm
that has suboptimal performance [Nieuwpoort et al. 2001], and it does not provide
adaptivity.

6.2 Grid Models

MW [Goux et al. 2000] is a framework for writing grid-enabled master-worker
applications. The master-worker paradigm is very popular in grid computing. Since
the tasks are independent, little communication is needed and high performance can
be achieved even on wide-area networks. The MW API is extremely simple: the
programmer needs only to provide a small number of functions: a function to split
up work, worker initialization routine, a function performing the actual task etc.
The runtime system takes care of load balancing, inter-processor communication
and fault-tolerance. MW supports only embarrassingly parallel applications, and
thus is less expressive than Satin. Nevertheless, many useful applications exhibit
this structure. MW transparently handles worker crashes. If a worker fails, the task
executed by this worker is re-assigned to another worker by the runtime system. A
failure of the master is treated in a special non-transparent way. MW also supports
malleability. Finally, since MW uses dynamic load-balancing, it adapts to varying
processor speeds, a simple form of adaptivity. Since MW is written in C++, it
is inherently less portable than Satin, applications may need to be recompiled for
different grid sites.

Grid superscalar [Badia et al. 2003] provides a high-level C++-based program-
ming model which hides most of the grid complexity and parallel-programming
issues. The programmer structures the application as a set of possibly repetitive,
sequential tasks. Such tasks can be executed in parallel on the grid. Each task
operates on a set of files. Tasks that operate on the same file can have a data
dependency. The grid superscalar compiler analyzes the data dependencies auto-
matically. The runtime system can use the Globus Toolkit [Foster 2006] to execute
tasks on a set of servers. Since an expensive grid middleware operation is performed
to spawn each task, fine-grained applications will not perform well. Currently grid
superscalar does not yet support fault tolerance, malleability, migration or adap-
tivity.

HPJava [Lee et al. 2004] is a Java-based framework supporting an HPF-like data-

parallel programming style. It extends sequential Java with support for distributed

arrays : arrays that are physically distributed over the memories of the participating
processors. The programmer manipulates those arrays using high-level constructs
such as overall construct which denotes a distributed, parallel loop. If a process
needs to access an element held by another processor, explicit communication must
take place. Since HPJava is an explicit communication programming model, it
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is more low-level than Satin (or HPF). The application programmer will have to
take the responsibility for grid-specific optimizations, such as dynamic load bal-
ancing and latency hiding. HPJava currently does not support fault tolerance,
malleability, migration or adaptivity. Although HPJava uses Java technology, the
distributed-memory implementation of HPJava relies on native communication in-
terfaces, limiting portability.

Explicit message passing is a popular parallel programming paradigm. Several
grid-aware implementations of the MPI standard exist. MPICH-G2 [Karonis et al.
2003] allows running MPI applications across multiple clusters. MPICH-G2 is an
integration of the popular MPICH [Gropp et al. 1996] implementation with the
Globus Toolkit [Foster 2006]. Other implementations of MPI which address some
grid issues are PACX-MPI [Gabriel et al. 1998] which provide grid-aware collec-
tive communications or OpenMPI [Graham et al. 2006] and MetaMPI [Eickermann
et al. 1999] which support multiple communication protocols. MPI applications
typically achieve high performance on cluster and supercomputers. On grids, the
programmer must explicitly manage heterogeneity. Compared to higher-level mod-
els such as grid superscalar, master-worker or divide-and-conquer, message pass-
ing is relatively cumbersome and error-prone. The programmer has to explicitly
deal with load-balancing and inter-processor communication and differences in pro-
cessor speeds. In MPI applications, there are two approaches to providing fault
tolerance, malleability and migration. One approach is system-level checkpointing
and/or message logging. In MPI-TM [Robinson et al. 1996] and AMPI [Huang
et al. 2006] for example, little or no effort is required from the application pro-
grammer, but the complexity, the large amount of data that needs to be saved
and the lack of portability make it unsuitable for grid environments. The second
approach is to let the programmer provide fault tolerance, malleability and migra-
tion. The MPI-2 standard [MPIF 1996] supports dynamic process management.
Adding adaptivity to an MPI application is the responsibility of the application
programmer. Adaptive MPI applications have for instance been developed in the
context of the GrADS project [Vadhiyar and Dongarra 2005]. Grid-enabled MPI
implementations hide many platform-specific details, which enhances portability.
However, MPI is typically used in combination with C, C++ or Fortran. Applica-
tions written in those languages cannot be ported to another architecture without
recompilation. Java bindings of the MPI interface exist, for example MPJ [Carpen-
ter et al. 2000]. MPJ/Ibis [Bornemann et al. 2005] is an implementation of MPJ in
pure Java. Phoenix [Taura et al. 2003] is a message passing programming model
that is explicitly designed for malleable applications.

ProActive [Baduel et al. 2006] is a Java middleware which supports the so-called
Object-Oriented SPMD programming model. A ProActive application is struc-
tured as a set of active objects that have their own thread of control. Method calls
to active objects are asynchronous with transparent future objects. ProActive pro-
vides various group communication primitives based on method invocations. Since
ProActive is an explicit communication model, the programmer is responsible for
applying grid-specific optimizations. ProActive supports migration of active objects
between JVMs. This facility can be used to implement application malleability and
migration. ProActive also provides transparent fault tolerance through Commu-
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nication Induced Checkpointing. Providing adaptivity is the responsibility of the
application programmer. Portability of ProActive applications is ensured through
the use of the Java technology.

RPCs (Remote Procedure Calls) [Birrel and Nielson 1984] have been widely used
in programming parallel and distributed applications. Java’s Remote Method In-
vocation (RMI) [Sun Microsystems 2008] is an object-oriented variant of RPC.
GridRPC [Seymour et al. 2002] extends RPC with a number of important prim-
itives. GridRPC defines asynchronous calls and primitives to operate on those
calls. Using these primitives, GridRPC also supports the fork-join parallelism.
GridRPC is suitable for medium-to-coarse-grained parallel applications but not for
fine-grained parallelism. Example implementations of GridRPC are Netsolve [Arnold
et al. 2002] and Ninf [Tanaka et al. 2003]. Applications based on RPCs can achieve
high performance in grid environments. For example, in [Nieuwpoort et al. 2000]
several grid applications programmed with RMI are demonstrated. However, it is
the responsibility of the programmer to apply grid specific optimizations. GridRPC
supports this by providing for example asynchronous procedure calls. Providing
fault-tolerance, malleability and migration in applications using RPCs is the re-
sponsibility of the programmer. Some implementations of GridRPC API provide
some form of transparent adaptivity. For example, Ninf-G uses dynamic informa-
tion from Network Weather Service [Wolski et al. 1999] to dynamically select the
best resource to execute an RPC call.
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7. CONCLUSIONS

In this paper, we have discussed the design and implementation of a high-level
programming model for distributed supercomputing. Our goal was to create a
programming model that is programmer friendly, but allows the efficient execution
of parallel applications on heterogeneous wide-area systems, or grids. To achieve
this, we needed to deal with typical grid problems such as the dynamic nature of the
system, different architectures and processor speeds, crashes and low bandwidths
and long network delays between grid sites. We observed that grids are typically
hierarchically structured, and that this property can be exploited to achieve high
performance. Therefore, we did not attempt to provide a generic model, instead
we focussed on two important application classes: master-worker and divide-and-
conquer. The divide-and-conquer model is inherently hierarchical, and in this paper
we have demonstrated that this model maps well onto modern grid systems.

We designed and implemented a divide-and-conquer and master-worker system
called Satin. We have shown that Satin is easy to use, because it provides an
extremely high-level programming model, and all problems caused by targeting
grid systems are completely hidden from the programmer. In fact, there even is no
concept of machines or communication in Satin, and work distribution is completely
automatic and transparent. We have demonstrated that, although we target the
difficult grid environment, it is possible to provide a rich programming model, while
still achieving high performance. Satin’s programming model supports master-
worker and divide-and-conquer applications by using simple “spawn” and “sync”
primitives. To support shared data, Satin provides a powerful shared object model.
Finally, Satin has support for speculative parallelism, in the form of asynchronous
exceptions and an abort mechanism.

Satin deals with the difficult problems introduced by the harsh grid environment
in several ways. First, we use a Java-centric approach. Satin applications are
compiled to Java bytecode, and Satin’s runtime system is implemented in Java as
well. Therefore, we can exploit Java’s “Write once, run anywhere” property and
deploy our grid applications to any system that has a JVM, without recompilation
or reconfiguration. Second, we use a special grid-aware load-balancing algorithm,
called CRS, that exploits the hierarchical structure of the grid when distributing
work across machines. Third, we introduce a novel shared object model, that
has application-defined consistency. This allows efficient implementations, using
point-to-point communication, grid-aware broadcasting mechanisms or gossiping
techniques, depending on the required consistency.

Furthermore, we have demonstrated how to deal with joining and leaving ma-
chines and crashes, problems that frequently occur in grids. Because of Satin’s
well-designed high-level programming model, support for malleability, migration
and fault-tolerance can be implemented in the runtime system, and is completely
transparent to the application. Using a novel orphan saving technique, Satin makes
sure that as little work as possible is lost when machines or entire clusters leave or
crash.

We also have described several techniques to deal with the changing perfor-
mance characteristics of the grid. The CRS load-balancing algorithm tolerates
large changes in network performance. The Satin runtime system provides adap-
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tivity in a transparent way, by automatically adding and removing machines from
the parallel application when needed.

We have used several realistic applications to demonstrate that the divide-and-
conquer model can be efficiently executed on hierarchical systems (e.g., the grid),
without any wide-area optimizations by the application programmer. Finally, we
have shown that divide-and-conquer applications generally scale better than master-
worker applications, since there is no single central bottleneck.
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